蘇志從,楊丁貴,王 琳
(1.國網福建省電力有限公司檢修分公司,福建 廈門 361001;2.國網福建省電力有限公司南平供電公司,福建 南平 353000)
將Y型聯(lián)接的電機中性點拆開[1],得到相對獨立的三相繞組(即所謂的開繞組),兩端分別由兩變換器供電,構成雙變換器開繞組電機系統(tǒng)。開繞組電機系統(tǒng)可在不改變電機固有結構的同時,通過增加開關器件即可有效提高輸入電壓的等級與品質[2]。目前,國內外開放式繞組電機系統(tǒng)研究的對象主要集中于感應電機和永磁同步電機[3-4],很少看到對開繞組同步磁阻電機(SynRM)的雙變換器控制系統(tǒng)的相關研究。同步磁阻電機結構簡單、制造成本低、其安全性能良好,能滿足特殊運行環(huán)境對電機的苛刻要求[5]。同時,同步磁阻電機有效避免了感應電機、永磁同步電機所存在的諸多弊端[6],因此有必要對雙逆變器開繞組SynRM控制系統(tǒng)做深入研究。
學者尹靖元針對感應電機提出采用共直流母線的雙逆變器驅動電路拓撲[7],系統(tǒng)的兩個逆變器共用一個直流母線電源,兩個逆變器的供電電源沒有隔離且存在物理上的連接,因此雙逆變器共模電壓存在零序回路,產生共模電流從而引起電機振蕩,使其應用受到限制。文獻[8]提出零序電壓補償方法,通過調整零電壓矢量的調制位置,使得共模電壓的平均值為零,但是該方法并沒有使得瞬時共模電壓為零,仍會產生波動的共模電流,同時沒有充分利用直流母線電壓,無法實現(xiàn)最大電壓輸出。文獻[3]采用傳統(tǒng)的零共模電壓調制方法,直接采用不含零序電壓的這六個基本電壓矢量進行調制,但該方法放棄使用含零序分量的最大六邊形電壓矢量,從而降低了母線電壓的利用率。因此要想從根本上解決共模電壓的問題,應該切斷共模電流回路,即采用兩路隔離直流母線的供電方式,不僅能夠徹底消除共模電流,同時基本電壓矢量的選擇也不再受到共模電壓的限制,從而實現(xiàn)母線電壓利用率的最大化。
同時,針對雙逆變器SVPWM調制方法,文獻[9-10]將雙逆變器拆分為兩個獨立的單逆變器,其中一個逆變器工作在低頻模式(即在SVPWM調制周期內,其工作狀態(tài)保持不變),另一個逆變器工作在高頻模式,通過兩逆變器的組合實現(xiàn)目標電壓矢量的輸出。此時低頻工作的逆變器的開關損耗將明顯小于高頻模式的開關損耗,但是該調制方法會導致雙逆變器12個開關管損耗失衡,高頻模式的開關管使用壽命明顯下降,從而降低整機的使用壽命。
為此,本文結合雙逆變器驅動系統(tǒng)和同步磁阻電機的眾多優(yōu)勢,構建開繞組同步磁阻電機矢量控制系統(tǒng),采用隔離母線供電方式避免共模電壓的影響,同時提出一種新型交替低頻工作的雙逆變器SVPWM調制策略,不僅保證最大電壓輸出,同時平衡12個開關管的損耗分布,提高雙逆變器的使用壽命。
電壓方程:
磁鏈方程:
電磁轉矩方程:
(3)
運動方程:
式中,ud、uq、id、iq、Ψd、Ψq、Ld、Lq分別是d-q軸坐標系所對應的電壓、電流、磁鏈和電感;Te、TL為電磁轉矩與負載轉矩;Rs為電機定子電阻;wr為轉子同步電角速度;P0為轉子極對數(shù);θ為電流矢量與d軸的夾角即電流角;Im為電流矢量幅值。
雙逆變器SVPWM 是在單逆變器SVPWM的基礎上發(fā)展而來的,圖1為采用雙逆變器供電的開繞組同步磁阻電機矢量控制框圖,包括Clarke與Park變換模塊、速度環(huán)PI調節(jié)器、電流分配模塊、dq軸電流環(huán)PI調節(jié)器、雙逆變器SVPWM調制及其輸出模塊等。與傳統(tǒng)的單逆變器供電Y型連接的同步磁阻電機矢量控制系統(tǒng)不同,雙逆變器的SVPWM輸出由12個開關管、6個橋臂實現(xiàn),通過逆變器INV1、逆變器INV2的協(xié)同工作,輸出母線電壓利用率更高、品質更高(即諧波含量更低)的三相交流電壓,驅動開繞組SynRM運行。
圖1 基于雙逆變器供電的開繞組SynRM矢量控制框圖
其中電流分配模塊通常是采用最大轉矩控制(MTC),忽略電機磁鏈飽和效應(即認為dq軸電感恒定),并對公式(3)所示的轉矩方程求導可得,對于給定的電流幅值Im,當電流角θ=45°,電磁轉矩Te最大。因此可以控制電流角θ恒為45°即可實現(xiàn)最大轉矩控制,將電流角θ=45°代入公式(3)即可得到MTC控制下的最大轉矩方程:
圖2為采用雙逆變器供電的開繞組電機控制電路拓撲,采用隔離母線供電的方式。由于獨立直流電源供電的雙逆變器系統(tǒng)不存在零序電流回路,其共模電壓不會產生零序電流,可以避免共模電流產生的諸多不良影響。
圖2 雙逆變器開繞組電機控制電路拓撲
由單逆變器SVPWM調制策略可知[9],單逆變器產生的電壓矢量包括2個零電壓矢量和6個非零基本電壓矢量,其中1(100),2(110),3(010),4(011),5(001),6(101)為非零基本電壓矢量,7(000),8(111)為零電壓矢量。因此雙逆變器可看成兩個單逆變器INV1、2的組合,其電壓矢量的空間分布如圖3所示,其中不帶′則表示逆變器1的空間矢量,帶′則表示逆變器2的空間矢量。
圖3 逆變器1、2單獨產生的空間矢量
采用母線電壓值相等(即Vdc1=Vdc2=Vdc)時,以Va0、Vb0、Vc0表示逆變器INV1的三相橋臂電壓輸出點A、B、C與中性點O之間的電壓,以Va′0′、Vb′0′和Vc′0′表示逆變器INV2三相橋臂電壓輸出點A′、B′、C′與中性點O′之間的電壓,則Va0、Vb0、Vc0、Va′0′、Vb′0′和Vc′0′均可能輸出Vdc/2或-Vdc/2。因此開繞組電機每相繞組的相電壓(記為Vaa′,Vbb′與Vcc′)可表示為
其中,V00′為共模電壓,由于開繞組電機的三相電壓之和為零,即Vaa′+Vbb′+Vcc′=0,并代入式(6)可得:
V00′=(Va0+Vb0+Vb0-Va′0′-Vb′0′-Vc′0′)/3
(7)
若共模電壓V00′為零,則開繞組電機的相電壓Vaa′,Vbb′與Vcc′具有三種可能值:Vdc,0和-Vdc,因此雙逆變器較單逆變器具有更多自由度去選擇逆變器開關組合形式去實現(xiàn)同一給定輸出電壓。
由于共模電壓V00′幅值與相位相同,其合成電壓矢量為零,并將式(6)代入式(8)簡化可得:
由此可得雙逆變器輸出的全部64個合成電壓矢量分布情況,如圖4所示。在這64 種開關狀態(tài)組合中,除去重復的電壓矢量外,共含有19個有效矢量,包括18個有效非零矢量和1個零矢量。
圖4 雙逆變器產生的空間矢量分布
根據式(7)可得到雙逆變器64個合成電壓矢量的共模電壓,如表1所示。
表1 雙逆變器不同組合方式產生的共模電壓
由表1可知,雙逆變器存在非零合成電壓矢量53′、35′、15′、51′、13′、31′、46′、64′、24′、42′、26′、62′(對應圖4中的合成電壓矢量OH、OS、OJ、OL、ON、OQ),其共模電壓都為零,并組成中間六邊形HSJLNQ。直接采用OH、OS、OJ、OL、ON、OQ等六個矢量進行調制,可實現(xiàn)零共模電壓調制,但該方法只使用了19個有效電壓矢量中的6個,電壓利用率較低。本文采用兩路隔離直流母線電源供電模式的雙逆變器饋電系統(tǒng),在大六邊形KIGRPM范圍內進行調制,且不存在零序電流回路,避免共模電流導致的諸多弊端。同時采用一種新型雙逆變器SVPWM調制策略,使得雙逆變器在兩象限內交替低頻工作,降低開關器件的損耗。
其具體調制方法如下:
如圖5所示,可將最大六邊形調制區(qū)間分解為扇區(qū)Ⅰ~扇區(qū)Ⅵ六個扇區(qū),當所需電壓矢量落在扇區(qū)Ⅰ時,可將目標電壓矢量OV視為電壓矢量OA和電壓矢量AV的合成,即OV=OA+AV。同時將雙逆變器分解為兩個單逆變器INV1、INV2,則電壓矢量OA即為單逆變器INV1所對應的基本電壓矢量1(100),而電壓矢量AV則根據單逆變器INV2的基本SVPWM調制策略,通過小六邊形OBHGSF內的電壓矢量AH和AG,并利用線性時間組合等效合成,此時逆變器INV1在一個控制周期中,輸出基本電壓的6個功率器件開關狀態(tài)不變,工作于低頻狀態(tài),而逆變器INV2工作于高頻調制狀態(tài),其輸出電壓分別為低頻電壓矢量與高頻電壓矢量。
圖5 交替低頻工作方式
當電壓矢量位于其他扇區(qū)時,如果固定逆變器INV1始終工作在低頻狀態(tài),逆變器INV2工作在高頻狀態(tài),即低頻電壓矢量由逆變器INV1輸出,高頻電壓矢量由逆變器INV2輸出,高頻工作的逆變器INV2的功率器件損耗將遠大于低頻工作的逆變器INV1,從而導致12個開關管的損耗失衡,最終降低雙逆變器的使用壽命。
為此,本文提出采用兩象限交替低頻工作的雙逆變器SVPWM調制策略,在扇區(qū)Ⅰ、Ⅱ、Ⅲ中,逆變器INV1低頻工作,而逆變器INV2高頻調制;在扇區(qū)Ⅳ、Ⅴ、Ⅵ中,逆變器INV2低頻工作,而逆變器INV1高頻調制。各逆變器在各扇區(qū)作用如表2所示。
表2 雙逆變器低頻、高頻交替工作方式
如此,在一個周期內,兩個逆變器分別低頻工作。而高頻工作的逆變器可借鑒單逆變器SVPWM的編程方法,采用七段式SVPWM方式實現(xiàn),并合理安排開關轉換順序,使在一個開關周期內開關次數(shù)達到最低,可推導得到交替低頻工作方式不同扇區(qū)開關時序波形如圖6所示。
圖6 交替低頻工作方式不同扇區(qū)開關時序波形
采用新型雙逆變器SVPWM調制方法,不僅減小開關損耗,也平衡雙逆變器12個開關管的損耗分布,同時可以保證雙逆變器最大調制電壓,從而提高設備的效率和工作壽命。
表3 同步磁阻電機參數(shù)
為了驗證采用新型雙逆變器SVPWM調制方法的同步磁阻電機矢量控制的動態(tài)響應過程,設置同步磁阻電機轉速給定值設為1000 r/min,電機帶3 Nm負載起動進入穩(wěn)態(tài)后,在時間t=0.6 s時刻突加負載至7 Nm。動態(tài)過程轉速、轉矩以及三相電流如圖7所示。
圖7 負載轉矩突變時的轉速、轉矩和電流波形
由仿真結果可以看出,在t=0.6 s時刻改變負載轉矩后,轉速抖動在2 r/min以內,動態(tài)響應時間均約為8 ms,電磁轉矩亦迅速跟隨負載轉矩變化,控制系統(tǒng)在負載突變過程中穩(wěn)定性能良好。
圖8 調制度m=0.4時,逆變器輸出的A相電壓與共模電壓波形
圖8為采用新型雙逆變器調制方法,且調制度m=0.4時的逆變器INV1輸出A相電壓VAO、逆變器INV2輸出A相電壓VA′O′、雙逆變器輸出的相電壓VAA′以及共模電壓VOO′。
從仿真結果可知,在一個周期中,逆變器INV1的輸出電壓與逆變器INV2的輸出電壓在低頻模式(電壓被鉗位)與高頻模式(輸出PWM調制信號)中切換,其有效電平只有兩個,而其合成的雙逆變器輸出電壓,其有效電平增加至三個,且在整個周期中輸出PWM調制信號,不但使輸出電壓正弦度提高,減小輸出電壓諧波分量,從而有效改善電壓的輸出質量。而由圖8(c)可知,采用兩象限交替低頻工作雙逆變器SVPWM調制方法,無法避免共模電壓的形成,因此必須采用兩個相隔離的母線電壓供電,避免產生共模電流。
本文以TMS320F2812DSP作為控制核心搭建了開繞組同步磁電機數(shù)字控制實驗平臺,以驗證上述理論分析結果的準確性。電機參數(shù)與控制參數(shù)與仿真系統(tǒng)一致。
圖9為調制度m=0.9時,兩個周期內的逆變器INV1輸出的A相上橋臂驅動信號波形、以及逆變器INV2輸出A′相下橋臂驅動信號波形,其硬件電路采用低有效模式(即驅動信號為低電平時,開關管導通)。可以看出開關管驅動信號可以有效地在鉗位模式和高頻模式中切換,符合雙逆變器SVPWM調制方法的控制規(guī)律。
圖9 調制度m=0.9時,雙逆變器PWM驅動信號波形
圖10為不同調制度m下,電機穩(wěn)定運行時定子繞組A相兩端電壓(相電壓VAA′)波形,即雙逆變器SVPWM輸出相電壓波形,其中縱坐標為50 V每格,橫坐標為10 ms每格。與圖8所示仿真結果一致,雙逆變器SVPWM可使輸出電壓正弦度提高,減小電壓諧波分量,從而有效改善電壓的輸出質量。
圖10 不同調制度m下電機相電壓波形
本文介紹采用雙逆變器供電的開繞組同步磁阻電機矢量控制系統(tǒng),并詳細介紹了一種新型雙逆變器SVPWM調制策略,使得雙逆變器兩象限交替低頻工作,逆變器開關器件的損耗均分,以提高雙逆變器的使用壽命。構建了開繞組同步磁阻電機矢量控制系統(tǒng)仿真模型與實驗平臺,實驗與仿真結果驗證了該方案可行。