• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低負(fù)載量的雙金屬Au@Pt核殼催化劑催化氧化甲苯

    2019-03-13 03:08:36李思漢李小青胡鳳騰嚴(yán)新煥
    無機化學(xué)學(xué)報 2019年3期
    關(guān)鍵詞:浙江工業(yè)大學(xué)核殼雙金屬

    李思漢 李小青 胡鳳騰 張 超 嚴(yán)新煥

    (浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點實驗室培育基地,杭州 310014)

    0 Introduction

    Volatile organic compounds(VOCs)are the major component of environmental pollution from a larger variety of sources,such as transport,industrial process and household products[1-3].VOCs are also important precursors for the formation of particulate matter(PM),ozone and photochemical smog,which greatly threaten to the environment and human health due to their toxic,mutagenic and teratogenic characteristics[4-6].The development of efficient and low-energy methods for removing VOCs is one of the important means to ease the world′s energy and environmental problems.Until now,the main approaches[7]for removing VOCs include adsorption, absorption, photocatalysis,biodegradation,pulse corona,catalytic oxidation,etc.Among these methods, catalytic oxidation is considered to be one of the most effective and commonly used methods for eliminating VOCs,which can remove VOCs with low energy consumption,no secondary pollution is found as only CO2and H2O.

    Currently,gold nanoparticles (NPs)have traditionally been utilized as catalytically active centers for noble metal deposition to prepare bimetallic core-shell structures.Among the various noble metals,bimetallic Au@Ptcore-shellnanoparticlesareconsidered a typical example and have been extensively studied and used,which can increase the activity,stability and selectivity in specific chemical reactions compared to monometallic Pt or Au.The improvement of performance is attributed to the synergy of the electronic and geometric effects between the two metals[8].In addition,the bimetallic Au@Pt core-shell also can reduce the amount of Pt loading and improve the utilization of Pt compared with alloyed structures[9].

    Recently,many approaches have been applied to synthesize Au@Pt core-shell nanoparticles including electrodeposition[10-11], chemical reduction[12-13]and galvanic displacement[14-15].The procedures of electrodeposition and galvanic displacement are complicated and cumbersome.The reaction often occurs under the harsh conditions,such as the use of poisonous and stubborn surfactant agents,high temperature,strong acid and alkali solvents.On the basis of economic and environmental considerations,the preparation of core-shell nanoparticles by a simple method remains still a challenge.

    Herein,we developed a new and environmentally friendly method for the preparation of Au@Pt coreshell nanoparticles:the Au nanoparticles were firstly prepared by liquid-phase hydrogen reduction,then small Pt particles were deposited onto the Au nanoparticles to obtain Au@Pt core-shell nanostructures.Compared with the conventional method,this method can effectively control the particle size and crystal structure.Moreover,it can regulate the dispersion of the active components on the carrier.The low loading Au@Pt core-shell catalyst showed higher activity for toluene oxidation at low temperature.

    1 Experimental

    1.1 Materials

    HAuCl4·4H2O and H2PtCl6·6H2O(AR)were purchased from Shanghai Tuosi Chemical Co.,Ltd.Propylene carbonate(AR)was purchased from Dongguan Youte environmental protection materials Co.,Ltd.γ-Al2O3was purchased from Shanghai Lüqiang New Material Co.,Ltd.Toluene(AR)was purchased from Aladdin.

    1.2 Preparation of nanoparticles

    1.2.1 Preparation of Au nanoparticles

    Au nanoparticlesweresynthesized by using HAuCl4·4H2O as a precursor.The measured amount of HAuCl4·4H2O was sufficiently dissolved in 100 mL of propylene carbonate and added to the autoclave.The reaction was carried out at 40℃under hydrogen pressure of 4 MPa for 2 h to obtain Au nanoparticles solution.γ-Al2O3was added into the above solution,stirred for 24 h and calcined at 400℃for 4 h after filtrating and drying.The combined catalyst with low Au loading 0.04% (mass fraction)was obtained and recorded as Au/γ-Al2O3.

    1.2.2 Preparation of Au@Pt core-shell nanoparticles

    The calculated amount(nAu∶nPt=1:0,3∶1,2∶1,1∶1,1 ∶2,1 ∶3,0 ∶1)of H2PtCl6·6H2O was added in the above-prepared Au nanoparticles solution.Then the mixed solution was added to the autoclave with 4 MPa H2.The solution was vigorously stirred for 3 h at 40℃to obtain Au@Pt core-shell nanoparticles.To deposit the sol on the support,a certain amount of the pretreated γ-Al2O3carrier was added to the abovenanoparticle solution.After stirring and impregnating 24 h,the sample was filtered,dried and then calcined in the muffle furnace at 400℃for 4 h to obtain combined core-shell Au@Pt catalysts (the loading amount was shown in Table 1).

    1.3 Catalyst characterization

    The XRD patterns of the materials were performed on a Rigaku D/Max-2500 X-ray diffractometer,which used a Cu Kα radiation(λ=0.154 nm)in the 2θ scan range(40 kV and 100 mA)from 10°to 80°with a step of 0.05°.Transmission electron microscopy(TEM)was taken on a JEOL JEM-1200EX with an accelerating voltage of 60 kV equipped with energy dispersive spectroscopy(EDS).The X-ray photoelectron spectrometer(XPS)was carried on non-monochromatic Al Kα(1 486.6 eV)radiation.The N2adsorption-desorption experiments were measured at liquid nitrogen temperature(77 K).The specific surface area of the material wascalculated from the desorption isotherm by Brunauer-Emmett-Teller(BET)theory.The different H2reduction temperature and hydrogen consumption of different oxidation state substances was measured using H2-TPR (temperature programmed reduction)method with online thermal conductivity detector(TCD)recording the temperature dependence of H2concentration.

    1.4 Catalytic activity measurements

    The catalytic activity ofthe catalystwas evaluated in the self-made atmospheric fixed bed catalytic reaction device.The catalyst (0.5 g)was placed in the middle of the reaction tube. The saturated toluene vapor of 0℃was introduced into the reaction tube by bubbling method.In the feed stream,the concentration(volume fraction)was 1×10-3and gas hourly space velocity (GHSV)of VOCs was 18 000~54 000 mL·g-1·h-1.The toluene and oxide content in the tail gas was monitored online by gas chromatography with a flame ionization detector(FID)and a TCD to determine toluene conversion and CO2selectivity at different temperatures,and the temperature at which toluene achieved 98%conversion was recorded as T98.

    The conversion of toluene and selectivity of CO2are calculated as follows:

    where φC7H8,inand φC7H8,outrepresent the volume fraction of toluene before and after reaction,respectively;φCO2and φCOrepresent the volume fraction of CO2and CO.

    2 Results and discussion

    2.1 Catalyst load test

    The metal loading of different Au-Pt molar ratio catalysts were determined by ICP-AES (Table 1).It can be seen that the actual loading is slightly lower than the theoretical calculation,indicating that a loss of some metal might occur during the synthesis or calcination step.However,it has little influence on the catalyst within the margin of error,which can be neglected basically.Therefore,the actual atomic ratio of the catalyst can be replaced by the theoretical value.

    2.2 Morphology and structure of the catalyst

    Fig.1 TEM image of Au nanoparticles(a),elemental mapping of bimetallic Au1Pt2nanoparticles(b),TEM image of bimetallic Au1Pt2nanoparticles after reaction(c)and the corresponding particle size distributions

    Fig.1 shows the TEM images and particle size distributions of Au and Au-Pt nanoparticles.The monometallic Au nanoparticles were uniformly dispersed with wide particle size distribution in a range of 3.75~10.61 nm and the average size was 6.57 nm (Fig.1a).Due to the effect of propylene carbonate as dispersant and stabilizer,nanoparticles are directly adsorbed on the surface of the support,which effectively inhibits the growth of nanoparticles and hinders the penetration of nanoparticles into the pores of the support[16].Thus Au nanoparticles have smaller size of the active phase and finer dispersion.The bimetallic Au-Pt nanoparticles were significantly larger than the monometallic Au.The sizes(Fig.1b)were between 12.5 and 29.1 nm,and the average size was 18.3 nm.This indicates that Au nanoparticles gradually grow,which results from the deposition of Pt on the surface of Au or the agglomeration of Au(Pt)nanoparticles.As can be seen from Fig.1c,the catalyst after reaction showed partial agglomeration and the overall particle size increased,but the amplitude of variation was not significant,demonstrating that the catalyst remain stable and is consistent with XRD characterization.However,the TEM images of bimetallic Au-Pt do not allow us to distinguish between Au and Pt particles because Au and Pt exhibit almost the same imaging contrastand similar crystal structure[17].From the elemental mapping images of bimetallic Au-Pt NPs(Fig.1b),Au-L(M)and Pt-L(M)which are represented by different colors corresponded to each other,that is,the regions with Au must have the presence of Pt.This indicates that Pt grows on the surface of Au instead of forming its own nucleus or that Au and Pt are physically mixed together,which may form core-shell or alloy structure.

    Fig.2 HRTEM image of Au-Pt nanoparticles corresponding to the first point in Fig.1b and FFT patterns of each area(a~g)

    High-resolution TEM (HRTEM)images of Au-Pt nanoparticles are shown in Fig.2.In order to verify the core-shell structure of nanoparticles,we performed Fourier transform on the high-resolution structures to obtain the corresponding diffraction patterns.The lattice spacing was calculated by using digital photomicrography software.From the diffraction pattern(Fig.2),the lattice spacing at the center position of the nanoparticles(1#)was 0.235 nm for the(111)lattice planes of fcc metallic Au[18].The lattice spacing of the diffraction fringes in the b~g region(Fig.2)was 0.224,0.225,0.226,0.225,0.224 and 0.225 nm for the(111)lattice planes of fcc metallic Pt[19].The HRTEM image of the Au-Pt nanoparticles revealed that the d-spacings of adjacent fringes for metal cores and metal surrounding were(0.235±0.002)nm and(0.225±0.002)nm[20],respectively,corresponding to the(111)planes of facecentered cubic Au and Pt,which indicates that bimetallic Au@Pt NPs are core/shell structures.In order to verify the universality of this conclusion,we selected two more points (Fig.S1 and S2),and the lattice spacings of a~g and b~g regions was shown in Table S1,which matches well with the(111)planes of the Au and Pt,respectively.We can draw the same conclusion that the nanoparticle must be core-shell structure,which accords with elemental mapping of Au@Pt nanoparticles.

    The XRD patterns of γ-Al2O3,supported catalysts and the standard diffraction peaks of Au and Pt are shown in Fig.3.The diffraction pattern for monometallic Pt had several peaks at 39.8°,46.2°and 67.4°,corresponding to(111),(200)and(220)planes(PDF No.89-7382),respectively.Wide-angle X-ray diffraction showed broad peaks at 38.2°,44.4°,64.6°,77.5°,which are characteristic of(111),(200),(220)and (311)planes of monometallic Au (PDF No.89-3697),respectively.The XRD patterns of the bimetallic Au@Pt core-shell catalysts matched quite well with the(111),(200),(220)and(311)peaks in the Au pattern and nodiffraction peaksofPtcan be observed.This indicates that only a monolayer of Pt is deposited on Au withoutforming individualPt particles[21]or there exist small size Pt particles(1~2 nm,which can be undetected by XRD technique)or the loading of Pt on the Au surface is very low[22],otherwise the Au and Pt peaks of physical mixture would appear in the XRD pattern.From Fig.3,it can be seen that the XRD peak of Au (220)and(311)tended to be flat with the increase of Pt content in the bimetallic catalysts.The Au@Pt particle size on the support become smaller with increasing Pt content.Among the prepared Au@Pt/γ-Al2O3catalyst,the maximum dispersion was obtained by Au1@Pt2catalyst,which leads to high catalytic activity.As can be seen from the XRD pattern of Au1@Pt2/γ-Al2O3catalyst after reaction,the number of diffraction peaks did not change and the structure did not change significantly,indicating that the catalyst has good stability.

    Fig.3 XRD patterns for Au@Pt NPs prepared with different molar ratios

    2.3 Reducibility of catalyst

    Table 1 shows the physical structure properties ofthe supported catalystand support γ-Al2O3.Compared with support γ-Al2O3,the specific surface area,pore size and pore volume of the supported catalyst were reduced,which may be due to the blockage of γ-Al2O3pores by some nanoparticles during the preparation process.However,the specific surface area and pore volume of Au1@Pt2/γ-Al2O3were relatively larger than other catalysts.The Au1@Pt2nanoparticles are mainly distributed on the surface of the support and have relatively less influence on the support structure.It is well known that the distribution of active components is one of the most important factors to affect the activity of the catalyst,especially for the gas-solid reactions.The more active components are located on the surface of the support,the more effective active sitesareprovided forthe reaction.What′s more,the time for the reactant to enter the inner pore and the product to diffuse out from the inner pores is shortened,thereby greatly improving the activity of the catalyst[23].

    It is known to all that the reducibility of catalysts can play an important role in the redox reactions.For metaloxide catalysts,H2-TPR measurementcan reflect the reduction of high-valent metal ions to lowvalent metal ions or metal-atom,as well as the potential to remove or absorb oxygen[24].The H2-TPR profiles of Au@Pt catalysts are shown in Fig.4.For Au/Al2O3,there were two reduction peaks.The first weak peak around 324℃is attributed to the reduction of AuxOy[25],which coincides with the results of XRD with the presence of oxides.And the second peak obtained at 598℃can correspond to the reduction of gold ions(Au+)in the subsurface of support[26].For Pt/Al2O3,the first peak at 93℃can be assigned to the reduction of PtOx,which contains the contribution of the surface oxygen adjacent to Pt species due to the spillover effect induced by the metal-support interaction.The second peak at 502℃is ascribed to the reduction of the surface oxygen far away from Pt particles and the reduction of subsurface oxygen[27].The third peak around 680℃observed in all the samples may be ascribed to the reduction of surface A13+on γ-Al2O3[28].

    Fig.4 H2-TPR profiles of Au@Pt catalysts

    For bimetallic Au@Pt catalyst,the reduction peak between 115 and 150℃is attributed to the reduction of PtOx,and the reduction peak between 235 and 275℃belongs to the reduction of AuxOy.In the high temperature (477~490 ℃),the reduction peak was basically similar to metal Pt.Because the amount of metal oxides in the catalyst account for a small part,which is in line with the results of XPS,various reduction peaks were weak.In addition,the reduction peaks in the low-temperature region gradually shifted to lower temperatures as the Pt content increased,showing Au and Pt mutually exerts positive influence on their respective reductions.In particular,both Au1@Pt2and Au1@Pt3reduction peaks were slightly lower than other bimetallic catalysts,indicating the surface oxygen species has a faster migration rate and oxygen vacancies are easier to generate.The position of the reduction peak of the bimetallic Au@Pt catalyst depends on the degree of interaction between Au and Pt.These results demonstrate that there is a strong interaction between Au,Pt and support[29],which improves catalytic activity.

    The Pt4f and Au4f orbital XPS spectra of Au@Pt catalysts are shown in Fig.5.Because the Al2p peak overlapped with the Pt4f peak in a range of 68~80 eV,it is necessary to separate the Al2p peak from the spectra.For Pt/Al2O3,when the Al2p was used at 73.9 eV,the Pt4f7/2spectra can be deconvoluted into two peaks at 70.1 and 71.0 eV,and the Pt4f5/2spectra can be also divided into two peaks at 73.4 and 74.3 eV,corresponding to Pt0and Pt2+[30],respectively.In bimetallic system,the Al2p needed to be separated from Pt4f.The Pt4f and Au4f fine spectra of bimetallic Au@Pt can be fitted into two sets of peaks,corresponding to the 4f7/2and 4f5/2orbitals of Pt0and Pt2+,Au0and Auδ+,respectively.The binding energy of Au shifted slightly to lower value (Fig.5B),and the binding energy of Pt increased (Fig.5A)compared to pure Au and Pt with the increase of Pt content,which demonstrates that electronic structure has significantly changed in bimetallic Au@Pt catalysts,and the interand intra-atomic charges transfers between Au and Pt[31].In addition,the difference in electronegativity of Au and Pt(2.54 and 2.28)may imply potential electronwithdrawing effect from Au to neighboring Pt[32],which suggests that the oxidation state of Pt shell is affected by the Au core.Table 2 shows the binding energy and relative content of Au4f and Pt4f for bimetallic Au@Pt catalysts,and it can be seen that the Au0and Pt0contents occupy the majority of the catalyst,indicating that Au0and Pt0are the main active species on the catalyst surface.According to the XPS data of Au1@Pt2after the reaction,the Au0/Auδ+and Pt0/Pt2+proportion were slightly lower than that before the reaction,indicating that the number of main active centers with Au0and Pt0decrease asthe reaction proceeds.However,the range of variation is small,which indicates that the catalyst has good stability and conforms to the characterization results of XRD and TEM.So the modified electronic structure and active species would improve their catalytic properties.

    Fig.5 Pt4f(A)and Au4f(B)XPS spectra of prepared catalysts

    Table 2 Binding energies and proportion of Au4f and Pt4f of prepared catalyst

    2.4 Catalytic activity of Au@Pt catalysts for toluene oxidation

    Fig.6 shows catalytic oxidation of toluene by Au@Pt catalysts prepared with different molar ratios of Au and Pt.In the reaction,the products were only CO2and water,and CO and other organic small molecules were not detected.The catalytic activity for 98%oxidation of toluene were given in the order of Au1Pt2≥Au1Pt3>Au1Pt1>Au2Pt1>Au3Pt1>Pt>Au.And the T98corresponding to the above-mentioned sequential catalyst is 195,195,210,215,230,230 and 270℃,respectively.However,the Au1Pt2catalyst exhibited excellent catalytic activity,which might be due to that it has smaller particle size and better dispersibility.And it also illustrates that the coexistence of Au and Pt in the bimetallic Au1Pt2catalyst has higher activity for toluene oxidation compared with monometallic Au or Pt.

    Fig.6 Catalytic oxidation of toluene with by Au@Pt catalysts prepared with different molar ratios of Au and Pt

    2.5 Catalyst stability test

    To examine the stability of Au,Pt and Au1@Pt2catalysts and maintain the reaction temperature at their respective T98under GHSV at 18 L·g-1·h-1with 1×10-3(V/V)toluene,the catalysts were taken at regular intervals and analyzed on-line.Fig.7 shows the relationship between toluene conversion,selectivity of carbon dioxide and reaction time.It could be seen that the removal rate of toluene is over 98%and the selectivity of CO2is 100%within 0~50 h,which indicates the catalysts have high stability and selectivity.

    Fig.7 Stability test of toluene oxidation(A)and selectivity to CO2(B)with time-on-stream over Au/Al2O3,Pt/Al2O3,Au1@Pt2/Al2O3catalysts

    In order to examine the effect of water vapor over the Au1@Pt2/Al2O3catalytic activity,we performed toluene oxidation in the presence of water vapor(volume fraction:5.0%)over the Au1@Pt2/Al2O3and the result is shown in Fig.8.The results showed that the addition of water vapor decreased the toluene conversion by 9%.When the water vapor was cut off,the toluene conversion rate gradually increased.This phenomenon indicates that there is strong competitive adsorption on the surface of the catalyst in the three components of water vapor,toluene and oxygen[33].

    Fig.8 Effect of water vapor on toluene conversion overAu1Pt2/Al2O3catalyst

    3 Conclusions

    In summary,the bimetallic Au@Pt core-shell nanoparticles prepared by two-step reduction method have been loaded on the surface of Al2O3in a highly dispersed state.The Au@Ptcore-shellstructure prepared by this method is not only simple but also controllable,which showed higher activity than monometallic Pt or Au catalyst for the oxidation of toluene.The catalytic activity for toluene was given in the order of Au1Pt2≥Au1Pt3>Au1Pt1>Au2Pt1>Au3Pt1>Pt>Au.Among the catalysts,the Au1@Pt2/Al2O3exhibited higher catalytic activity (T98=195℃)and better stability.These results suggest that the enhancement effect of Au may arise from the electron transfer from Au to Pt,thereby increasing the reactive oxygen species on the surface of Pt.The core-shell structure may find potentialapplications in the catalytic combustion of VOCs.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    浙江工業(yè)大學(xué)核殼雙金屬
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    雙金屬支承圈擴散焊替代技術(shù)研究
    雙金屬復(fù)合管液壓脹形機控制系統(tǒng)
    重型機械(2020年2期)2020-07-24 08:16:08
    浙江工業(yè)大學(xué)
    雙金屬復(fù)合管焊接方法選用
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    日日夜夜操网爽| 99久久99久久久精品蜜桃| 久久青草综合色| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 99国产精品99久久久久| 老司机亚洲免费影院| 在线观看舔阴道视频| √禁漫天堂资源中文www| 身体一侧抽搐| 日本黄色视频三级网站网址| 国产精品乱码一区二三区的特点 | 搡老岳熟女国产| 久久香蕉精品热| 9色porny在线观看| 久久久久久久久久久久大奶| 亚洲国产看品久久| 黑人巨大精品欧美一区二区mp4| av电影中文网址| 欧美精品啪啪一区二区三区| 老司机靠b影院| 97碰自拍视频| 日本 av在线| 国产av一区二区精品久久| 丁香欧美五月| 精品高清国产在线一区| 搡老乐熟女国产| 一进一出好大好爽视频| 国产成人欧美| bbb黄色大片| 久久人妻福利社区极品人妻图片| 91成人精品电影| 亚洲成人免费电影在线观看| 欧美久久黑人一区二区| 午夜老司机福利片| 成年人免费黄色播放视频| 涩涩av久久男人的天堂| 色老头精品视频在线观看| 国产99久久九九免费精品| 国产成人av激情在线播放| 免费一级毛片在线播放高清视频 | 两个人看的免费小视频| 国产熟女xx| 手机成人av网站| 日韩中文字幕欧美一区二区| 亚洲国产毛片av蜜桃av| 19禁男女啪啪无遮挡网站| 成在线人永久免费视频| 欧美成狂野欧美在线观看| 首页视频小说图片口味搜索| 色播在线永久视频| 亚洲精品在线美女| 久久亚洲精品不卡| 中文字幕人妻丝袜制服| 制服诱惑二区| 老司机午夜福利在线观看视频| 亚洲情色 制服丝袜| av电影中文网址| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久av网站| 国产精品久久久久久人妻精品电影| 国产av又大| 精品午夜福利视频在线观看一区| av国产精品久久久久影院| 亚洲自偷自拍图片 自拍| 亚洲 欧美一区二区三区| 久久精品亚洲熟妇少妇任你| 国产99白浆流出| 精品一区二区三卡| 极品教师在线免费播放| 99热国产这里只有精品6| 亚洲国产中文字幕在线视频| 成人精品一区二区免费| 精品国产超薄肉色丝袜足j| 亚洲成人免费av在线播放| 两个人免费观看高清视频| 欧美日韩亚洲综合一区二区三区_| 大香蕉久久成人网| 欧洲精品卡2卡3卡4卡5卡区| 国产成+人综合+亚洲专区| 妹子高潮喷水视频| 国产精品国产av在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久影院123| 又黄又粗又硬又大视频| 韩国精品一区二区三区| 91精品三级在线观看| 天堂中文最新版在线下载| 一区在线观看完整版| 校园春色视频在线观看| 亚洲午夜理论影院| 超碰97精品在线观看| 在线观看一区二区三区| 大陆偷拍与自拍| 亚洲人成电影观看| 欧美黄色淫秽网站| 国产高清国产精品国产三级| 欧美 亚洲 国产 日韩一| 国产99白浆流出| 无遮挡黄片免费观看| 午夜福利,免费看| 国产主播在线观看一区二区| 国产亚洲精品久久久久5区| 欧美日韩福利视频一区二区| 国产在线精品亚洲第一网站| 亚洲精品一卡2卡三卡4卡5卡| 久久人人精品亚洲av| 好男人电影高清在线观看| 国产精品久久久av美女十八| 亚洲精品在线观看二区| 免费日韩欧美在线观看| 9热在线视频观看99| 在线观看66精品国产| 美女国产高潮福利片在线看| 一二三四在线观看免费中文在| 999久久久精品免费观看国产| 国产精品免费视频内射| 欧美性长视频在线观看| av电影中文网址| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 亚洲,欧美精品.| 久久久国产精品麻豆| 亚洲一码二码三码区别大吗| 欧美色视频一区免费| 久久午夜亚洲精品久久| 免费久久久久久久精品成人欧美视频| 国产日韩一区二区三区精品不卡| 99国产精品99久久久久| 欧美在线黄色| 国产精品偷伦视频观看了| 久久久久久久久免费视频了| 男女午夜视频在线观看| 老鸭窝网址在线观看| 精品久久久久久电影网| 桃色一区二区三区在线观看| 亚洲成人国产一区在线观看| 黄色女人牲交| 中文字幕人妻丝袜一区二区| 中文字幕另类日韩欧美亚洲嫩草| 丝袜人妻中文字幕| e午夜精品久久久久久久| 国产精品一区二区在线不卡| 久久精品亚洲精品国产色婷小说| 麻豆久久精品国产亚洲av | 亚洲七黄色美女视频| 一级作爱视频免费观看| 国产精品 欧美亚洲| 丝袜美足系列| 亚洲全国av大片| 国产欧美日韩一区二区三| 在线看a的网站| 麻豆av在线久日| 国产一区在线观看成人免费| 精品乱码久久久久久99久播| 中文字幕人妻丝袜制服| 国产精品久久视频播放| www国产在线视频色| 精品国内亚洲2022精品成人| 欧美一区二区精品小视频在线| 嫩草影院精品99| 91麻豆av在线| 天堂俺去俺来也www色官网| 成人亚洲精品一区在线观看| 国产片内射在线| 亚洲 欧美 日韩 在线 免费| 中文字幕人妻丝袜制服| 在线播放国产精品三级| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 成人三级黄色视频| 久久久久亚洲av毛片大全| 99精品欧美一区二区三区四区| 亚洲av成人av| 国产欧美日韩一区二区精品| 人人妻人人添人人爽欧美一区卜| 日本免费一区二区三区高清不卡 | 国产一区在线观看成人免费| 日韩av在线大香蕉| 国产成人啪精品午夜网站| 午夜日韩欧美国产| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产 | 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人| 久久国产精品男人的天堂亚洲| 国产成年人精品一区二区 | 久久这里只有精品19| 欧美激情久久久久久爽电影 | 18禁观看日本| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 人妻丰满熟妇av一区二区三区| 波多野结衣av一区二区av| 久久中文字幕一级| 国产成人啪精品午夜网站| 怎么达到女性高潮| 久久国产精品影院| 国产91精品成人一区二区三区| 亚洲七黄色美女视频| 久久人人爽av亚洲精品天堂| 久久香蕉精品热| 另类亚洲欧美激情| 男女下面插进去视频免费观看| 精品一区二区三区av网在线观看| 天堂俺去俺来也www色官网| 亚洲,欧美精品.| 免费看十八禁软件| 久久人妻av系列| 精品久久久精品久久久| 久久精品影院6| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久中文| 亚洲专区中文字幕在线| 久久中文字幕人妻熟女| 国产精品野战在线观看 | 日韩人妻精品一区2区三区| 欧美黄色淫秽网站| 免费日韩欧美在线观看| 在线永久观看黄色视频| 两性夫妻黄色片| av国产精品久久久久影院| 国产精品香港三级国产av潘金莲| 麻豆av在线久日| 国产精品一区二区在线不卡| ponron亚洲| 99精品欧美一区二区三区四区| 在线av久久热| a级毛片黄视频| 亚洲 欧美 日韩 在线 免费| 国产精品久久久人人做人人爽| 99精国产麻豆久久婷婷| 在线观看免费日韩欧美大片| 免费观看精品视频网站| 色哟哟哟哟哟哟| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三| 久久久久九九精品影院| 亚洲精品久久午夜乱码| 国产精品影院久久| 久久中文字幕人妻熟女| 久久精品国产亚洲av高清一级| 老司机福利观看| 久久精品国产亚洲av香蕉五月| 一级片免费观看大全| 免费av中文字幕在线| 亚洲三区欧美一区| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 一级a爱视频在线免费观看| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 欧美乱码精品一区二区三区| 亚洲avbb在线观看| 亚洲国产精品一区二区三区在线| av在线天堂中文字幕 | 极品教师在线免费播放| 99热国产这里只有精品6| 精品高清国产在线一区| 午夜福利,免费看| 欧美精品一区二区免费开放| 怎么达到女性高潮| 久久精品亚洲精品国产色婷小说| 久久精品亚洲精品国产色婷小说| 成熟少妇高潮喷水视频| 久久久国产一区二区| 日日夜夜操网爽| 亚洲中文字幕日韩| 免费少妇av软件| 国产精品爽爽va在线观看网站 | 国产一区二区三区视频了| 久久精品国产清高在天天线| 亚洲国产欧美一区二区综合| 中出人妻视频一区二区| 国产亚洲精品综合一区在线观看 | 丝袜美腿诱惑在线| 在线观看免费午夜福利视频| xxxhd国产人妻xxx| 精品国产超薄肉色丝袜足j| 黄色女人牲交| 国产三级黄色录像| 国产精品久久视频播放| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区在线不卡| 欧美激情久久久久久爽电影 | 免费日韩欧美在线观看| 精品久久久久久,| 久久久精品欧美日韩精品| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址 | 丝袜人妻中文字幕| av天堂久久9| 国产精品乱码一区二三区的特点 | 精品第一国产精品| 日本黄色视频三级网站网址| 久久狼人影院| 精品国产乱码久久久久久男人| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 成人特级黄色片久久久久久久| 日韩欧美一区二区三区在线观看| 国产精华一区二区三区| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 另类亚洲欧美激情| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 国产成人免费无遮挡视频| 午夜两性在线视频| 国产欧美日韩一区二区三| 国产精品偷伦视频观看了| 午夜成年电影在线免费观看| 欧美日韩黄片免| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 国产精品日韩av在线免费观看 | 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 免费看a级黄色片| av超薄肉色丝袜交足视频| 黄色丝袜av网址大全| 成人精品一区二区免费| 18禁观看日本| 好看av亚洲va欧美ⅴa在| 日韩精品青青久久久久久| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 亚洲男人天堂网一区| 波多野结衣一区麻豆| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 国产av又大| 精品久久久久久久久久免费视频 | 无遮挡黄片免费观看| а√天堂www在线а√下载| 高清av免费在线| 一进一出抽搐gif免费好疼 | 日本vs欧美在线观看视频| 国产视频一区二区在线看| 亚洲国产精品一区二区三区在线| 欧美一级毛片孕妇| 久久香蕉精品热| 亚洲国产精品一区二区三区在线| 男人操女人黄网站| 国产99久久九九免费精品| 欧美黑人精品巨大| 桃红色精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产xxxxx性猛交| 女生性感内裤真人,穿戴方法视频| 极品人妻少妇av视频| 看黄色毛片网站| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 又大又爽又粗| 怎么达到女性高潮| 成人国产一区最新在线观看| 日韩大码丰满熟妇| 国产1区2区3区精品| 久久婷婷成人综合色麻豆| 国产成人精品无人区| 国产人伦9x9x在线观看| 麻豆久久精品国产亚洲av | 午夜久久久在线观看| 少妇 在线观看| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 国产熟女xx| 久久国产精品男人的天堂亚洲| 精品国产一区二区久久| 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 看片在线看免费视频| 国产av在哪里看| av在线天堂中文字幕 | av网站在线播放免费| 美国免费a级毛片| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 日韩欧美在线二视频| 精品国产超薄肉色丝袜足j| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 日韩人妻精品一区2区三区| 我的亚洲天堂| 亚洲欧美精品综合一区二区三区| 国产精品av久久久久免费| 91大片在线观看| 美女午夜性视频免费| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 国产欧美日韩精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲高清精品| 日韩视频一区二区在线观看| 免费观看精品视频网站| 91成人精品电影| 电影成人av| 老司机亚洲免费影院| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 色播在线永久视频| 亚洲片人在线观看| 国产单亲对白刺激| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 日日爽夜夜爽网站| 国产精品乱码一区二三区的特点 | 大型黄色视频在线免费观看| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 999久久久国产精品视频| 亚洲av熟女| 国产成人av激情在线播放| 另类亚洲欧美激情| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 极品教师在线免费播放| 久久久久久久久免费视频了| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 操出白浆在线播放| 老汉色∧v一级毛片| 国产有黄有色有爽视频| 国产精品一区二区免费欧美| 精品一区二区三区视频在线观看免费 | 一二三四在线观看免费中文在| 成人影院久久| 亚洲专区国产一区二区| 成人免费观看视频高清| 中文字幕色久视频| 麻豆成人av在线观看| www.999成人在线观看| 成人国语在线视频| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 无人区码免费观看不卡| 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 在线观看午夜福利视频| xxxhd国产人妻xxx| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 国产野战对白在线观看| 午夜福利在线观看吧| 91精品国产国语对白视频| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 国产成人精品久久二区二区91| 99久久国产精品久久久| 亚洲一区中文字幕在线| 亚洲精品一二三| 国产国语露脸激情在线看| 欧美日韩瑟瑟在线播放| 午夜福利欧美成人| 日本a在线网址| 91大片在线观看| 91成人精品电影| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 一级a爱视频在线免费观看| 十八禁网站免费在线| e午夜精品久久久久久久| 一本大道久久a久久精品| 一区福利在线观看| 午夜精品久久久久久毛片777| 国产熟女xx| 免费在线观看完整版高清| 亚洲成a人片在线一区二区| 日韩中文字幕欧美一区二区| 亚洲成人精品中文字幕电影 | 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| 99久久国产精品久久久| 亚洲国产精品合色在线| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| av视频免费观看在线观看| 亚洲免费av在线视频| 最好的美女福利视频网| 亚洲色图 男人天堂 中文字幕| 成年版毛片免费区| 亚洲人成77777在线视频| 亚洲国产欧美网| 亚洲男人天堂网一区| 成人三级做爰电影| avwww免费| 99久久国产精品久久久| 亚洲欧美激情在线| 真人一进一出gif抽搐免费| 成年版毛片免费区| 成人免费观看视频高清| 在线观看舔阴道视频| videosex国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 美女 人体艺术 gogo| 最好的美女福利视频网| 国产成人av教育| 欧美日本亚洲视频在线播放| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| a级毛片在线看网站| 亚洲午夜理论影院| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 91老司机精品| 在线视频色国产色| 精品久久久久久成人av| 国产野战对白在线观看| 免费高清视频大片| 国产精品电影一区二区三区| 99精品欧美一区二区三区四区| 啦啦啦在线免费观看视频4| av视频免费观看在线观看| 丰满迷人的少妇在线观看| 男女下面进入的视频免费午夜 | 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 黄色 视频免费看| 国产精品九九99| 亚洲欧美精品综合久久99| 日韩免费av在线播放| 麻豆av在线久日| 成人永久免费在线观看视频| 天堂动漫精品| 91麻豆av在线| 韩国精品一区二区三区| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看 | av网站在线播放免费| 中文亚洲av片在线观看爽| 午夜福利,免费看| 精品久久久久久成人av| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 91九色精品人成在线观看| 黄片小视频在线播放| 夫妻午夜视频| 999久久久国产精品视频| www.www免费av| 男男h啪啪无遮挡| 成在线人永久免费视频| 手机成人av网站| 麻豆久久精品国产亚洲av | 51午夜福利影视在线观看| 多毛熟女@视频| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 成人三级做爰电影| 国产野战对白在线观看| 法律面前人人平等表现在哪些方面| 欧美日本亚洲视频在线播放| 中文字幕人妻熟女乱码| 午夜激情av网站| 天堂中文最新版在线下载| netflix在线观看网站| 亚洲国产看品久久| 又大又爽又粗| 黄片播放在线免费| 18禁观看日本| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 黑丝袜美女国产一区| 国产激情欧美一区二区| 88av欧美| 最新美女视频免费是黄的| 成人免费观看视频高清| 精品国产乱子伦一区二区三区| avwww免费| 怎么达到女性高潮| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 欧美日本中文国产一区发布| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久免费视频 | 欧美黑人精品巨大| 黄色怎么调成土黄色| 一二三四社区在线视频社区8| 亚洲av成人一区二区三| 午夜福利在线免费观看网站| 一级毛片精品| 一夜夜www| 中文字幕精品免费在线观看视频| 91成年电影在线观看| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 91大片在线观看| 欧美黑人精品巨大| 国产人伦9x9x在线观看| av视频免费观看在线观看| av网站在线播放免费| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 免费看a级黄色片| 亚洲精品国产色婷婷电影|