• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine perfusion of the liver: Which is the best technique to mitigate ischaemia-reperfusion injury?

    2019-02-28 05:51:22YuriBoteonSimonAfford
    World Journal of Transplantation 2019年1期

    Yuri L Boteon, Simon C Afford

    Abstract Longstanding research describes the mechanisms whereby the restoration of blood flow and reoxygenation (reperfusion) aggravates the ischaemic injury caused by a period of anoxia to a donor liver. This phenomenon, called ischaemia-reperfusion injury (IRI), leads to parenchymal cell death,microcirculatory failure, and inflammatory immune response. Clinically, IRI is the main factor responsible for the occurrence of posttransplant graft dysfunction and ischaemic-type biliary lesions. While extended criteria donor livers are more vulnerable to IRI, their utilisation is required to address the shortfall in donor organs. Thus, the mitigation of IRI should drive the setting of a new benchmark for marginal organ preservation. Herein, strategies incorporating different modalities of machine perfusion of the liver to alleviate IRI are discussed in conjunction with advantages and disadvantages of individual protocols.Techniques leading to reperfusion of the liver during machine perfusion (in situ normothermic regional perfusion and ex situ normothermic machine perfusion)may mitigate IRI by shortening the ischaemic period of the organs. This benefit potentially escalates from the minimum level, obtained following just partial alleviation of the ischaemic period, to the maximum level, which can be potentially achieved with ischaemia-free organ transplantation. Techniques that do not lead to reperfusion of the liver during machine perfusion (hypothermic,subnormothermic, and controlled-oxygenated rewarming) optimise mitochondrial oxidative function and replenish cellular energy stores, thereby lowering reactive oxygen species production as well as the activation of downstream inflammatory pathways during reperfusion. Further mechanistic insights into IRI may guide the development of donor-specific protocols of machine perfusion on the basis of the limitations of individual categories of extended criteria donor organs.

    Key words: Machine perfusion of the liver; Ischaemia-reperfusion injury; Liver transplantation; Organ preservation; Organ reconditioning

    INTRODUCTION

    Ischaemia-reperfusion injury (IRI) is the phenomenon whereby the hypoxic damage imposed on an organ is aggravated during the reestablishment of the blood flow along with reoxygenation[1]. This biphasic detrimental process affects donor livers during liver transplantation (LT) and is the main responsible factor for the occurrence of graft dysfunction (primary nonfunction and delayed graft function) after the procedure[2,3]. Additionally, IRI is associated with the occurrence of ischaemic-type biliary lesions (ITBL) posttransplantation, which, in turn, leads to high rates of graft loss and retransplantation[4,5]. During ischaemia, the absence of oxygen interrupts the shuttling of electrons through the mitochondria electron transport chain (ETC), as oxygen is the terminal electron acceptor during cellular respiration. The affected ETC interrupts the transfer of protons (H+) across the inner mitochondrial membrane,thereby hampering the generation of the proton motive force required for oxidative phosphorylation and adenosine triphosphate (ATP) synthesis. The cellular ATP stores are then rapidly consumed and the process of anaerobic glycolysis is commenced in order to produce energy to the cells using the glycogen stores and the glucose available in the surrounding fluid. Activation of the former metabolic pathway results in lactate accumulation with local tissue acidosis as well as failure of the Na+/K+-ATPase pump with depolarisation of the cell membrane and influx of Ca2+/Na+to the cytosol of the endothelial and Kupffer cells, leading to cell swelling. Additionally, the presence of vasoconstrictive substances such as endothelin and thromboxane-A2 not balanced by the vasodilatory nitric oxide (NO) can cause endothelial cell dysfunction with vasoconstriction and microcirculatory failure[2]. On reperfusion, when the blood flow is re-established, the damage caused by the ischaemic period is aggravated by the reoxygenation. This is initiated by the mitochondrial release of reactive oxygen species (ROS) due to an inhibited ETC causing the activation of Kupffer cells, which in turn will release proinflammatory cytokines, such as tumour necrosis factoralpha/interleukin 1-beta, recruiting neutrophils and inducing the expression of adhesion molecules on sinusoidal endothelial cells. Activated neutrophils produce more ROS, perpetuating the inflammatory response that ultimately results in tissue damage and the initiation of cell death programs such as necrosis, apoptosis, or autophagy[2,3,6].

    Donor organs with steatosis, organs that have been exposed to prolonged preservation times, organs from elderly donors, or organs from donation after circulatory death (DCD) are all more vulnerable to IRI and therefore are referred to as marginal or extended criteria donor (ECD) organs[7]. The defining parameters of ECD organs can vary slightly amongst centres[8], although, consistently, ECD-LT is associated with high rates of graft dysfunction and lower patient and graft survival posttransplantation[9-11]. Despite inferior outcomes, the utilisation of ECD livers is required to tackle the shortfall of donor organs for transplantation. Whilst transplant surgeons do not have control over these donor features, they can consider alternatives to better preserve or even recondition ECD livers. The wider utilisation of ECD livers has exceeded the preservation capacities of traditional static cold storage (SCS), and machine perfusion (MP) of the liver is considered to be a possible alternative preservation method. The use of this technique may offer several advantages in comparison with SCS, including superior organ preservation, limiting ischaemia; the assessment of organ function prior to transplantation; and the possibility of improving or repairing highly vulnerable organs[12]. Nevertheless, benefits may vary between different modalities of MP (Table 1); therefore, those protocols are frequently seen as divergent or even competitive at this time. Herein, the advantages and limitations of each individual technique in relation to the possibility of IRI mitigation are briefly discussed in an attempt to identify which is the best technique of MP of the liver.

    STUDY ANALYSIS

    Machine perfusion of the liver and ischaemia-reperfusion injury

    Considering its clinical significance, the mitigation of IRI should drive the setting of a new benchmark for ECD organ preservation. In accordance, the approach to this question might take into consideration how the different modalities of MP address IRI(Figure 1). For study purposes, these different modalities were categorised on the basis of either the occurrence of reperfusion of the liver during MP or not.

    Techniques leading to reperfusion of the liver during machine perfusion

    The common feature of this group of MP techniques is the abbreviation of the hypoxic period via reperfusion of the organ within physiological temperatures to support cellular metabolic function during preservation. This approach avoids further depletion of ATP stores and the accumulation of metabolic waste products, although experimental models have suggested that, even without the presence of leukocytes and platelets in the circuit, reperfusion during NMP induces oxidative tissue injury and the activation of the inflammatory immune response[13,14].

    Ex situ normothermic MP (NMP) can be employed as a preservation method, fully replacing SCS; hence, it has the potential to limit the hypoxic injury to the minimum period required for organ preparation and the setting of the machine. Additionally,the presence of a constant flow of fluids in the vessels during organ preservation is advocated to improve the expression of vasoprotective endothelial genes alleviating the microcirculatory failure associated with IRI[15]. The benefits of this technique were recently shown in the largest clinical trial to date that compared this modality of NMP and SCS[16]. Nasralla et al[16]reported the results of transplantation of 121 donor livers following preservation NMP. The authors found a 50% decrease in the release of aspartate transaminase (AST) in the recipient within the first seven postoperative days in comparison with grafts that had SCS[16]. Nevertheless, the former study did not show superiority of NMP in terms of the occurrence of ITBL. This finding suggests that the limitation of hypoxic injury per se is not enough to prevent ITBL formation;thus, the etiopathogenesis of these lesions should rely also on the reperfusion injury,which is supported by an in vitro study[4]. The strongest evidence supporting the advantages of limiting IRI is the newly developed ischaemia-free organ transplantation (IFOT) technique[17], described by He et al[17], whereby complete elimination of hypoxia via continuous NMP was shown to prevent postreperfusion syndrome and vasoplegia after revascularisation of a severely steatotic donor liver.Moreover, NMP can also be performed after a period of SCS in an end-ischaemic approach. Whilst end-ischaemic NMP is logistically less challenging, it restrains the NMP’s ability to shorten the time of hypoxic injury to the organs. Finally, NMP may take advantage of the nearly physiological environment to assess the function of the organ prior to transplantation and to offer therapeutic approaches, such as cytoprotective and/or metabolic-modulating agents, for the treatment of IRI during NMP. This option is still underexplored thus far, although experiments involving pharmacological modulation of the lipid metabolism during NMP exemplify the benefits of this approach[18].

    In situ normothermic regional perfusion (NRP) re-establishes the delivery ofoxygen to the organs following asystole in DCD donors and, thus, limits the injury associated with a longer warm ischaemia period. Additionally, NRP may have a preconditioning effect, which could revert the detrimental mechanisms of warm injury[19,20]. While animal experiments involving dogs revealed that NRP is able to negate endothelial cell damage in livers harvested after 20 min of cardiac arrest[21],studies providing an in-depth analysis of the mechanistic effects of the procedure on the metabolism of human donor organs remain lacking.

    Table 1 Advantages and disadvantages of different modalities of machine perfusion of the liver

    Techniques that do not lead to reperfusion of the liver during machine perfusion

    This category encompasses the hypothermic and subnormothermic techniques of MP as well as controlled oxygenated rewarming. All of them share as a common feature the absence of organ reperfusion, as perfusate temperatures do not exceed 20 oC.Within this category, the vast majority of mechanistic studies were performed so far on hypothermic oxygenated perfusion (HOPE) by the Zurich group. It has been proposed that the delivery of oxygen at hypothermic temperatures enhances the mitochondrial oxidative function, replenishing the cellular ATP stores prior to reperfusion[14]. This hypothesis is sustained by experimental studies that found a decrease in the expression of markers indicating oxidative tissue damage and the activation of Kupffer cells and leukocytes. In addition, these studies reported a lower release in the perfusate of markers of mitochondrial injury, damage-associated molecular patterns, and cytokines in livers after reperfusion following the HOPE procedure[13,14,22]. The Groningen group has been working on dual-vessel (hepatic artery and portal vein) hypothermic oxygenated perfusion (D-HOPE) and reported similar mechanistic findings to those obtained using HOPE[23,24].

    Subnormothermic MP (SMP) is performed usually at around 20 oC with active oxygenation of the perfusion fluid. Transplant animal models suggest that SMP can positively impact mitochondrial function, increase organs’ ATP stores, decrease the release of markers of tissue injury (e.g., transaminases and cytokines), and improve graft function postoperatively[25,26]. Defenders of this technique advocate that the increase in the organ’s metabolic rate that occurs as a result of the increase in temperature (from 10 oC to 20 oC) is sufficient for viability testing[25]. Minor et al[27]proposed a variant of the SMP technique called the controlled oxygenated rewarming(COR) method. In a reperfusion porcine model using ex situ NMP, as compared with hypothermic MP or SMP alone, COR was found to increase cellular ATP stores and decrease the release of lipid peroxides and markers of hepatocellular injury (AST and ALT) in the perfusate after reperfusion[27]. During NMP, organs that had undergone COR exhibited increased bile production, lower vascular resistance, and decreased expression of proinflammatory genes (e.g., intercellular adhesion molecule 1, toll-like receptor 4, and tumour necrosis factor alpha)[27].

    Which is the best technique of machine perfusion of the liver to mitigate ischaemiareperfusion injury?

    Figure 1 Mechanistic characteristic of the different periods of the ischaemia-reperfusion injury and the role of the diverse techniques of machine perfusion of the liver. Techniques leading to reperfusion of the liver during machine perfusion include in situ normothermic regional perfusion and ex situ normothermic machine perfusion;techniques that do not lead to reperfusion of the liver during machine perfusion include hypothermic machine perfusion, subnormothermic machine perfusion and controlled oxygenated rewarming.

    Contemporary scientific evidence supports the concept that techniques of MP of the liver leading to organ reperfusion may mitigate IRI by shortening the ischaemic period. This benefit escalates from the minimum level, obtained following just partial alleviation of ischaemic injury during end-ischaemic NMP, to the maximum level,which can be potentially achieved with IFOT. However, these modalities of MP inevitably lead to ROS production, oxidative injury, and activation of the inflammatory immune response, with some degree of cell damage occurring during reperfusion[13]. Whilst this former detrimental phenomenon may not affect organs with enough metabolic reserve to overcome this injury, it can be a decisive factor when considering high-risk organs with limited metabolic reserve[28,29]. Consequently,most of the evidence accumulated thus far supports the advantages of NMP over SCS regarding organ preservation and viability assessment, although the resuscitative capacity of NMP per se is still unclear.

    Mounting data suggest that techniques of MP of the liver that do not lead to organ reperfusion are able to mitigate IRI by way of optimisation of the mitochondrial oxidative function and replenishment of the cellular ATP stores during MP. The enhanced mitochondrial oxidative function decreases ROS production as well as the subsequent activation of downstream inflammatory pathways during reperfusion[30].These mechanistic effects were shown to have a positive impact on the recovery of the metabolic function of discarded human donor livers submitted to NMP for viability assessment following the use of hypothermic oxygenated techniques of MP[29].Conversely, the lower metabolic rate of the organs during hypothermic MP does not favour their functional assessment prior to transplantation. Arguably, strategies to evaluate mitochondrial metabolism and the energetic recovery of the organs, in real time, may warrant further promising studies be performed on this subject[22].

    Despite the complex interaction between cells and signal molecules during IRI,future investigations determining the susceptibility of each individual cell population of the liver to the different periods of liver IRI (i.e., warm ischaemia, cold ischaemia,and reperfusion) might help with driving the allocation of donor organs to specific MP techniques. Thus far, existing evidence associates warm ischaemia mainly with Kupffer-cell-mediated hepatocellular injury, whereas cold ischaemia damages primarily sinusoidal endothelial cells[2,31]. Cholangiocytes have been reported to be less vulnerable to anoxia than hepatocytes; however, during reperfusion, they produce higher amounts of ROS, leading to cell death[4]. If exposure of the organ to an ischaemic period is unavoidable, the careful consideration of strategies to alleviate the local immune activation during reperfusion is desirable, such as employing preceding short periods of non-normothermic perfusions as a therapeutic approach or incorporating the delivery of pharmacological agents during NMP[29].

    To conclude, whilst all techniques of MP of the liver have the potential to mitigate IRI, they offer different benefits and present diverse limitations. Therefore, there is no solid evidence yet to suggest the superiority of one technique over the others. A better mechanistic understanding of the intricate pathways of IRI may guide the development of personalised protocols of MP for groups of ECD organs, such as DCD livers, steatotic livers, or organs with prolonged cold ischaemia times.

    ACKNOWLEDGEMENTS

    This paper presents independent research supported by the NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We are extremely grateful to the Research Staff from the Centre for Liver and Gastrointestinal Research, whose continued support provides resources and intellectual input that is shaping our thoughts and future strategies for the continuing development of our research. We are also extremely grateful to all members of the Queen Elizabeth University Hospital Liver Transplant and Hepatobiliary Surgical Unit who are actively involved in the Birmingham machine perfusion projects, trials and organ procurement. YLB is funded by the Welcome Trust. We would like to thank the Liver Charities-University Hospitals Birmingham, Queen Elizabeth Hospital for their support to many projects involving machine perfusion.

    成人午夜精彩视频在线观看| 国产男人的电影天堂91| 欧美激情高清一区二区三区 | 99久国产av精品国产电影| 国产男女内射视频| 人人妻人人澡人人看| 少妇被粗大的猛进出69影院| 建设人人有责人人尽责人人享有的| 男女高潮啪啪啪动态图| freevideosex欧美| 少妇被粗大的猛进出69影院| 热re99久久精品国产66热6| 少妇猛男粗大的猛烈进出视频| 成人国产av品久久久| 少妇的丰满在线观看| 男女免费视频国产| 美女午夜性视频免费| 激情视频va一区二区三区| 在线观看三级黄色| 精品一品国产午夜福利视频| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 国产综合精华液| 久久久久国产网址| 美国免费a级毛片| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| 日本av免费视频播放| 久久久精品免费免费高清| 国产成人a∨麻豆精品| 男的添女的下面高潮视频| 另类精品久久| 久久影院123| 五月伊人婷婷丁香| 久久精品人人爽人人爽视色| 久久久国产欧美日韩av| 热re99久久精品国产66热6| 午夜老司机福利剧场| 精品第一国产精品| 各种免费的搞黄视频| 搡女人真爽免费视频火全软件| 如日韩欧美国产精品一区二区三区| 久久久亚洲精品成人影院| 一级毛片黄色毛片免费观看视频| 美女午夜性视频免费| 天天躁夜夜躁狠狠躁躁| 99热全是精品| 亚洲国产最新在线播放| 欧美国产精品一级二级三级| 26uuu在线亚洲综合色| 婷婷色麻豆天堂久久| 黄频高清免费视频| 欧美最新免费一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲国产精品国产精品| 9191精品国产免费久久| 日韩成人av中文字幕在线观看| 国产精品人妻久久久影院| 搡女人真爽免费视频火全软件| av网站免费在线观看视频| 大香蕉久久网| 99国产精品免费福利视频| 999久久久国产精品视频| 五月天丁香电影| 91精品国产国语对白视频| 国产亚洲午夜精品一区二区久久| 街头女战士在线观看网站| 国产一区二区三区综合在线观看| 一级爰片在线观看| 在线免费观看不下载黄p国产| 91精品伊人久久大香线蕉| 男女边吃奶边做爰视频| 美女主播在线视频| 满18在线观看网站| 国产免费福利视频在线观看| 黄色一级大片看看| 久久精品熟女亚洲av麻豆精品| 精品亚洲成国产av| 国产精品久久久久久精品古装| 97人妻天天添夜夜摸| 99久久精品国产国产毛片| 国产成人a∨麻豆精品| 91久久精品国产一区二区三区| 啦啦啦在线观看免费高清www| 性少妇av在线| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠久久av| 免费女性裸体啪啪无遮挡网站| av.在线天堂| 亚洲,欧美精品.| av在线老鸭窝| 国产成人精品一,二区| 国产乱人偷精品视频| 狂野欧美激情性bbbbbb| 美国免费a级毛片| 亚洲四区av| 搡老乐熟女国产| 成人国语在线视频| 91aial.com中文字幕在线观看| 日韩一本色道免费dvd| 高清黄色对白视频在线免费看| 大陆偷拍与自拍| 久久久久久久久久人人人人人人| 午夜福利乱码中文字幕| 黑人巨大精品欧美一区二区蜜桃| 婷婷成人精品国产| 少妇 在线观看| 午夜日韩欧美国产| 成人影院久久| 777米奇影视久久| 日韩不卡一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区综合在线观看| 黄色视频在线播放观看不卡| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区久久| 黑人欧美特级aaaaaa片| 2018国产大陆天天弄谢| 日本vs欧美在线观看视频| 最新中文字幕久久久久| 波多野结衣一区麻豆| 在线观看免费日韩欧美大片| 日韩一本色道免费dvd| 国产精品国产三级专区第一集| 男女下面插进去视频免费观看| 交换朋友夫妻互换小说| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区二区三区在线| 在线天堂中文资源库| 赤兔流量卡办理| 日韩电影二区| 欧美av亚洲av综合av国产av | 国产精品 欧美亚洲| 高清黄色对白视频在线免费看| 夫妻性生交免费视频一级片| 国产福利在线免费观看视频| 麻豆av在线久日| 一区二区三区精品91| 中文欧美无线码| 欧美人与性动交α欧美精品济南到 | 晚上一个人看的免费电影| 在线观看www视频免费| 成年av动漫网址| 男人舔女人的私密视频| 老汉色∧v一级毛片| 亚洲国产成人一精品久久久| 男女午夜视频在线观看| 精品一区二区三卡| 久久国产精品男人的天堂亚洲| 亚洲美女搞黄在线观看| 亚洲av综合色区一区| 亚洲婷婷狠狠爱综合网| 久久这里只有精品19| 十八禁网站网址无遮挡| 国产日韩欧美视频二区| 免费av中文字幕在线| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡 | 成年女人在线观看亚洲视频| 国产精品熟女久久久久浪| 国产高清国产精品国产三级| 久久精品亚洲av国产电影网| 1024香蕉在线观看| 国产又爽黄色视频| 热re99久久精品国产66热6| 天美传媒精品一区二区| 一级毛片电影观看| 亚洲精品国产一区二区精华液| √禁漫天堂资源中文www| 9色porny在线观看| av国产精品久久久久影院| 日日摸夜夜添夜夜爱| 美女福利国产在线| 一级毛片我不卡| 最近手机中文字幕大全| 午夜福利影视在线免费观看| 免费日韩欧美在线观看| 国产 精品1| 在线免费观看不下载黄p国产| 成人二区视频| 久久狼人影院| www.av在线官网国产| 久久人妻熟女aⅴ| 成年人免费黄色播放视频| 久久亚洲国产成人精品v| 亚洲视频免费观看视频| 宅男免费午夜| 80岁老熟妇乱子伦牲交| 久久久欧美国产精品| 国产精品二区激情视频| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 99re6热这里在线精品视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 极品少妇高潮喷水抽搐| av在线app专区| 老熟女久久久| av在线老鸭窝| 精品国产一区二区三区四区第35| 男女无遮挡免费网站观看| av在线老鸭窝| 美女午夜性视频免费| 少妇的逼水好多| 18禁国产床啪视频网站| 国产毛片在线视频| 不卡视频在线观看欧美| 欧美最新免费一区二区三区| 成人免费观看视频高清| 丝袜美腿诱惑在线| 天天躁夜夜躁狠狠久久av| 亚洲激情五月婷婷啪啪| 欧美亚洲 丝袜 人妻 在线| 在线观看免费日韩欧美大片| 2022亚洲国产成人精品| 如日韩欧美国产精品一区二区三区| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| av网站在线播放免费| 一级毛片电影观看| 亚洲精品国产色婷婷电影| 久久人人爽av亚洲精品天堂| 久久99热这里只频精品6学生| 免费观看性生交大片5| 国产精品久久久久久av不卡| 嫩草影院入口| 国产在视频线精品| 女性被躁到高潮视频| 亚洲精品成人av观看孕妇| 久久久精品区二区三区| 黄色 视频免费看| 午夜精品国产一区二区电影| 少妇精品久久久久久久| 国产不卡av网站在线观看| 国产一区二区三区综合在线观看| 久久久久久久久久久免费av| 午夜免费男女啪啪视频观看| 久久久久精品人妻al黑| 精品国产露脸久久av麻豆| 精品人妻偷拍中文字幕| 国产极品粉嫩免费观看在线| 又粗又硬又长又爽又黄的视频| 9色porny在线观看| 嫩草影院入口| 男人爽女人下面视频在线观看| 热re99久久精品国产66热6| videos熟女内射| 久久毛片免费看一区二区三区| 美女脱内裤让男人舔精品视频| 国产极品天堂在线| 日本vs欧美在线观看视频| 丰满乱子伦码专区| 卡戴珊不雅视频在线播放| 老司机亚洲免费影院| 国产成人免费观看mmmm| av免费观看日本| 国产激情久久老熟女| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 欧美 日韩 精品 国产| 国产色婷婷99| 美女高潮到喷水免费观看| 大话2 男鬼变身卡| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 欧美日韩视频高清一区二区三区二| videossex国产| 秋霞在线观看毛片| h视频一区二区三区| 天堂中文最新版在线下载| 91aial.com中文字幕在线观看| 国产97色在线日韩免费| 青青草视频在线视频观看| 黄网站色视频无遮挡免费观看| av在线老鸭窝| 久久鲁丝午夜福利片| a级毛片在线看网站| 日日撸夜夜添| 精品少妇久久久久久888优播| 在线 av 中文字幕| 天天躁夜夜躁狠狠躁躁| 久久毛片免费看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 欧美人与性动交α欧美精品济南到 | 日本免费在线观看一区| 国产精品无大码| 夫妻午夜视频| 性色avwww在线观看| 久久久久久人人人人人| 亚洲第一青青草原| 男女免费视频国产| 日韩精品有码人妻一区| 国产高清国产精品国产三级| videossex国产| 精品少妇一区二区三区视频日本电影 | 欧美xxⅹ黑人| 中文字幕人妻熟女乱码| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 亚洲第一av免费看| 免费在线观看完整版高清| 亚洲欧美精品自产自拍| av福利片在线| 欧美精品av麻豆av| 一边摸一边做爽爽视频免费| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| 国产亚洲欧美精品永久| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 亚洲精品一二三| 老司机影院毛片| 91国产中文字幕| www国产在线视频色| 91老司机精品| 香蕉久久夜色| 亚洲中文字幕日韩| 美女大奶头视频| 国产一区二区激情短视频| 男女下面插进去视频免费观看| 精品无人区乱码1区二区| 国产日韩一区二区三区精品不卡| 国产精品乱码一区二三区的特点 | 一级毛片女人18水好多| 亚洲av五月六月丁香网| 国产野战对白在线观看| 亚洲成av片中文字幕在线观看| 日韩av在线大香蕉| 免费不卡黄色视频| 男男h啪啪无遮挡| 久久香蕉精品热| 在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| www.精华液| 欧美 亚洲 国产 日韩一| 97碰自拍视频| 午夜福利免费观看在线| 视频区图区小说| 一级毛片高清免费大全| 12—13女人毛片做爰片一| 黄色视频不卡| 久久午夜亚洲精品久久| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| 啦啦啦免费观看视频1| 日韩人妻精品一区2区三区| 免费av中文字幕在线| 麻豆久久精品国产亚洲av | 波多野结衣一区麻豆| 欧美久久黑人一区二区| 亚洲欧美日韩另类电影网站| 国产又色又爽无遮挡免费看| 日韩欧美免费精品| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 老熟妇乱子伦视频在线观看| 99久久人妻综合| 国产三级黄色录像| 69精品国产乱码久久久| www.精华液| 精品福利观看| 精品国产一区二区三区四区第35| 黄色视频不卡| 国产97色在线日韩免费| 国产日韩一区二区三区精品不卡| 国产精品一区二区精品视频观看| 免费少妇av软件| 51午夜福利影视在线观看| 成人国语在线视频| 女人爽到高潮嗷嗷叫在线视频| 韩国精品一区二区三区| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡免费网站照片 | 麻豆一二三区av精品| 一进一出抽搐gif免费好疼 | 国产精品 欧美亚洲| 亚洲欧美日韩高清在线视频| 国产精品99久久99久久久不卡| 精品一区二区三卡| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 精品卡一卡二卡四卡免费| 亚洲全国av大片| 国产一区二区在线av高清观看| 久久午夜亚洲精品久久| 黑人欧美特级aaaaaa片| 久久香蕉精品热| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 99精品在免费线老司机午夜| 激情视频va一区二区三区| 国产免费av片在线观看野外av| 满18在线观看网站| 免费av中文字幕在线| 亚洲专区国产一区二区| 国产欧美日韩一区二区三| a在线观看视频网站| 最新美女视频免费是黄的| 热re99久久精品国产66热6| 免费av毛片视频| 在线观看午夜福利视频| 精品第一国产精品| 麻豆久久精品国产亚洲av | 大码成人一级视频| a级毛片黄视频| 久久天堂一区二区三区四区| 久久精品成人免费网站| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美日韩在线播放| 人人妻人人爽人人添夜夜欢视频| 黄片大片在线免费观看| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲| 在线av久久热| 99国产精品一区二区三区| 精品人妻在线不人妻| 亚洲精华国产精华精| 成人影院久久| 热re99久久精品国产66热6| 亚洲精品一二三| 在线看a的网站| 在线播放国产精品三级| 妹子高潮喷水视频| 91成年电影在线观看| 久久久国产成人精品二区 | 国产一区二区激情短视频| 免费在线观看亚洲国产| 超碰成人久久| 99精品欧美一区二区三区四区| 久久九九热精品免费| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲综合一区二区三区_| 久久草成人影院| 9热在线视频观看99| 久久人人精品亚洲av| 免费女性裸体啪啪无遮挡网站| 日本三级黄在线观看| 黄网站色视频无遮挡免费观看| 国产精品电影一区二区三区| 国产精品国产高清国产av| 亚洲精品美女久久久久99蜜臀| 国产单亲对白刺激| 国产欧美日韩一区二区三区在线| а√天堂www在线а√下载| 一级毛片女人18水好多| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 国产99久久九九免费精品| 午夜免费成人在线视频| 一区二区三区精品91| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 91精品三级在线观看| 国产亚洲欧美98| 激情视频va一区二区三区| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费 | 免费在线观看影片大全网站| 久久久久久大精品| 国产高清videossex| 最好的美女福利视频网| 日韩人妻精品一区2区三区| 日日夜夜操网爽| 99re在线观看精品视频| 桃红色精品国产亚洲av| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| 日韩免费av在线播放| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 视频在线观看一区二区三区| 香蕉久久夜色| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 侵犯人妻中文字幕一二三四区| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 99re在线观看精品视频| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线免费观看网站| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 如日韩欧美国产精品一区二区三区| 99国产精品一区二区三区| 99在线人妻在线中文字幕| √禁漫天堂资源中文www| 最好的美女福利视频网| 久久这里只有精品19| 18禁观看日本| 三级毛片av免费| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 亚洲专区国产一区二区| 1024视频免费在线观看| 一级黄色大片毛片| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 咕卡用的链子| 日本精品一区二区三区蜜桃| 亚洲男人的天堂狠狠| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯| 怎么达到女性高潮| 在线观看免费视频网站a站| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频| 久久影院123| 成人三级黄色视频| 国产国语露脸激情在线看| 在线观看免费视频日本深夜| 少妇裸体淫交视频免费看高清 | 亚洲aⅴ乱码一区二区在线播放 | 岛国在线观看网站| 久久精品人人爽人人爽视色| 人人澡人人妻人| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 久久人人97超碰香蕉20202| 超色免费av| 九色亚洲精品在线播放| 黄频高清免费视频| 精品国产国语对白av| 琪琪午夜伦伦电影理论片6080| 国产高清国产精品国产三级| 99re在线观看精品视频| 十分钟在线观看高清视频www| 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品91蜜桃| 视频在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 日本免费a在线| 日日爽夜夜爽网站| 长腿黑丝高跟| 黄色a级毛片大全视频| 国产一卡二卡三卡精品| 国产精品永久免费网站| 男女下面进入的视频免费午夜 | 岛国在线观看网站| 夜夜爽天天搞| 日韩国内少妇激情av| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| 国产免费现黄频在线看| 丁香六月欧美| 国产黄a三级三级三级人| av国产精品久久久久影院| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 在线免费观看的www视频| 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 精品日产1卡2卡| 免费看a级黄色片| 日本vs欧美在线观看视频| ponron亚洲| 69精品国产乱码久久久| 超碰97精品在线观看| 日韩大码丰满熟妇| 久久国产精品影院| 母亲3免费完整高清在线观看| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜制服| 搡老熟女国产l中国老女人| 午夜福利在线免费观看网站| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 99国产精品99久久久久| 久久久久久久午夜电影 | 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 村上凉子中文字幕在线| 亚洲免费av在线视频| 亚洲欧美日韩无卡精品| 色综合欧美亚洲国产小说| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 欧美av亚洲av综合av国产av| 女人被狂操c到高潮| 国产三级在线视频| 欧美丝袜亚洲另类 | 国产真人三级小视频在线观看| 欧美成人免费av一区二区三区| 精品国产一区二区三区四区第35| 久久草成人影院| 在线观看一区二区三区| 天堂影院成人在线观看| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 黄色视频不卡| 在线国产一区二区在线| 嫩草影院精品99| 午夜福利影视在线免费观看| 日韩欧美免费精品| 亚洲一区中文字幕在线| www.www免费av| 色哟哟哟哟哟哟| 免费在线观看黄色视频的| 91字幕亚洲|