葉 飛,龔自明,桂安輝,滕 靖,高士偉※
?
自動化加工生產(chǎn)線改善機采綠茶理化品質(zhì)研究
葉 飛1,2,龔自明1,桂安輝1,滕 靖1,高士偉1※
(1. 湖北省農(nóng)業(yè)科學院果樹茶葉研究所,武漢 430064;2. 湖南農(nóng)業(yè)大學茶學教育部重點實驗室,長沙 410128)
以茶樹機采鮮葉為原料,選配、改裝和組建了茶葉加工自動化生產(chǎn)線,并跟蹤加工工序中茶坯理化成分的動態(tài)變化,以同一原料所制的傳統(tǒng)炒青工藝為對照,比較新設備和新工藝對機采卷曲形綠茶色澤和品質(zhì)成分的影響。結(jié)果發(fā)現(xiàn):新的生產(chǎn)線在殺青、二青、做形和提香等關(guān)鍵工序中,集成應用了電磁加熱耦合熱風、熱管余熱回收和流化床干燥技術(shù),提高了茶葉的滋味和色澤品質(zhì),所制卷曲形綠茶的感官得分比傳統(tǒng)炒青綠茶高2分,酚氨比相對較低(<0.05),干茶的色相值、茶湯、葉底的亮度和色相值相對更好(<0.01);相比傳統(tǒng)單機加工設備,該生產(chǎn)線可日均生產(chǎn)綠茶1 750 kg,產(chǎn)能提高了37.5%,能耗成本為4.6~4.8元/kg干茶;熱效率提高100%,用工成本減少50%。機采卷曲形綠茶自動化生產(chǎn)線擴大了茶葉加工產(chǎn)能,減輕了勞動強度,提高了卷曲形綠茶品質(zhì),為實際生產(chǎn)提供了指導。
加工;色澤;電磁技術(shù);卷曲形綠茶;理化品質(zhì)
機采卷曲形綠茶是茶樹機采鮮葉原料所制,其外形卷曲綠潤,湯色綠亮,滋味醇厚,栗香尚爽,葉底綠亮,深受消費者歡迎。茶樹機械化采摘的效率高,如單臺單人采茶機每天可采摘450~550 kg鮮葉,而目前茶葉加工生產(chǎn)線的產(chǎn)能不足,如普通茶葉加工廠每天可生產(chǎn)1 000~1 200 kg干茶,經(jīng)常出現(xiàn)滿負荷和超強度加工等現(xiàn)象,主要是因為現(xiàn)行的單機設備或生產(chǎn)線難以完全適應大批量機采卷曲形綠茶的生產(chǎn),出現(xiàn)了殺青欠勻或過老、二青和做形過度或不足等現(xiàn)象,降低了產(chǎn)品品質(zhì)和生產(chǎn)效益。近年來,卷曲形綠茶加工的關(guān)鍵工藝和設備取得了相關(guān)進展,如在殺青工序中,出現(xiàn)了微波遠紅外輔助、汽熱耦合滾筒等組合式新工藝[1-6],同時新設備也被相繼應用,如電磁加熱滾筒技術(shù)和催化式紅外殺青技術(shù)[7-9]。二青工序也出現(xiàn)了不同熱源(柴煤氣電)的熱風二青[9]、理條機二青[10]、微波二青[11-13]等技術(shù),其中柴煤式熱風二青的熱源不穩(wěn)定,茶葉受熱不勻,且容易污染環(huán)境;燃氣式熱風二青對設備要求較高,中小茶廠難以完全配套;電熱式熱風二青設備的熱效率低,運行成本較高;理條機二青方式的產(chǎn)能較?。晃⒉ǘ嗉夹g(shù)所制綠茶香氣不顯;電磁加熱技術(shù)的二青工藝效果較好[14],但還沒有應用于大規(guī)模生產(chǎn)。做形工序也出現(xiàn)了揉捻-烘干、曲毫滾炒和循環(huán)滾炒等新工藝[10-11]。為了進一步降低勞動強度和加工能耗,茶葉加工生產(chǎn)線中的自動化控制系統(tǒng)、熱管余熱回收和流化床干燥技術(shù)相繼被推廣應用[15-23],上述研究進展都明顯提高了茶葉品質(zhì),但這些研究主要用于以手采鮮葉原料的加工,機采卷曲形綠茶的工藝研究還相對較少。為了滿足機采卷曲形綠茶實際生產(chǎn)和技術(shù)需求,提高產(chǎn)品品質(zhì),減輕茶葉加工的勞動強度,本研究集成電磁加熱、余熱回收和流化床干燥技術(shù),設計、組裝和調(diào)試了機采卷曲形綠茶自動化生產(chǎn)線及工藝參數(shù),旨在為茶葉加工提供理論基礎和技術(shù)支持。
茶鮮葉原料:群體品種的機采鮮葉,其機械組成為單片58.27%,1芽2~3葉29.93%,1芽4~5葉11.79%,2017年5月6日機采于湖北采花茶業(yè)有限公司基地。
儀器:MF-50水分快速測定儀,深圳深博瑞儀器儀表有限公司;CM-5色差計,日本柯尼卡美能達控股公司;2695型高效液相色譜儀,美國Waters公司;U-5100分光光度計,日本日立公司。
設備:機采卷曲形綠茶自動化生產(chǎn)線由湖北省茶葉工程技術(shù)研究中心自主設計,選配了部分關(guān)鍵單機(6CST-110型電磁滾筒殺青機,6CHT-110型電磁加熱滾筒烘干機,余姚市姚江源茶機有限公司),并改裝了部分單機,如增加了電磁滾筒殺青機中的加熱組件;集成應用了余熱回收和流化床干燥技術(shù)(GZQ-3×0.3型振動流化床,常州一步干燥設備有限公司);改進了滾炒做形工藝;配備了不同工藝間的輸送連接設備,如自動投料與收集設備等,并配備了自動化控制設備。如圖1所示。通過協(xié)調(diào)各工藝及配套設備,自動化生產(chǎn)線平穩(wěn)運行,機采卷曲形綠茶得以大批量生產(chǎn)。
圖1 機采卷曲形綠茶自動化生產(chǎn)線示意圖
機采卷曲形綠茶工藝流程借鑒了國內(nèi)半烘炒綠茶的生產(chǎn)工藝,并經(jīng)過前期試驗,摸索得到了機采卷曲形綠茶的工藝參數(shù)(表1),加工流程為鮮葉→攤青→殺青→揉捻→二青(6CHT-110型電磁加熱滾筒烘干機×1臺,滾筒165~175 ℃,熱風155 ℃)→做形(6CHT-80型電磁加熱滾筒烘干機′2臺,145 ℃,10 min′3次)→足干(電熱滾筒6CST-80型,100~110 ℃,5~6 min)→提香(流化床GZQ-3型,120~125 ℃,4~6 min),各工序取樣后于70 ℃烘干待測,最后以傳統(tǒng)炒青綠茶(攤青→滾筒殺青→揉捻→滾二青→滾足干)的工藝和產(chǎn)品為對照,以感官得分、茶葉色澤和理化成分進行綜合評價。
表1 卷曲形綠茶自動化生產(chǎn)線工藝參數(shù)
茶坯含水率由水分快速測定儀測定,單位時間失水率:單位時間內(nèi)的茶坯失水率。茶葉感官品質(zhì)得分:密碼感官審評[24]。干茶、茶湯和葉底色澤:色差法(亮度色差)測定(光源D65,角度4°),湯色色差測定采取3 g茶葉加150 mL沸水沖泡5 min,過濾后用色差計測定[25-26],其中值代表明度,代表紅綠色度,代表黃藍色度,/代表色相值,值越小,色澤越綠。茶多酚與氨基酸是綠茶滋味品質(zhì)的重要物質(zhì)[27-28],兒茶素:HPLC方法[29];游離氨基酸:茚三酮比色法[30]。每個試驗3次重復。
感官得分=外形×0.20+湯色×0.10+香氣×0.3+滋味×0.30+葉底×0.10 (2)
式中D代表某一工序前后茶坯含水率的差值,代表某一工序所用時間,min。
數(shù)據(jù)經(jīng)Excel進行數(shù)據(jù)處理;采用SPSS19.0進行差異顯著性分析。
圖2為茶葉含水率變化結(jié)果,在卷曲形綠茶加工過程中,茶坯的含水率逐漸下降,從攤放工藝時的74.18%下降到提香工藝后的6.60%,不同工藝前后的含水率變化幅度明顯不同,其中二青前后的含水率下降幅度最大(24.15%),其次為做形(22.70%),最后是殺青(10.85%)和足干(4.68%)。不同工序間的單位時間失水率也相差較大,其中二青工序的單位時間失水率最高(7.92%/min),其次是殺青(3.56%/min),最后是做形(1.99%/min)和足干(1.02%/min)。推測是殺青和二青工序均采用電磁加熱耦合熱風技術(shù),屬于高溫短時過程,而做形工序?qū)儆谙鄬Φ蜏亻L時過程,茶坯在相對較低單位失水率下,有利于提高干茶的緊結(jié)度和外形品質(zhì)。
圖3為茶葉色澤變化結(jié)果,在機采卷曲形綠茶加工過程中,茶坯亮度逐步下降,其中二青前后的茶坯亮度下降幅度最大是二青(17.73%),后續(xù)依次為殺青(8.94%)、揉捻(8.32%)、提香(8.04%)和做形(1.58%),說明對茶坯亮度影響最大是二青工序;茶坯色澤也由翠綠變?yōu)辄S綠,其中殺青工序?qū)е律嘀档淖兓茸畲螅罄m(xù)依次是揉捻、二青和足干,最終機采卷曲形綠茶亮度為19.1,色相值為0.14,感官審評發(fā)現(xiàn)其干茶色綠尚潤,湯色黃綠亮,葉底綠亮。分析是該生產(chǎn)線的殺青和二青工序采用了電磁設備,并耦合了熱風輔助,結(jié)合了滾筒和熱風干燥的特點,所制的綠茶色澤品質(zhì)達到了優(yōu)質(zhì)機采綠茶的要求。
圖2 卷曲形綠茶自動化加工過程中含水率和單位時間失水率的變化
圖3 卷曲形綠茶自動化加工過程中亮度和色相值的變化
圖4為茶多酚和可溶性糖變化結(jié)果,卷曲形綠茶在加工過程中,茶多酚含量明顯下降,其中攤放工序的含量最高,足干和提香工序含量較低,其中足干降低了12.00%的茶多酚。可溶性糖含量先升后降,二青工序含量最高,提香工序含量最低,其中殺青提高了7.72%的可溶性糖。推測在殺青、足干和二青工序中,茶多酚受短時高溫破壞導致含量下降,而大分子物質(zhì)受熱分解為可溶性糖,而在相對低溫長時的做形和提香過程中,茶多酚互相轉(zhuǎn)化導致含量緩慢上升,可溶性糖與其他物質(zhì)緩慢反應,導致含量下降,形成了機采卷曲形綠茶滋味醇厚的品質(zhì)特點。
圖5和圖6為水浸出物、游離氨基酸和兒茶素變化結(jié)果,機采綠茶在加工過程中,水浸出物和游離氨基酸含量先降后升,水浸出物的變化幅度變化不大;游離氨基酸含量先降后升,其中提香工序含量最高,殺青工序最低,不同加工工序的作用不同,殺青工序降低了13.65%的氨基酸,而足干工序提升了21.82%的氨基酸,說明殺青和足干工藝對游離氨基酸含量影響較大;酯型兒茶素、非酯型兒茶素和兒茶素質(zhì)量分數(shù)分別下降22%、17%和13%,其中酯性兒茶素和兒茶素總量在揉捻工序后分別降低了13.48%和10.40%,推測長時間揉捻后,酯性兒茶素被氧化或和分解,降低了苦澀味。推測在高溫短時條件下,游離氨基酸在殺青中被高溫破壞導致含量下降,而在足干和提香過程中,蛋白質(zhì)等大分子物質(zhì)受熱分解,導致游離氨基酸含量緩慢上升。
圖4 卷曲形綠茶自動化加工過程中茶多酚和可溶性糖含量的變化
圖5 機采卷曲形綠茶自動化加工過程中水浸出物和游離氨基酸的變化
圖6 機采卷曲形綠茶自動化加工過程中兒茶素的變化
以同一鮮葉為原料,采用燃煤式和電熱式等傳統(tǒng)加工設備和加工工藝作為對照,調(diào)查并比較了不同設備、生產(chǎn)線和產(chǎn)品的特點,結(jié)果(表2和表3)發(fā)現(xiàn),傳統(tǒng)燃煤式單機作業(yè)的能耗最低(0.6~0.7元/kg),但熱效率最低(20%~25%),穩(wěn)定性差,對環(huán)境和茶葉都有污染,需要專人負責,用工人數(shù)最高(8~9人次)。電熱管式連續(xù)化生產(chǎn)線的能耗最高(6~6.5元/kg),但操作簡單,穩(wěn)定性好,降低了用工人數(shù)(4~5人次)。電磁加熱自動化生產(chǎn)線的能耗為4.6~4.8元/kg,熱效率高[31-32](50%~55%),用工人數(shù)最少(3~4人次)。以傳統(tǒng)炒青為對照,機采卷曲形綠茶的干茶卷曲完整,黃綠尚勻,湯色黃綠亮,滋味醇厚,栗香明顯,葉底綠亮,感官審評得分高出傳統(tǒng)炒青2分,干茶色相值更?。?0.01),茶湯和葉底的亮度、色相值相對更好(<0.01),說明傳統(tǒng)炒青干茶亮度較好,但機采卷曲形綠茶的干茶更綠,茶湯和葉底的色澤更好,印證了感官審評結(jié)果。相比傳統(tǒng)設備,110型滾筒殺青機平均每小時殺青400 kg鮮葉,新生產(chǎn)線平均每小時可處理550 kg鮮葉日均生產(chǎn)綠茶1 750 kg,加工能力提高了37.5%,用工成本降低了50%,擴大了產(chǎn)能,降低了人工成本,提高了產(chǎn)品品質(zhì)。
表2 卷曲形綠茶加工設備及工藝的比較結(jié)果
注:按每天加工1 250 kg干茶測算所需用工數(shù)。
Note: According to 1 250 kg of dry tea processed daily to calculate the number of workers required.
表3 不同機采卷曲形綠茶產(chǎn)品比較
注:同一行大小寫字母分別表示在 0.01和0.05 水平上差異顯著性。
Note: The different capital and small letter in the same row indicated the difference is significantly at 0.01 or 0.05 level, respectively.
1)卷曲形綠茶加工過程中,受外力和高溫的持續(xù)作用下,茶坯含水率降低,外形體積收縮,品質(zhì)特征逐步形成。在機采卷曲形綠茶加工過程中,二青工序的單位時間失水率最快(7.92%/min),其次是殺青(3.56%/min),最后是做形和足干,主要是因為該生產(chǎn)線在殺青、二青和提香工序中,集成電磁加熱耦合熱風技術(shù)和熱管余熱回收技術(shù),精準調(diào)控了溫度和茶坯單位時間的失水率,所制產(chǎn)品的機采卷曲形綠茶卷曲完整,黃綠尚勻,相比干茶緊結(jié)上霜,有斷碎的傳統(tǒng)炒青,茶葉的外形品質(zhì)明顯提高。
2)色澤是綠茶品質(zhì)的重要因子,干茶的亮度越大,茶葉越油潤,色相值越小,茶葉色澤越綠,不同的加工工藝對茶葉色澤影響較大,如滾筒殺青有利于干茶亮度,汽熱殺青有利于干茶色澤。機采卷曲形綠茶自動化采用電磁耦合熱風技術(shù),提高了茶葉色澤品質(zhì)和外形的緊結(jié)度,相比傳統(tǒng)炒青,機采卷曲形綠茶的干茶色相值,茶湯和葉底的亮度、色相值相對更好(<0.01),說明傳統(tǒng)炒青干茶亮度好,但機采卷曲形綠茶的干茶更綠,茶湯和葉底的色澤更好,印證了感官審評結(jié)果。
3)酚氨比值低的綠茶滋味相對較高,兒茶素組成及含量是決定綠茶口感醇味的物質(zhì)基礎。機采綠茶在加工過程中,酯型兒茶素和非酯型兒茶素含量都明顯下降,而氨基酸含量上升,推測是該生產(chǎn)線采用電磁耦合熱風技術(shù),在殺青和二青工序中,茶坯同時被兩種方式加熱,蛋白質(zhì)的分解作用加強,氨基酸的保留量較高,茶葉的滋味更加鮮爽;相比傳統(tǒng)炒青,機采卷曲形綠茶的感官得分高2分,酚氨比也相對較低(<0.05),也印證了感官審評結(jié)果。
綜上所述,該機采卷曲形綠茶自動化生產(chǎn)線的操作簡便,穩(wěn)定性好,產(chǎn)能和熱效率較高,人工成本較低,滿足了機采鮮葉加工的產(chǎn)能和技術(shù)要求,提高了茶葉的品質(zhì),可以作為提高機采卷曲形綠茶品質(zhì)的有效技術(shù)手段。
[1] 潘科,鄭文佳,何平. 綠茶微波遠紅外輔助殺青技術(shù)研究[J]. 山地農(nóng)業(yè)生物學報,2009,28(6):522-525. Pang Ke, Zheng Wenjia, He Ping. Fixation technique assisted by microwave-infrared ray of green tea[J]. Journal of Mountain Agriculture and Biology,2009, 28(6): 522-525. (in Chinese with English abstract)
[2] 朱德文,岳鵬翔,袁弟順. 不同殺青方法對綠茶品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2009,25(8):275-279. Zhu Dewen, Yue Pengxiang, Yuan Dishun. Effects of different fixation methods on the quality of green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 275-278. (in Chinese with English abstract)
[3] 朱德文,岳鵬翔,袁弟順,等. 微波遠紅外耦合殺青工藝對綠茶品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2011,27(3):345-350. Zhu Dewen, Yue Pengxiang, Yuan Dishun, et al. Effects of microwave far-infrared coupling fixation processes on quality of green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 345-350.(in Chinese with English abstract)
[4] 葛慶豐,張聰,于海,等. 綠茶的微波-熱風聯(lián)合殺青工藝研究[J]. 食品科學,2011,32(24):196-199. Ge Qingfeng, Zhang Cong, Yu Hai, et al. Green tea fixation by simultaneous microwave and hot air treatment[J]. Food Science,2011, 32(24): 196-199. (in Chinese with English abstract)
[5] 譚書德,譚永紅,丁書建. 微波二次殺青對綠茶品質(zhì)的影響[J]. 貴州茶葉,2011,39(2):38-40. Tan Shude, Tan Yonghong, Ding Shujian. The effect of microwave fixing twice on quality in green tea[J]. Guizhou Tea, 2011, 39(2): 38-40. (in Chinese with English abstract)
[6] 葉飛,高士偉,龔自明,等. 不同殺青方式對綠茶品質(zhì)的影響[J]. 四川農(nóng)業(yè)大學學報,2014,32(2):160-164,171. Ye Fei, Gao Shiwei, Gong Ziming, et al. Effect of different fixation methods on the quality of green tea[J]. Journal of Sichuan Agricultural University, 2014, 32(2): 160-164, 171. (in Chinese with English abstract)
[7] 袁海波,許勇泉,鄧余良,等. 綠茶電磁內(nèi)熱滾筒殺青工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2013,29(1):250-258. Yuan Haibo, Xu Yongquan, Deng Yuliang, et al. Optimization of fixation process by electromagnetic heat roller for green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 250-258. (in Chinese with English abstract)
[8] 吳本剛,肖孟超,劉美娟,等. 催化式紅外殺青對綠茶熱風干燥的影響[J]. 食品科學,2017,38(9):126-132. Wu Bengang, Xiao Mengchao, Liu Meijuan, et al. Fixation and drying of green tea using sequential catalytic infrared heating and hot air drying[J]. Food Science, 2017, 38(9): 126-132. (in Chinese with English abstract)
[9] 滑金杰, 袁海波, 尹軍峰, 等. 綠茶電磁滾筒-熱風耦合殺青工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2015,31(12):260-267. Hua Jinjie, Yuan Haibo, Yin Junfeng, et al. Optimization of fixation process by electromagnetic roller-hot air coupling machine for green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 260-267. (in Chinese with English abstract)
[10] Chan E W C, Lim Y Y, Wong S K, et al. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species[J]. Food Chemistry, 2009, 113(1): 166-172.
[11] 陳根生,袁海波,許勇泉,等. 針芽形綠茶連續(xù)化生產(chǎn)線設計與工藝參數(shù)優(yōu)化[J]. 茶葉科學, 2016, 36(2): 139-148. Chen Gensheng, Yuan Haibo, Xu Yongquan, et al. Design and process optimization of a continuous production line on needle-type premium green tea[J]. Journal of Tea Science, 2016, 36(2): 139-148. (in Chinese with English abstract)
[12] 劉新,金壽珍,傅尚文,等. 微波加熱在茶葉加工中的應用[J]. 食品科學,2002,23(10):72-75. Liu Xin, Jin Shouzhen, Fu Shangwen, et al. Microwave heating employed on the tea manufacture[J]. Food Science, 2002, 23(10): 72-75. (in Chinese with English abstract)
[13] Dong J, Ma X, Fu Z, et al. Effects of microwave drying on the contents of functional constituents of eucommia ulmoidesflower tea[J]. Industrial Crops & Products, 2011, 34(1): 1102-1110.
[14] 袁海波,滑金杰,王近近,等. 電磁內(nèi)熱式綠茶毛火工藝參數(shù)優(yōu)化與分析[J]. 農(nóng)業(yè)工程學報,2018,34(3):265-272. Yuan Haibo, Hua Jinjie, Wang Jinjin,et al. Analysis and parameter optimization of first-drying process using chain plate dryer with electromagnetic heating for green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 265-272. (in Chinese with English abstract)
[15] Zheng M, Xia Q, Lu S. Study on drying methods and heir influences on effective components of loquat flower tea[J]. LWT-Food Science and Technology, 2015, 63(1): 14-20.
[16] 鄭鵬程,滕靖,龔自明,等. 熱管技術(shù)在茶葉加工節(jié)能中的應用研究[J]. 茶葉科學,2013(3):273-278. Zheng Pengcheng, Teng Jing, Gong Ziming, et al. Application research on the application of heat pipe technology to tea processing energy conservation[J]. Journal of Tea Science, 2013(3): 273-278. (in Chinese with English abstract)
[17] 寧井銘,孫磊,張正竹,等. 基于近紅外技術(shù)的綠茶殺青自動控制系統(tǒng)設計與試驗[J]. 安徽農(nóng)業(yè)大學學報,2013,40(6):899-902. Ning Jingming, Sun Lei, Zhang Zhengzhu, et al. Design and experiment of automatic control in green tea firing process based on infrared spectroscopy[J]. Journal of Anhui Agricultural University, 2013, 40(6): 899-902. (in Chinese with English abstract)
[18] 譚俊峰,林智,李云飛,等. 扁形綠茶自動化生產(chǎn)線構(gòu)建和控制研究[J]. 茶葉科學,2012,32(4):283-288. Tan Junfeng, Lin Zhi, Li Yunfei, et al. Design of automatic production line on flat-shape green tea[J]. Journal of Tea Science, 2012, 32(4): 283-288. (in Chinese with English abstract)
[19] 譚俊峰,金華強,黃躍進,等. 自動化炒青綠茶生產(chǎn)線的設計與應用[J]. 茶葉科學,2010,30(3):229-234. Tan Junfeng, Jin Huaqiang, Huang Yuejin, et al. Design and application of automatic production line on roasted green tea[J]. Journal of Tea Science, 2010, 30(3): 229-234. (in Chinese with English abstract)
[20] 龔雪蛟,杜曉. 炒青綠茶自動化生產(chǎn)線加工過程中品質(zhì)成分變化[J]. 四川農(nóng)業(yè)大學學報,2012,30(1):73-77. Gong Xuejiao, Du Xiao. The variations of main biochemical components during the production process of roasted green tea by automatic production line[J]. Journal of Sichuan Agricultural University, 2012, 30(1): 73-77. (in Chinese with English abstract)
[21] 鄭紅發(fā),湯哲,包小村,等. 半烘炒型綠茶全自動生產(chǎn)線研究與應用[J]. 茶葉科學,2013,33(5):473-481. Zheng Hongfa, Tang Zhe, Bao Xiaocun, et al. Study and application on the full-automatic production line of half baking green tea[J]. Journal of Tea Science, 2013, 33(5): 473-481. (in Chinese with English abstract)
[22] 權(quán)啟愛. 香茶自動化生產(chǎn)線的設備構(gòu)成及技術(shù)特點[J]. 中國茶葉,2013(4):8-10.
[23] 周泗牛. 速溶紅茶流化床造粒工藝及其產(chǎn)品儲藏特性研究[D]. 杭州:浙江工商大學,2013:1-2. Zhou Siniu. Studies on the Technology of Granulation of Instant Black Tea by Fluidized Bed and the Storage Characteristics of the Products[D]. Hangzhou: Zhejiang Gongshang University, 2013:1-2. (in Chinese with English abstract)
[24] 中國國家標準化管理委員會: 茶葉感官審評方法GB/T 23776-2018[S]. 北京:中國標準出版社,2018.
[25] 葉飛,高士偉,龔自明. 砂梨多酚氧化酶處理對夏秋紅茶品質(zhì)的影響[J]. 食品科學,2013,34(23):92-95. Ye Fei, Gao Shiwei, Gong Zingming. Effects ofpolyphenol oxidase treatment on the quality of black tea in summer and autumn[J]. Food Science, 2013, 34(23): 92-95. (in Chinese with English abstract)
[26] 葉飛,高士偉,張強,等. 做形工藝對恩施玉露干茶色澤及湯色的影響[J]. 湖南農(nóng)業(yè)大學學報(自然科學版),2013,39(1):91-94. Ye Fei, Gao Shiwei, Zhang Qiang, et al. Effects of shaping technologies on the colour of dry tea and brew of Enshiyulu [J]. Journal of Hunan Agricultural University (Natural Sciences), 2013,39(1): 91-94. (in Chinese with English abstract)
[27] 李俊,郭曉關(guān),龐宏宇,等. 貴州綠茶中咖啡堿和兒茶素含量分析[J]. 茶葉科學,2012,32(6):480-484. Li Jun, Guo Xiaoguan, Pang Hongyu, et al. Contents of caffeine and catechin in Guizhou green tea[J]. Journal of Tea Science, 2012, 32(6): 480-484. (in Chinese with English abstract)
[28] 周天山,米曉玲,王衍成,等. 不同加工工藝對‘陜茶1號’綠茶品質(zhì)的影響[J]. 食品科學,2017,38(3):148-154. Zhou Tianshan,Mi Xiaoling, Wang Yancheng, et al. Effect of Different Processing Techniques on the Quality of ‘Shaancha 1’ Green Tea[J]. Food Science, 2017, 38(3): 148-154. (in Chinese with English abstract)
[29] 中國國家標準化管理委員會. 茶葉中茶多酚和兒茶素含量的檢驗方法GB/T 8313-2008[S]. 北京:中國標準出版社,2008.
[30] 中國國家標準化管理委員會. 茶游離氨基酸總量的測定:GB/T 8314-2013[S]. 北京:中國標準出版社,2013.
Physico-chemical characteristics and quality improvement of machine picking green tea by automatic production line
Ye Fei1,2, Gong Ziming1, Gui Anhui1, Teng Jing1, Gao Shiwei1※
(1.430064,; 2.410128,)
The green tea primary processing has important effects on the quality, color, taste and other flavor quality of green tea. In order to enhance the quality and capacity of tea processing production, the curl-shape green tea processed by electromagnetism technology and the traditional roasted green tea were analysed. At the same time, mechanically-harvested fresh tea leaves consisted of mixed shoots and leaves, varied in sized, are obviously coarse and heterogeneous compared to the hand picking fresh tea leaves, which has negative effects on the green tea enzyme deactivation, second drying, shaping, hot rolling drying and raising fragrant processing, and it is hard to get the high quality green tea with mechanically-harvested fresh tea leaves. At present, the green tea primary processing of mechanically-harvested fresh tea leaves were traditional methods, for example, hot roller enzyme deactivation, hot air second-drying, hot roller drying and hot air raising fragrant technologies. Although the existing technologies can enhance the flavor and taste quality of tea by experienced workers, they usually have low production and thermal efficiency, inaccurate temperature controlling, uneven heat distribution and unstable quality, and other issues. For these reasons, based on the electromagnetic roller-hot air fixation, second drying with electromagnetic heating and raising fragrant with fluidized bed drying technologies, the automatic tea production line used in the article combine the advantages different equipments and manners in tea processing, in addition, electromagnetic roller-hot air fixation is heated by electromagnetic heat technology, which significantly improvements of energy efficiency and heating stability. The thermal efficiency of the machine was improved, and could easily be controlled accurately. While the heat pipe technology were applied into the tea processing line, the results indicated the thermal efficiency was increased and the effect of energy conservation was remarkable; vibration fluidized bed had good drying effect, energy conservation and so on, which was begin to be used in tea drying industry. Finally, with the technologies above and the other matching equipments, this paper had integrated a new automatic tea production line, in order to enhance the tea flavor and taste quality, obtain stable and high-quality tea, at the same time the thermal efficiency and production efficiency were enhanced. According to the results of sensory evaluation quality and biochemical composition, the production capacity of automatic production line was 1 750 kg leaves one day, and the thermal efficiency increased 100% compared to traditional roasted green tea process. The sensory quality score of curl-shape green tea made of leaves harvested by machines was 88.8, which was 2 point higher than the traditional roasted green tea, and the hue of color (/) of tea, tea brew and infused tea leaves were be better (<0.01) and the ratio of polyphenols to amino acids were the lower (<0.01). The capacity production was increased 37.5%, the number of labor was reduced by 50% by automatic production line, the sensory quality of curl-shape green tea made of leaves harvested by machines also significantly improved, which could be used for green tea production harvested by machines.
processing; color; electromagnetism; curl-shape green tea; physico-chemical quality
葉 飛,龔自明,桂安輝,滕 靖,高士偉. 自動化加工生產(chǎn)線改善機采綠茶理化品質(zhì)研究[J]. 農(nóng)業(yè)工程學報,2019,35(3):281-286. doi:10.11975/j.issn.1002-6819.2019.03.035 http://www.tcsae.org
Ye Fei, Gong Ziming, Gui Anhui, Teng Jing, Gao Shiwei. Physico-chemical characteristics and quality improvement of machine picking green tea by automatic production line [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 281-286. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.035 http://www.tcsae.org
2018-07-20
2019-01-18
國家現(xiàn)代農(nóng)業(yè)(茶葉)產(chǎn)業(yè)技術(shù)體系建設專項(CARS-19);中央引導地方科技發(fā)展專項(2018ZYYD009);湖北省技術(shù)創(chuàng)新專項重大項目(2016ABA105和2017ABA159);湖北省科技創(chuàng)新項目(2016-620-000-001-032)
葉 飛,助理研究員,博士生,從事茶葉加工研究。 Email:yf421@163.com
高士偉,副研究員,從事茶葉加工及綜合利用研究。 Email:gsw0609@126.com
10.11975/j.issn.1002-6819.2019.03.035
TS272.4
A
1002-6819(2019)-03-0281-06