蘭玉彬,朱梓豪,鄧小玲,練碧楨,黃敬易,黃梓效,胡 潔
?
基于無(wú)人機(jī)高光譜遙感的柑橘黃龍病植株的監(jiān)測(cè)與分類
蘭玉彬1,3,朱梓豪1,3,鄧小玲2,3,4※,練碧楨2,3,黃敬易1,3,黃梓效1,3,胡 潔2,3
(1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)電子工程學(xué)院,廣州 510642;3. 國(guó)家精準(zhǔn)農(nóng)業(yè)航空施藥技術(shù)國(guó)際聯(lián)合中心,廣州 510642;4. 廣東省農(nóng)情信息監(jiān)測(cè)工程技術(shù)研究中心,廣州 510642)
柑橘黃龍?。℉uanglongbing,HLB)是柑橘產(chǎn)業(yè)的毀滅性病害,及早發(fā)現(xiàn)并挖除病株是防治HLB的有效手段。通過(guò)無(wú)人機(jī)低空遙感監(jiān)測(cè)大面積果園,可大大減少HLB排查工作量和勞動(dòng)力。該文獲取了無(wú)人機(jī)低空柑橘果園的高光譜影像,分別提取并計(jì)算健康和感染HLB植株冠層的感興趣區(qū)域的平均光譜,并對(duì)初始光譜進(jìn)行Savitzky-Golay平滑、異常數(shù)據(jù)剔除和光譜變換,得到原始光譜、一階導(dǎo)數(shù)光譜和反對(duì)數(shù)光譜3種光譜,對(duì)這3種光譜采用主成分分析法進(jìn)行降維,與全波段信息比較,分別采用k近鄰(kNN)和支持向量機(jī)(SVM)進(jìn)行建模和分類。結(jié)果表明,以二次核SVM判別模型對(duì)全波段一階導(dǎo)數(shù)光譜的分類準(zhǔn)確率達(dá)到94.7%,對(duì)測(cè)試集的誤判率為3.36%。表明低空高光譜遙感監(jiān)測(cè)HLB的手段具有可行性,可大大提高果園管理效率和政府防控病情力度。
遙感;無(wú)人機(jī);高光譜;黃龍??;柑橘;k近鄰;支持向量機(jī)
柑橘黃龍?。℉uanglongbing,HLB)是柑橘植株韌皮受革蘭氏陰性細(xì)菌感染而造成的毀滅性病害,最早在中國(guó)南方地區(qū)發(fā)現(xiàn),目前已在40多個(gè)國(guó)家發(fā)生病情。感染HLB的柑橘植株初顯癥狀時(shí),果樹(shù)長(zhǎng)勢(shì)會(huì)快速衰退,樹(shù)葉出現(xiàn)斑駁、黃化,植株矮小,果實(shí)著色不正常,呈現(xiàn)“紅鼻果”,品質(zhì)變差[1-5]。HLB有極強(qiáng)的傳染能力,能夠迅速感染其他柑橘植株,對(duì)柑橘生產(chǎn)已造成嚴(yán)重影響[6-7]。HLB目前尚未有藥物可以根治,盡早挖除病株并對(duì)傳播病菌的害蟲(chóng)加以防治是最有效的防治方法。而防治HLB的最根本的前提就是要快速、及早地檢測(cè)HLB。
HLB的癥狀較為復(fù)雜,目前檢測(cè)HLB的方法包括田間診斷和實(shí)驗(yàn)室生化分析兩大類。田間診斷主要依靠人眼診斷識(shí)別,簡(jiǎn)單易行且無(wú)需設(shè)備輔助,是診斷HLB最快速的方法,但該法所需知識(shí)和經(jīng)驗(yàn)儲(chǔ)備較高,主觀性較強(qiáng),準(zhǔn)確率不高[8-9]。實(shí)驗(yàn)室生化分析有多種方式檢測(cè)HLB[10-13],但這些檢測(cè)方法檢測(cè)過(guò)程較為復(fù)雜,對(duì)檢測(cè)人員專業(yè)知識(shí)儲(chǔ)備要求較高,檢測(cè)周期長(zhǎng)等,不利于很好地推廣到農(nóng)業(yè)實(shí)際生產(chǎn)中。
近些年來(lái),國(guó)內(nèi)外研究人員將光譜檢測(cè)技術(shù)應(yīng)該用到柑橘HLB的檢測(cè)中,致力于研發(fā)可實(shí)時(shí)高效檢測(cè)HLB的技術(shù),并取得一些進(jìn)展。孫旭東等[14]結(jié)合峰值比判別模型和偏最小二乘判別模型對(duì)健康、缺素和HLB這3類葉片的高光譜圖像進(jìn)行二步快速診斷,模型準(zhǔn)確率達(dá)到96.7%。Pereira等[15]通過(guò)分析和比較同一品種的健康和感染HLB的柑橘葉片熒光圖像,可在95%的置信水平上順利找到HLB病害植株。Pérez等[16]通過(guò)一種便攜式光譜裝置上的拉曼光譜結(jié)合主成分線性判別分析技術(shù)(principal component analysis-linear discriminant analysis)判別健康和HLB病害植株,其正確識(shí)別率可達(dá)到89.2%。Sankaran等[17]利用傅里葉近紅外光譜儀對(duì)被干燥和粉碎的柑橘葉片進(jìn)行檢測(cè),對(duì)HLB的識(shí)別率可達(dá)到95%。劉燕德等[18]在380~1 080 nm光譜范圍內(nèi)對(duì)HLB進(jìn)行病情等級(jí)判別,對(duì)所采集的柑橘葉片高光譜圖像按感染病害程度和缺素分成5類,使用偏最小二乘判別分析法(PLS-DA)的準(zhǔn)確率可達(dá)94.4%。本研究團(tuán)隊(duì)成員Deng Xiaoling等[19-21]和梅慧蘭等[22]在實(shí)驗(yàn)室環(huán)境下,采用高光譜成像儀以及可見(jiàn)光相機(jī)獲取圖像,采用了不同的特征提取方法與建模方法進(jìn)行HLB診斷研究,得出HLB無(wú)損檢測(cè)病情分類模型。這些研究展現(xiàn)了高光譜技術(shù)對(duì)HLB的病情診斷有著較高可行性。
無(wú)人機(jī)低空遙感可實(shí)現(xiàn)大面積快速高效的監(jiān)測(cè),可大面積作物果園實(shí)現(xiàn)智能化種植提供幫助,開(kāi)展基于高光譜數(shù)據(jù)對(duì)農(nóng)作物病蟲(chóng)害的遙感檢測(cè)是低空農(nóng)業(yè)遙感領(lǐng)域的重要研究方向之一[23-27]。通過(guò)無(wú)人機(jī)搭載高光譜相機(jī),可快速獲取農(nóng)作物信息[28-31]。
本研究主要通過(guò)無(wú)人機(jī)遙感技術(shù)獲取柑橘冠層高光譜圖像,探索一種可快速高效判別HLB病害的方法,建立HLB病害的判別模型。
本研究試驗(yàn)基地位于廣東省惠州市博羅縣楊村鎮(zhèn)井水龍村柑橘黃龍病綠色防控與新栽培模式研發(fā)示范基地(N23°29¢57.812—N23°29¢59.31,E114°28¢8.392—E114°28¢12.262),海拔40 m,試驗(yàn)時(shí)間為2017年12月9日正午11時(shí)至15時(shí)。當(dāng)?shù)貧夂驕睾蜐駶?rùn),適宜柑橘等果樹(shù)種植。本次試驗(yàn)區(qū)域的作物品種均為砂糖橘(Citrus reticulate Blancocv Shangtanju),試驗(yàn)區(qū)域種植9行,株間行距4 m,株間列距2.5 m,共有334棵柑橘植株,柑橘果樹(shù)分為健康和感染HLB病害2個(gè)類。該試驗(yàn)基地為柑橘黃龍病防控示范基地,試驗(yàn)區(qū)域選用植株長(zhǎng)期由華南農(nóng)業(yè)大學(xué)黃龍病研究實(shí)驗(yàn)室追蹤檢測(cè),其感染HLB程度皆由PCR檢測(cè)確認(rèn)。
試驗(yàn)區(qū)域包括健康和感染HLB的柑橘植株。本研究使用ASD地物光譜儀采集地面高光譜信息,用無(wú)人機(jī)搭載Nano-Hyperspec微型機(jī)載高光譜成像儀采集低空高光譜遙感圖像,分別獲取健康和感染HLB的柑橘植株冠層的光譜信息。
1.2.1 無(wú)人機(jī)高光譜數(shù)據(jù)獲取及預(yù)處理
本研究中低空遙感系統(tǒng)選用DJI Matrice 600 Pro六旋翼無(wú)人機(jī)(中國(guó)DJI公司生產(chǎn))作為遙感平臺(tái),該機(jī)單臂長(zhǎng)437 mm,機(jī)身含電池質(zhì)量10 kg,飛行時(shí)有效載質(zhì)量6 kg,滿載續(xù)航時(shí)間為15~20 min。
本次試驗(yàn)中使用的高光譜成像傳感器為Nano- Hyperspec(下文簡(jiǎn)稱Nano)推掃式微型機(jī)載高光譜成像儀(Headwall公司生產(chǎn)),其像素大小為7.4m,幀頻(滿畫(huà)幅)大于200 幀/s,焦平面分辨率為640×480像素,鏡頭焦距17 mm,集成有GPS/IMU模塊和數(shù)據(jù)存儲(chǔ)模塊,總存儲(chǔ)空間480 GB。Nano在電動(dòng)云臺(tái)控制下,可最大限度地減少無(wú)人機(jī)飛行時(shí)橫滾、俯仰和偏航震蕩等帶來(lái)的不良影響,有效提高圖像采集的質(zhì)量。
根據(jù)試驗(yàn)區(qū)域的實(shí)際情況,在地面控制站上預(yù)先設(shè)置好飛行高度,飛行速度和飛行航線,飛行航跡如圖1所示。
如圖1左下角方框所示,在試驗(yàn)區(qū)域的平坦地面上放置好尺寸為60 cm×60 cm、反射率為40%的漫反射定標(biāo)板,且定標(biāo)板表面無(wú)任何雜物和陰影。高光譜成像儀所獲取的高光譜影像中應(yīng)包含有定標(biāo)板,影像數(shù)據(jù)被存儲(chǔ)于相機(jī)的存儲(chǔ)模塊中。
圖1 定標(biāo)板位置與試驗(yàn)區(qū)域飛行航線
無(wú)人機(jī)的飛行高度為60 m,飛行速度為4~5 m/s,根據(jù)設(shè)定的航線飛行并采集數(shù)據(jù),把獲取的高光譜影像導(dǎo)到電腦中,在Headwall SpectralView軟件完成試驗(yàn)區(qū)域原始高光譜數(shù)據(jù)立方體的輻射校正和幾何校正處理,得到預(yù)處理后的高光譜正射影像。高光譜正射影像在ENVI5.3軟件中進(jìn)行解譯。根據(jù)前期的地面調(diào)研,分別建立高光譜影像的健康植株冠層和HLB植株冠層樣本的感興趣區(qū)(region of interest,ROI)。感染HLB的柑橘植株在冠層上并不是都表現(xiàn)出HLB的癥狀,本研究中在ENVI5.3軟件中先提取前期調(diào)研中感染HLB程度嚴(yán)重的柑橘植株冠層的ROI光譜,考慮到感染HLB嚴(yán)重的植株冠層并不茂盛,而感染HLB較輕的植株冠層的染病范圍并不廣,因此對(duì)多個(gè)植株進(jìn)行嘗試后,選用了每個(gè)植株繪制10個(gè)ROI。對(duì)所選取的柑橘植株冠層隨機(jī)繪制10個(gè)ROI,每個(gè)ROI為5×5的像素矩陣,通過(guò)ENVI5.3解譯每個(gè)ROI的光譜曲線,并以此為參考提取感染HLB程度較為輕緩的植株的冠層ROI。把一個(gè)ROI當(dāng)做一個(gè)樣點(diǎn),通過(guò)ENVI5.3均化處理每個(gè)ROI的光譜值,把得到的每個(gè)ROI的平均光譜作為在該樣點(diǎn)的光譜,得到各樣點(diǎn)的光譜數(shù)據(jù)。
把提取的柑橘植株冠層高光譜數(shù)據(jù)通過(guò)式(1)進(jìn)行反射率轉(zhuǎn)換,得到柑橘植株冠層的相對(duì)光譜反射率。
式中DN1為柑橘植株冠層的輻射亮度值,DN2為定標(biāo)板輻射亮度值,1為柑橘植株冠層的相對(duì)光譜反射率,2為定標(biāo)板光譜反射率。
1.2.2 地面高光譜數(shù)據(jù)采集
地面高光譜數(shù)據(jù)與無(wú)人機(jī)高光譜數(shù)據(jù)進(jìn)行同步采集,采用ASD FieldSpec HandHeld 2(下文簡(jiǎn)稱HH2)手持式地物光譜儀(美國(guó)ASD公司生產(chǎn))對(duì)試驗(yàn)區(qū)域的柑橘植株冠層葉片進(jìn)行地面高光譜采集,并以此作為標(biāo)準(zhǔn)檢驗(yàn)無(wú)人機(jī)高光譜影像對(duì)應(yīng)地物光譜的質(zhì)量。低空與地面所使用的高光譜設(shè)備的主要參數(shù)如表1所示。
在HLB專家的指導(dǎo)下,對(duì)試驗(yàn)區(qū)域的健康植株采樣30株,對(duì)所有HLB植株進(jìn)行采樣,對(duì)采樣的健康植株冠層采集3個(gè)葉片,對(duì)采樣的HLB植株每棵分別采集3個(gè)癥狀明顯和3個(gè)癥狀不明顯的葉片,并摘取試驗(yàn)葉片進(jìn)行PCR檢測(cè),經(jīng)確診,本研究對(duì)健康植株和HLB植株的采樣無(wú)誤。
采集地面光譜數(shù)據(jù)時(shí),入射光線不應(yīng)受到遮擋,避免陰影遮蓋HH2探頭25°視場(chǎng)角采集范圍,HH2探頭與采集葉片的距離為葉片大小的2倍,每采集完一棵柑橘果樹(shù)的數(shù)據(jù),進(jìn)行一次標(biāo)準(zhǔn)白板矯正,標(biāo)準(zhǔn)白板對(duì)光譜范圍內(nèi)入射光的漫反射接近100%。
表1 2種高光譜儀器參數(shù)的比較
本文的研究思路如圖2所示,主要分為數(shù)據(jù)預(yù)處理、數(shù)據(jù)的特征提取和建模過(guò)程。
圖2 數(shù)據(jù)處理流程圖
1.3.1 異常數(shù)據(jù)剔除
對(duì)于感染HLB病害程度較輕緩的柑橘植株,其冠層生長(zhǎng)著健康和感染HLB的葉片,對(duì)感染HLB病害植株所提取的冠層ROI區(qū)域存在包含健康葉片的可能性;不同植株冠層葉片密集程度不同,個(gè)別植株冠層葉片較為稀疏,ROI所提取區(qū)域存在包含土壤的可能性;試驗(yàn)時(shí)期果實(shí)豐碩,ROI所提取區(qū)域存在包含果實(shí)的可能性;因此,對(duì)所提取的初始光譜數(shù)據(jù)進(jìn)行異常數(shù)據(jù)剔除對(duì)檢測(cè)模型可靠性至關(guān)重要。本研究中通過(guò)判定樣本光譜曲線到所有樣本平均光譜曲線的距離剔除異常樣本。
由于Nano高光譜相機(jī)在獲取數(shù)據(jù)時(shí)受到設(shè)備內(nèi)部和外部環(huán)境的影響,所獲取的高光譜圖像在以401、404、407 nm為中心波長(zhǎng)的波段的圖像出現(xiàn)DN值為0的現(xiàn)象,需要將這3個(gè)數(shù)據(jù)異常的光譜波段剔除。因此在本研究中不僅剔除異常光譜樣本,也需要剔除異常的光譜波段。
1.3.2 數(shù)據(jù)平滑與變換
高光譜成像儀在外界因素和設(shè)備內(nèi)部的影響下,易出現(xiàn)“失真”的現(xiàn)象。因此,對(duì)初始數(shù)據(jù)進(jìn)行去噪和平滑,有利于獲取接近真實(shí)狀態(tài)的光譜信息。Savitzky- Golay濾波器(簡(jiǎn)稱SG平滑)是一種基于多項(xiàng)式、移動(dòng)窗口和最小二乘法擬合的平滑算子,能夠很好地保存原始光譜中的信息,在光譜分析中被廣泛應(yīng)用。
原始光譜通過(guò)光譜變換可以增強(qiáng)數(shù)據(jù)特征,消減干擾,從而更有利于數(shù)據(jù)的分析。一階微分光譜(first-order derivative reflectance spectra,F(xiàn)DR)可去除光譜信息中部分線性背景和噪聲等對(duì)地物目標(biāo)光譜的影響;反對(duì)數(shù)光譜(inverse logarithmic reflectance spectra,ILR)可以有效放大相似光譜之間的差異。
1.3.3 數(shù)據(jù)降維
高光譜的波段之間有著很高的相關(guān)性,對(duì)高光譜數(shù)據(jù)進(jìn)行降維可有效減少數(shù)據(jù)的冗余度;主成分分析法(principal component analysis,PCA)是常用的數(shù)據(jù)降維方法,能夠去除波段間信息的冗余,在保留較多原始數(shù)據(jù)特征的前提下,減少數(shù)據(jù)使用的維度。
1.3.4 數(shù)據(jù)集處理
本研究將光譜變換后的原始光譜、FDR和ILR分別作為樣本變量,構(gòu)建判別模型。建立判別模型之前,首先對(duì)479個(gè)樣本按3∶1的比例劃分為訓(xùn)練集和測(cè)試集,訓(xùn)練集數(shù)據(jù)用于判別模型的構(gòu)建。在模型使用訓(xùn)練集訓(xùn)練階段,內(nèi)部采用K-折疊交叉驗(yàn)證(K-folds cross validation),根據(jù)本研究中的訓(xùn)練集有360個(gè)光譜樣本,對(duì)的取值為5;最后用測(cè)試集數(shù)據(jù)對(duì)判別模型進(jìn)行預(yù)測(cè)。因此,本試驗(yàn)?zāi)P偷尿?yàn)證包含訓(xùn)練集數(shù)據(jù)的分類精度以及測(cè)試集數(shù)據(jù)的預(yù)測(cè)誤判率兩個(gè)指標(biāo)。
本研究使用經(jīng)典機(jī)器學(xué)習(xí)分類方法中的k近鄰(k-Nearest Neighbor,kNN)與支持向量機(jī)(support vector machine,SVM),分別建立HLB分類與檢測(cè)模型,并進(jìn)行比較分析。
kNN通過(guò)計(jì)算維空間中一個(gè)點(diǎn)與其他點(diǎn)的距離或相似度來(lái)判斷該點(diǎn)與其他點(diǎn)的差異來(lái)選擇類域,且訓(xùn)練簡(jiǎn)單、高效。本研究中使用歐式距離(Euclidean Distance)和余弦相似度(Cosine Similarity)作為判別基準(zhǔn)建立kNN判別模型。
SVM是機(jī)器學(xué)習(xí)中用來(lái)解決二分類問(wèn)題的監(jiān)督學(xué)習(xí)算法,對(duì)于高維、非線性的數(shù)據(jù)問(wèn)題有著良好分類能力。引入核函數(shù)能夠避免高維變換帶來(lái)的計(jì)算復(fù)雜性,本研究中分別采用線性核函數(shù)(Linear kernel function)、徑向基核函數(shù)(RBF kernel function)和多項(xiàng)式核函數(shù)(Polynomial kernel function)作為核函數(shù)進(jìn)行對(duì)比。
ASD系列光譜儀在農(nóng)業(yè)遙感中被廣泛使用,其光譜信息于作物長(zhǎng)勢(shì)和病蟲(chóng)害監(jiān)測(cè)有著諸多研究[32-34]。在本研究中,將HH2采集的健康和癥狀明顯的葉片高光譜數(shù)據(jù)作為參考,用來(lái)驗(yàn)證Nano獲取的光譜反射率曲線規(guī)律與HH2是否一致。
將低空Nano高光譜數(shù)據(jù)與地面HH2高光譜數(shù)據(jù)進(jìn)行SG平滑,通過(guò)選用不同的窗口寬度和多項(xiàng)式的階數(shù)進(jìn)行對(duì)比,得到窗口寬度為11和多項(xiàng)式階數(shù)為3是較佳的平滑參數(shù),采用該平滑參數(shù)得到的效果如圖3a所示,較好地保留了原始光譜的主要信息,將圖3a光譜曲線在740~1000 nm的平滑效果進(jìn)行局部放大,該部分的平滑效果如圖3b所示。本研究將SG平滑后的光譜作為建模使用的原始光譜(下文中的提到的原始光譜皆為SG平滑后的光譜反射率)。
圖3 平均光譜數(shù)據(jù)SG平滑前后對(duì)比
圖4為健康和感染HLB病害植株冠層在地面遙感和低空遙感方式下的平均光譜反射率。由圖4中可見(jiàn),雖然在可見(jiàn)光波段HH2的光譜反射率高于Nano光譜反射率,在近紅外波段HH2的光譜反射率則低于Nano的光譜反射率,此現(xiàn)象可能由HH2和Nano的數(shù)據(jù)采集方式不同和采集高度不同造成。但對(duì)于整體而言,Nano光譜反射率曲線與HH2的變化趨勢(shì)是相對(duì)應(yīng)的。
圖4 Nano與HH2獲取柑橘樹(shù)冠層反射率曲線
對(duì)于健康柑橘植株的光譜曲線應(yīng)滿足健康作物的一般規(guī)律,即在藍(lán)光和紅光波段附近反射率較低,綠光波段有一處反射峰,紅邊的光譜反射率出現(xiàn)較陡波峰。因此圖4中位于原始光譜波長(zhǎng)560 nm存在較為明顯的“綠峰”和在760 nm波長(zhǎng)附近存在明顯的反射峰。HLB病害植株在可見(jiàn)光波段的光譜反射率高于正常作物,“綠峰”附近表現(xiàn)最為明顯;而在近紅外波段,HLB病害植株要比健康植株的光譜反射率低。造成這個(gè)區(qū)別的主要原因?yàn)镠LB病害植株內(nèi)部生理結(jié)構(gòu)發(fā)生變化,葉綠素含量減少,光合作用和養(yǎng)分水分吸收衰退等造成外部的斑駁、黃化等現(xiàn)象[35-36]。圖4中光譜曲線變化趨勢(shì)與文獻(xiàn)[37-39]中呈現(xiàn)的規(guī)律一致。
將原始光譜進(jìn)行一階微分變換,得到FDR,F(xiàn)DR對(duì)地物目標(biāo)的特征光譜更加明顯。由圖5a中可以看到,在藍(lán)波段、紅波段與近紅外波段的FDR的重疊率較高,在綠波段和紅邊波段呈現(xiàn)出明顯的區(qū)別。在綠波段,感染HLB病害的植株冠層FDR峰值高于健康果樹(shù),兩者都在530 nm附近達(dá)到峰值。在紅邊波段,感染HLB病害植株冠層FDR波峰前移,峰值低于健康植株。
將原始光譜進(jìn)行反對(duì)數(shù)變換,得到ILR,相較于原始光譜曲線,ILR曲線對(duì)于感染HLB植株與健康植株的光譜曲線區(qū)分度更大。由圖5b可見(jiàn),在可見(jiàn)光波段,HLB植株ILR高于健康植株,在近紅外波段,HLB植株ILR低于健康植株。
本研究中的模型以波段反射率或PCA主成分為變量。高光譜波段較多,通過(guò)PCA減少模型的所用的變量數(shù),可提高分類速度。將原始光譜、FDR和ILR這3類光譜數(shù)據(jù)分別進(jìn)行PCA降維得到3類光譜數(shù)據(jù)的主成分變量。
圖5 一階微分光譜與反對(duì)數(shù)光譜
取每類光譜PCA的前3個(gè)主成分,每類光譜前3個(gè)主成分分別包含原數(shù)據(jù)信息量如表2所示。原始光譜、FDR和ILR經(jīng)PCA降維后,前3個(gè)主成分共包含原數(shù)據(jù)的信息量,分別為99.5%、82.4%和97.6%。
分別采用kNN模型和SVM模型對(duì)各類全波段光譜和主成分變量進(jìn)行分別建模。建模過(guò)程中所用到每類光譜數(shù)據(jù)的訓(xùn)練集樣本含感染HLB和健康樣本各180個(gè),測(cè)試集樣本有119個(gè),含HLB樣本60個(gè),健康樣本59個(gè)。各類全波段光譜和主成分變量在各判別模型訓(xùn)練和測(cè)試效果如表3所示。
表2 3種光譜PCA前3個(gè)主成分包含信息量
表3 全波段光譜不同處理下分類模型的分類結(jié)果
注:模型訓(xùn)練數(shù)據(jù)量為360個(gè),預(yù)測(cè)樣本量為119個(gè);為kNN模型的值,為SVM模型的懲罰系數(shù),是徑向基核函數(shù)的核參數(shù)。分類準(zhǔn)確率是針對(duì)訓(xùn)練集的結(jié)果,誤判率是針對(duì)測(cè)試集的結(jié)果。
Note:360 samples are used to train the model and 119 samples used to predict the model;is the k-value of the kNN model,is the penalty coefficient of the SVM model, andis the kernel parameter of the radial basis kernel function; Classification accuracy is for the training set while the misjudgment rate is for the predicted set.
2.2.1 k近鄰判別模型及其效果(kNN)
本研究把樣本數(shù)據(jù)在分別在以歐氏距離和余弦相似度為判別基準(zhǔn)的kNN模型中進(jìn)行建模和測(cè)試,對(duì)取不同的值進(jìn)行對(duì)比分析,選取分類準(zhǔn)確率較高的模型的值為參數(shù)。
kNN模型對(duì)各類變量的分類準(zhǔn)確率由表3可見(jiàn),以全波段光譜或是以主成分變量訓(xùn)練的模型,歐式距離或余弦相似度為基準(zhǔn)的kNN模型對(duì)同種光譜的分類準(zhǔn)確率差異并不大。對(duì)模型輸入測(cè)試集數(shù)據(jù)進(jìn)行驗(yàn)證,各模型對(duì)輸入的測(cè)試變量存在誤判,kNN模型對(duì)原始光譜和ILR測(cè)試變量的誤判率較高,誤判率達(dá)8.40%。
2.2.2 支持向量機(jī)判別模型及其效果(SVM)
除了確定模型的懲罰系數(shù)外,還需要確定輸入變量和核函數(shù)。本研究中SVM模型參數(shù)的具體數(shù)值如表3所示,通過(guò)設(shè)置不同的和訓(xùn)練模型來(lái)調(diào)試各模型的較優(yōu)參數(shù),對(duì)比模型訓(xùn)練的準(zhǔn)確率,選取分類準(zhǔn)確率較高的模型的參數(shù)。由于多項(xiàng)式核函數(shù)的系數(shù)過(guò)高會(huì)給模型的求解帶來(lái)一些計(jì)算的困難,對(duì)于值<1的樣本容易造成趨近于0,對(duì)于值>1的樣本容易造成數(shù)值過(guò)大不穩(wěn)定,在調(diào)試過(guò)程中多項(xiàng)式系數(shù)分別代入2和3進(jìn)行建模,參數(shù)和都為默認(rèn)值,其中默認(rèn)為“auto”,默認(rèn)為0。
光譜數(shù)據(jù)在不同核函數(shù)的SVM判別模型中的分類效果由表3可見(jiàn),在SVM模型中,以二次核SVM模型對(duì)3種全波段光譜類型的分類準(zhǔn)確率較為穩(wěn)定,準(zhǔn)確率可以保持在92%以上,其中,對(duì)全波段FDR的分類準(zhǔn)確率可達(dá)94.7%。用測(cè)試集數(shù)據(jù)在SVM模型中測(cè)試,以線性函數(shù)為核的SVM對(duì)原始光譜的誤判率為1.68%,其余情況的誤判率在3%~7%。
由表3中準(zhǔn)確率可以看到,相同類型的判別模型,則對(duì)FDR的分類準(zhǔn)確率保持較為穩(wěn)定。對(duì)于FDR光譜數(shù)據(jù),其全波段光譜或主成分變量光譜在各模型中分類準(zhǔn)確率要優(yōu)于另外2種光譜數(shù)據(jù)的全波段或主成分變量,全波段ILR的分類效果稍優(yōu)于原始光譜。說(shuō)明原始光譜經(jīng)過(guò)變換后可以放大光譜的特征,有助于判別模型提升判別能力。
所有模型對(duì)PCA后測(cè)試集的單個(gè)樣本所需要的預(yù)測(cè)時(shí)間都有所減少。各模型對(duì)原始光譜主成分和FDR主成分的測(cè)試集預(yù)測(cè)的誤判率都有所增加,對(duì)ILR主成分變量測(cè)試集的誤判率下降。對(duì)同類型全波段變量降維前后相比,SVM判別模型對(duì)PCA主成分變量的分類準(zhǔn)確率下降,而kNN模型的分類準(zhǔn)確率則略有上升。
由表3所示,對(duì)于相同類型的變量,以二次核SVM判別模型的分類準(zhǔn)確率較高;對(duì)于同種全波段光譜數(shù)據(jù),SVM模型分類的準(zhǔn)確率總體效果要優(yōu)于kNN模型,而對(duì)于PCA后的主成分變量,kNN模型的分類效果和SVM的分類效果無(wú)明顯差異。
PCA降維可有效提高模型的判別速度,對(duì)模型的判別準(zhǔn)確率存在一定影響,對(duì)模型有一定的優(yōu)化效果。與同類型全波段光譜相比,SVM對(duì)PCA主成分的分類準(zhǔn)確率下降,kNN模型對(duì)PCA主成分的分類準(zhǔn)確率提高。PCA后數(shù)據(jù)的信息量減少,SVM模型對(duì)高維數(shù)據(jù)有著較強(qiáng)的處理能力,因此對(duì)于信息完整的全波段光譜變量,SVM的分類效果要優(yōu)于信息量不完整主成分變量。另一方面,全波段光譜在高維空間中的分布和距離,對(duì)kNN模型判斷樣本之間的距離或者相似度造成大量的計(jì)算量且不好判斷其類域,通過(guò)PCA降維后的樣本維數(shù)只有3個(gè),kNN能夠較好判別樣本的類域,因此在kNN對(duì)于PCA主成分變量的分類準(zhǔn)確較全波段光譜變量有所提高。
由Nano微型機(jī)載高光譜成像儀獲取的數(shù)據(jù)如圖6的高光譜圖像條帶所示。該高光譜影像由第32、68、108(中心波段分別為470.7、550.7、639.5)這3個(gè)波段組成的可見(jiàn)光影像。在圖6中,用圓圈圈出的植株是用于創(chuàng)建ROI計(jì)算光譜反射率并應(yīng)用于建立判別模型的植株,黃色圈內(nèi)的植株為HLB病害植株,紅色圈內(nèi)的植株為健康植株。把全波段的FDR在以二次核SVM判別模型的分類結(jié)果在圖6中加以展現(xiàn)。由圖6可見(jiàn),F(xiàn)DR在該模型下,對(duì)健康植株的判別準(zhǔn)確率達(dá)到100%,出現(xiàn)誤判的植株均為HLB植株,而造成該結(jié)果的影響很大可能來(lái)自于HLB在果樹(shù)冠層的分布不均勻所導(dǎo)致。
圖6 全波段FDR在二次核SVM模型中的分類效果
1)合適的光譜變換可有效提高對(duì)HLB植株的判別準(zhǔn)確率。將全波段光譜變量和PCA后主成分變量分別在kNN和SVM分類器中訓(xùn)練判別模型并進(jìn)行對(duì)比,全波段的原始光譜經(jīng)過(guò)一階微分變換和反對(duì)數(shù)變換后得到的FDR和ILR可提高判別模型的分類精度。
2)對(duì)于全波段FDR或者是FDR主成分,以該變量所建立的判別模型的分類準(zhǔn)確率較其余2種高??罩懈吖庾V圖像受到來(lái)自設(shè)備、地面、大氣等多方面的干擾,而FDR能夠較好的消除這些干擾,提高數(shù)據(jù)的可區(qū)分性。
3)在本研究中二次核SVM對(duì)全波段FDR的分類準(zhǔn)確率較優(yōu),但是全波段光譜數(shù)據(jù)量大,處理效率底,對(duì)于未來(lái)的推廣和應(yīng)用造成問(wèn)題。
4)需要優(yōu)化對(duì)數(shù)據(jù)提取的方法。本研究中對(duì)ROI的選取存在隨機(jī)性,對(duì)感染HLB病害程度低的HLB植株存在提取到健康葉片冠層光譜的可能性。全波段光譜變量的二次核SVM判別模型中,對(duì)健康植株的判別準(zhǔn)確率達(dá)到100%,出現(xiàn)誤判的植株均為HLB植株,而造成該結(jié)果的影響很大可能來(lái)自于HLB在果樹(shù)冠層的分布不均勻所導(dǎo)致。
5)Nano與HH2獲取的高光譜數(shù)據(jù)在趨勢(shì)上相近,但光譜反射率有著較大的區(qū)別。主要原因可能為Nano高光譜成像儀獲取數(shù)據(jù)的方式是搭載在無(wú)人機(jī)上采集,而HH2是人手持在地面對(duì)植株冠層的葉片采集,兩者的區(qū)別來(lái)源于傳感器的差異和光照條件的不一樣。
6)模型方面缺乏優(yōu)化。研究中二次核核函數(shù)對(duì)樣本的判別效果達(dá)到94.7%,但對(duì)多項(xiàng)式SVM模型的參數(shù)缺乏優(yōu)化,因此,該模型的準(zhǔn)確率可進(jìn)一步提高。
7)本次研究區(qū)域的柑橘植株不是同時(shí)期種植,長(zhǎng)勢(shì)略有差異,樹(shù)上結(jié)果程度不同,在作物光譜上可能存在差異,對(duì)最后的分類效果的存在影響。
本文基于低空高光譜遙感對(duì)柑橘果園進(jìn)行監(jiān)測(cè),以無(wú)人機(jī)搭載高光譜相機(jī)采集果園高光譜影像,建立判別模型對(duì)果園HLB病株進(jìn)行鑒別。通過(guò)本研究的試驗(yàn)與分析,對(duì)經(jīng)過(guò)輻射校正、幾何校正后的高光譜影像感興趣區(qū)域提取和反射率換算,分別得到健康植株和HLB病害植株的冠層反射率光譜,將初始反射率光譜經(jīng)過(guò)異常數(shù)據(jù)剔除后,用窗口寬度為11和階數(shù)為的Savitzky-Golay平滑算法對(duì)反射率光譜進(jìn)行平滑,把平滑后的原始光譜進(jìn)行一階微分變換和反對(duì)數(shù)變換得到一階微分光譜和反對(duì)數(shù)光譜,把原始光譜、一階微分光譜和反對(duì)數(shù)光譜進(jìn)行PCA降維,取各類光譜前3個(gè)主成分變量與全波段光譜變量作為用于建模的變量并進(jìn)行比較。結(jié)合kNN模型和SVM模型對(duì)果園HLB植株進(jìn)行判別,其中二次核SVM模型在本研究中對(duì)360個(gè)訓(xùn)練樣本的分類準(zhǔn)確率達(dá)到94.7%,對(duì)119個(gè)測(cè)試樣本的誤判率為3.36%??梢钥闯觯瑹o(wú)人機(jī)低空高光譜遙感對(duì)柑橘HLB的大面積監(jiān)測(cè)是可行的,該方式可有效提高管理和生產(chǎn)效率,降低果園種植的工作量和勞動(dòng)力,降低果園在生產(chǎn)過(guò)程的損失,可為果園智能化種植提供幫助。
[1] Bové J M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. [J]. Journal of Plant Pathology, 2006, 88(1): 7-37.
[2] 柏自琴,周常勇. 柑橘黃龍病病原分化及發(fā)生規(guī)律研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2012,28(1):133-137. Bai Ziqin, Zhou Changyong. The research progress of citrus Huanglongbing on pathogen diversity and epidemiology[J]. Chinese Agricultural Science Bulletin, 2012, 28(1): 133-137. (in Chinese with English abstract)
[3] Rosales R, Burns J K. Phytohormone changes and carbohydrate status in sweet orange fruit from Huanglongbing- infected trees[J]. Journal of Plant Growth Regulation, 2011, 30(3): 312-321.
[4] Shokrollah H, Abdullah T L, Sijam K, et al. Identification of physical and biochemical characteristic of mandarin () fruit infected by Huanglongbing (HLB)[J]. Australian Journal of Crop Science, 2011, 5(2): 181-186.
[5] 袁亦文,戈麗清,王德善,等. 柑橘黃龍病對(duì)柑橘產(chǎn)量和品質(zhì)的影響[J]. 浙江農(nóng)業(yè)科學(xué),2007(1):87-88.
[6] 鹿連明,范國(guó)成,胡秀榮,等. 田間柑橘植株不同部位黃龍病菌的PCR檢測(cè)及發(fā)病原因分析[J]. 植物保護(hù),2011,37(2):45-49. Lu Lianming, Fan Guocheng, Hu Xiurong, et al. PCR detection of Huanglongbing pathogen in different parts of citrus plants in the field and analysis of the cause of the disease[J]. Plant Protection, 2011, 37(2): 45-49. (in Chinese with English abstract)
[7] Deng Xiaoling, Gao Yidi, Chen Jianchi, et al. Curent situation of "candidatus liberibacter asiaticus" in Guangdong, China, where citrus Huanglongbing was first described[J]. Journal of Integrative Agriculture, 2012, 11(3): 424-429.
[8] 鄒敏,宋震,唐科志,等. 柑橘黃龍病病原DNA微量提取方法比較[J]. 植物檢疫,2005,19(5):271-274. Zou Min, Song Zhen, Tang Kezhi, et al. Comparing of micro extraction methods of DNA from citrus Huanglongbing pathogen[J]. Phytosanitary Diseases, 2005, 19(5): 271-274. (in Chinese with English abstract)
[9] 羅志達(dá),葉自行,許建楷,等. 柑桔黃龍病的田間診斷方法[J]. 廣東農(nóng)業(yè)科學(xué),2009(3):91-93.
[10] 王愛(ài)民,鄧曉玲. 柑桔黃龍病診斷技術(shù)研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué),2008(6):101-103.
[11] 王春梅. 湖南柑橘黃龍病檢測(cè)及DNA片段克隆[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2006. Wang Chunmei. Detection of Citrus Huanglongbing Pathogen in Hunan Province and Cloning[D]. Changsha: Hunan Agricultural University, 2006. (in Chinese with English abstract)
[12] Planet P, Jagoueix S, Bové J M, et al. Detection and characterization of the African citrus greening Liberobacter by amplification, cloning, and sequencing of the rpl KAJL- rpo BC operon[J]. Current Microbiology, 1995, 30(3): 137-141.
[13] 李德望,唐偉文,范懷忠. 柑桔黃龍病的血清學(xué)檢測(cè)與診斷方法的初步研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),1992,13(2):16-22. Li Dewang, Tang Weiwen, Fan Huaizhong. Preliminary studies on the methods of rapid serological detection and diagnosis of the BLO associated with citrus shoot-yellowing[J]. Journal of South China Agricultural University, 1992, 13(2): 16-22. (in Chinese with English abstract)
[14] 孫旭東,劉燕德,肖懷春,等. 正常、缺素和黃龍病柑桔葉片高光譜成像快速診斷[J]. 光譜學(xué)與光譜分析,2017,37(2):551-556. Sun Xudong, Liu Yande, Xiao Huaichun, et al. Rapid diagnosis of sound, yellow and citrus greening leaves with hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 551-556. (in Chinese with English abstract)
[15] Pereira F M V, Pereira-Filho E R, Venancio A L, et al. Laser-induced fluorescence imaging method to monitor citrus greening disease[J]. Computers & Electronics in Agriculture, 2011, 79(1): 90-93.
[16] Pérez M R, Mendoza M G, Elías M G, et al. Raman spectroscopy an option for the early detection of citrus Huanglongbing [J]. Applied Spectroscopy, 2016, 70(5): 829-839.
[17] Sankaran S, Ehsani R. Visible-near infrared spectroscopy based citrus greening detection: Evaluation of spectral feature extraction techniques[J]. Crop Protection, 2011, 30(11): 1508-1513.
[18] 劉燕德,肖懷春,孫旭東,等. 基于高光譜成像的柑橘黃龍病無(wú)損檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):231-238. Liu Yande, Xiao Huaichun, Sun Xudong, et al. Non- destructive detection of citrus huanglong disease using hyperspectral image technique[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 231-238. (in Chinese with English abstract)
[19] Deng Xiaoling, Kong Chen, Wu Weibin, et al. Detection of citrus Huanglongbing based on principal component analysis and back propagation neural network[J]. Acta Photonica Sinica, 2014, 43(4): 10-16
[20] Deng Xiaoling, Li Zhen, Deng Xiaoling, et al. Citrus disease recognition based on weighted scalable vocabulary tree[J]. Precision Agriculture, 2014, 15(3): 321-330.
[21] Deng Xiaoling, Lan Yubin, Hong Tiansheng, et al. Citrus greening detection using visible spectrum imaging and C-SVC[J]. Computers & Electronics in Agriculture, 2016, 130: 177-183.
[22] 梅慧蘭,鄧小玲,洪添勝,等. 柑橘黃龍病高光譜早期鑒別及病情分級(jí)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):140-147. Mei Huilan, Deng Xiaoling, Hong Tiansheng, et al. Early detection and grading of citrus Huanglongbing using hyperspectral imaging technique[J]. Transactions of the ChineseSociety of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 140-147. (in Chinese with English abstract)
[23] Huang Y B, Thomson S J, Hoffmann W C, et al. Development and prospect of unmanned aerial vehicle technologies for agricultural production management[J]. International Journal of Agricultural & Biological Engineering, 2013, 6(3): 1-10.
[24] 金偉,葛宏立,杜華強(qiáng),等. 無(wú)人機(jī)遙感發(fā)展與應(yīng)用概況[J]. 遙感信息,2009(1):88-92. Jin Wei, Ge Hongli, Du Huaqiang, et al. A review on unmanned aerial vehicle remote sensing and its application[J]. Remote Sensing Information, 2009(1): 88-92. (in Chinese with English abstract)
[25] 王柯,付怡然,彭向陽(yáng),等. 無(wú)人機(jī)低空遙感技術(shù)進(jìn)展及典型行業(yè)應(yīng)用綜述[J]. 測(cè)繪通報(bào),2017(增刊1):79-83. Wang Ke, Fu Yiran, Peng Xiangyang, et al. Overview of UAV low altitude remote sensing technology and application in typical industries [J]. Surveying and Mapping Bulletin, 2017 (Supp.1): 79-83. (in Chinese with English abstract)
[26] 陳仲新,任建強(qiáng),唐華俊,等. 農(nóng)業(yè)遙感研究應(yīng)用進(jìn)展與展望[J]. 遙感學(xué)報(bào),2016,20(5):748-767. Chen Zhongxin, Ren Jianqiang, Tang Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China [J]. Journal of Remote Sensing, 2016, 20 (5): 748-767. (in Chinese with English abstract)
[27] Zhang M, Qin Z, Liu X, et al. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing[J]. International Journal of Applied Earth Observations & Geoinformation, 2003, 4(4): 295-310.
[28] 高林,楊貴軍,于海洋,等. 基于無(wú)人機(jī)高光譜遙感的冬小麥葉面積指數(shù)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):113-120. Gao Lin, Yang Guijun, Yu Haiyang, et al. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 113-120. (in Chinese with English abstract)
[29] 于豐華. 基于無(wú)人機(jī)高光譜遙感的東北粳稻生長(zhǎng)信息反演建模研究[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2017. Yu Fenghua. Retrieval Nutrient Information of Japonica Rice Based on Unmanned Aerial Vehicle Hyperspectral Remote Sensing [D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract)
[30] 秦占飛,常慶瑞,謝寶妮,等. 基于無(wú)人機(jī)高光譜影像的引黃灌區(qū)水稻葉片全氮含量估測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):77-85. Qin Zhanfei, Chang Qingrui, Xie Baoni, et al. Rice leaf nitrogen content estimation based on hyperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (23): 77-85. (in Chinese with English abstract)
[31] Yue J, Yang G, Li C, et al. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models[J]. Remote Sensing, 2017, 9(7): 708.
[32] Lukas V, Novák J, Neudert L, et al. The combination of UAV survey and Landsat imagery for monitoring of crop vigor in precision agriculture[C]// ISPRS - XXIII ISPRS Congress, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic: International Archives of the Photogrammetry, 2016: 953-957.
[33] Makinde-Omodanisi E O. Spectral indices for detecting change trend in vegetation affected by hydrocarbon spillage, 2015[C]// 2015 5th International Conference on Environment Science and Engineering, Turkey: International Proceedings of Chemical, Biological and Environmental Engineering , 2015, 83(16): 97-102.
[34] 毛博慧,孫紅,劉豪杰,等. 基于正交變換與SPXY樣本劃分的冬小麥葉綠素診斷[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(增刊1):160-165.
Mao Bohui, Sun Hong, Liu Haojie, et al. Prediction of winter wheat chlorophyll content based on gram-schmidt and SPXY algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(Supp.1): 160-165. (in Chinese with English abstract)
[35] 閆峰,李茂松,王艷姣,等. 遙感技術(shù)在農(nóng)業(yè)災(zāi)害監(jiān)測(cè)中的應(yīng)用[J]. 自然災(zāi)害學(xué)報(bào),2006,15(6):131-136. Yan Feng, Li Maosong, Wang Yanjiao, et al. Application of remote sensing technique to monitor agricultural disasters[J]. Journal of Natural Disasters, 2006, 15(6): 131-136. (in Chinese with English abstract)
[36] 李修華,李民贊,Won Suk Lee,等. 柑桔黃龍病的可見(jiàn)-近紅外光譜特征[J].光譜學(xué)與光譜分析,2014,34(6):1553-1559. Li Xiuhua, Li Minzan, Won Suk Lee, et al. Visible-NIR spectral feature of citrus greening disease[J]. Spectroscopy and Spectral Analysis, 2014, 34(6) :1553-1559. (in Chinese with English abstract)
[37] Li X, Lee W S, Li M, et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J]. Computers & Electronics in Agriculture, 2012, 79(1): 32-46.
[38] Li H, Lee W S, Wang K, et al. 'Extended spectral angle mapping (ESAM)' for citrus greening disease detection using airborne hyperspectral imaging[J]. Precision Agriculture, 2014, 15(2): 162-183.
[39] 馬淏,吉海彥. 基于Vis-NIR光譜的柑橘葉片黃龍病檢測(cè)及其光譜特性研究[J]. 光譜學(xué)與光譜分析,2014,34(10):2713-2718. Ma Yao, Ji Haiyan. Detection of citrus greening based on Vis-NIR spectroscopy and spectral feature analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2713-2718. (in Chinese with English abstract)
Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing
Lan Yubin1,3, Zhu Zihao1,3, Deng Xiaoling2,3,4※, Lian Bizhen2,3, Huang Jingyi1,3, Huang Zixiao1,3, Hu Jie2,3
(1.510642,; 2.510642,; 3.510642,; 4.510642,)
Citrus Huanglongbing (HLB) is an extremely destructive disease without cured medicine. Finding citrus trees suffering from HLB as soon as possible and eradicating the infected tree timely is an effective measure to prevent citrus from HLB. For large-scale citrus orchards, monitoring HLB is a heavy workload that requires a lot of time and effort.- Using remote sensing by unmanned aerial vehicle (UAV) to monitor the citrus orchards is a feasible measure which could reduce a lot of work and cost. In this study, a hyperspectral image of citrus in orchard was obtained by a UAV equipped with hyperspectral camera, flying at a height of 60 m. 26 healthy trees and 26 trees infected HLB were selected from the hyperspectral image, which was radiational corrected and geometric corrected. 10 regions of interest (ROIs) were created (5×5 pixel size) on each selected citrus canopy and the mean reflectance spectra in every ROI was calculated. The abnormal spectra wereremoved by observing the mean reflectance spectra, and the remaining spectra were smoothed and denoised by Savitzky-Golay. The ground reflectance spectra captured by ASD FieldSpec HandHeld 2 Spectroradiometer was used as a reference to verify the effect of the spectra by hyperspectral camera in UAV and it was found that the reflectance spectra of hyperspectral camera had a same trend with the spectra from gound. The first-orderderivative reflectance spectra (FDR) and the inverse logarithmtic reflectance spectra (ILR) were obtained by spectral transformation. The dataset was divided into a training set and a test set by a ratio of 3:1, and the training set was used to train the discriminant model.In the training phase of the model, K-folds cross validation was used internally. Finally, the test data was used to predict in the discriminant model. The k-Nearest Neighbor (kNN) and support vector machine (SVM) model were adopted as classifiers respectively, and 3 kinds of spectra transformed from the full-band spectra and first 3 principal components after PCA were compared as input variables to establish the discriminant model. Different input variables in different classifiers, different kernels in SVM model and different distance calculating way in the kNN were compared. The parameters of different models were gradually tried, and the parameters with the highest training accuracy were selected for modeling. Some conclusions were gotten in the paper. First, the reflectance spectra acquired by remote sensing by UAV could be used to establish the discriminant model for trees injected HLB after a series of processing. Such as the SVM classification model with the quadratic kernel had a classification accuracy of 94.7% for full-band FDR and the predictive error rate for the test data was 3.36%. Second, spectral variable obtained by spectral transformation can improve the classification accuracy of the model. For example, the classification accuracy with FDR as the input variables was the highest in each model. Third, principal component analysis (PCA) dimensionality reduction on spectral variables can significantly improve the recognition speed. We could find that the error rate had decreased for model with ILR after PCA and increased for models with other spectra after PCA. Last but not least, in the SVM classification model with the quadratic kernel,the discriminative accuracy for healthy plants was 100%, and the plants with misjudged just were plants injected HLB, the impact of this result was likely to come from part with HLB in the canopy of fruit trees. In summary, hyperspectral remote sensing by UAV was used to monitor the cultivation of orchards in large areas. It was an effective management method to monitor citrus HLB by establishing a discriminant model.
remote sensing; unmanned aerial vehicle; hyperspectral; Huanglongbing; citrus; k-Nearest Neighbor; support vector machine
蘭玉彬,朱梓豪,鄧小玲,練碧楨,黃敬易,黃梓效,胡 潔. 基于無(wú)人機(jī)高光譜遙感的柑橘黃龍病植株的監(jiān)測(cè)與分類[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):92-100. doi:10.11975/j.issn.1002-6819.2019.03.012 http://www.tcsae.org
Lan Yubin, Zhu Zihao, Deng Xiaoling, Lian Bizhen, Huang Jingyi, Huang Zixiao, Hu Jie. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 92-100. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.012 http://www.tcsae.org
10.11975/j.issn.1002-6819.2019.03.012
TP79
A
1002-6819(2019)-03-0092-09
2018-09-19
2019-01-22
國(guó)家自然科學(xué)基金(61675003);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200700);廣東省教育廳平臺(tái)建設(shè)項(xiàng)目(2015KGJHZ007);廣東省領(lǐng)軍人才項(xiàng)目(2016LJ06G689);廣東省省級(jí)科技計(jì)劃項(xiàng)目(2017B010117010)
蘭玉彬,國(guó)家“千人計(jì)劃”特聘專家,教授,博士生導(dǎo)師,主要從事精準(zhǔn)農(nóng)業(yè)航空方向研究。Email:ylan@scau.edu.cn
鄧小玲,副教授,主要從事農(nóng)業(yè)航空遙感應(yīng)用研究。 Email:dengxl@scau.edu.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:蘭玉彬(E041200725S)