王亞珍,汪安明,趙 坤,宋 麗
?
基于薄壁圓環(huán)理論的機器人用柔性軸承變形特征快速求解
王亞珍1,汪安明1,趙 坤2,宋 麗2
(1. 上海大學機電工程與自動化學院,上海 201900;2. 寧波慈興軸承有限公司,寧波 315301)
諧波減速器內部柔性軸承是機器人關節(jié)的重要傳動部件,因在工作中會產生較大的預變形而與普通軸承不同,導致傳統(tǒng)軸承理論不適用,所以建立新的研究方法對其各項性能進行分析非常必要。該文通過建立柔性軸承的理論計算模型,求解計算柔性軸承工作時內部應力與變形特征,具體步驟包括:1)建立變形協調方程,并通過莫爾積分定理求解方程,得到變形過程中柔性軸承外圈的彎曲力矩;2)根據薄壁圓環(huán)理論,求得外圈的變形特征與內圈彎曲力矩;3)建立三彎矩方程,計算外載荷作用下柔性軸承外圈所承受的最大彎曲力矩。最后,建立柔性軸承有限元仿真模型對比驗證理論模型,兩者最大誤差為7%,其中理論求解時間為5~8 min,有限元計算需4~5 h,通過理論模型可以快速求得柔性軸承內部變性特征與受力情況。計算結果表明,對于CSF-25-80型柔性軸承,外圈厚度設計在1.3~1.6 mm,寬度設計在9 mm左右,都可以有效改善外圈的應力狀況。該研究可為對柔性軸承的設計和優(yōu)化提供理論參考。
機器人;軸承;模型;薄壁圓環(huán)理論;預變形
農業(yè)產業(yè)一直是中國經濟發(fā)展的重要支柱,隨著人口老齡化問題的日趨嚴重,勞動力資源嚴重不足,生產成本不斷增高,機械化作業(yè)將作為未來國內農業(yè)發(fā)展的重要方向,在降低勞動成本或提高產量等方面有著巨大優(yōu)勢[1-2]。雖然中國對農業(yè)機器人的研究已取得了較大的發(fā)展,但相對于國外來說,仍然存在較大差距。
諧波減速器內部柔性軸承是機器人[3]關節(jié)的重要傳動部件,其性能會嚴重影響到整個機構的精度。因此,對柔性軸承在工作中各項性能進行分析計算是非常重要 的[4-5]。雖然,目前通過有限元的仿真計算可以得到較為精準的計算模型,但是由于柔性軸承滾動體數目多(一般23個球),且每個滾動體與內外圈的接觸狀態(tài)各不相同,導致有限元計算中含有大量接觸對,計算時間長(一般高性能工作站計算時間大于4 h),且計算過程難以收斂、頻繁中斷,很難得到正確的計算結果。
在理論研究方面,普通軸承在工作中,一般是作為支撐件存在[6],傳統(tǒng)的軸承理論主要對其在徑向或軸向載荷的作用下,滾動體與內外圈之間的接觸載荷計算[7]。與普通軸承工作原理不同,柔性軸承作為傳動部件,預先裝配在一個橢圓形的波發(fā)生器凸輪上[8],軸承會發(fā)生較大的預變形。在傳統(tǒng)軸承的計算理論中并不包含對這一變形階段的分析,目前國內在此方面的研究較少。因此建立一個合理的柔性軸承理論計算模型,求出內外圈的變形特征與內部受力情況,是柔性軸承力學分析與負荷能力計算的前提。對于柔性軸承及整體減速器的設計,完善其系列化、標準化都具有重要意義。
柔性軸承被強制變形之后,內圈根據中性面不伸長原理,完全貼合在波發(fā)生器凸輪之上,而外圈則由于在多個離散滾動體支撐下,變形形狀比較復雜且與內圈不完全相同。因此,在進行柔性軸承的分析計算時,需要對內外圈分別進行單獨的分析[9]。本文提出了一種基于變形協調方程、莫爾積分定理、薄壁圓環(huán)理論與三彎矩方程對柔性軸承內外圈變形特征與彎曲應力進行理論求解的方法。最后建立了CSF-25-80型號柔性軸承的有限元模型,并將仿真計算結果與理論模型計算結果進行對比,驗證求解的準確性。
與普通軸承最大的不同之處在于柔性軸承工作前,被預先裝配在非圓形波發(fā)生器凸輪之上,產生強制性的變形,變形過程如圖1所示。
外圈在波發(fā)生器凸輪的作用下,長軸處形成的最大變形量為max。圖2給出了外圈中性層半徑與其橫截面尺寸:×(寬度與厚度),由于和都遠小于,因此可將外圈等效為一薄壁圓環(huán)進行求解。
注:δmax為軸承最大變形量,mm;[Q1, Q2,…, Qi]為第[1, 2, …, i]個滾動體的支撐反力,N;F為凸輪與軸承之間相互作用力,N。
典型波發(fā)生器凸輪所形成的徑向位移為[10]
由圖1可知,軸承受到波發(fā)生器凸輪作用變形后,其外圈是在多個離散滾動體產生的徑向力[1,2,…,Q]共同作用下發(fā)生變形,其受力狀態(tài)沿變形長軸對稱,因此只需對半圓環(huán)進行受力分析。將圖1外圈等效為薄壁圓環(huán)后可得圖2,外圈在[1,2,…,Q]作用下變形,由于其變形長軸與短軸所在截面和的轉角都是零,故可以將面作為固定端,解除面約束得到基準靜定基,以面相對于面的轉角等于0作為變形協調條件,對圓環(huán)進行分析。
注:是外圈寬度,mm;是外圈厚度,mm;是外圈半徑,mm;、是水平軸與垂直軸;M解除面約束后的彎矩,N·mm;P是解除面約束后的拉力,N;γ是Q與的夾角,rad;是積分角變量,rad。
Note:is outer ring width, mm;is outer ring thickness, mm;is outer ring radius, mm;andare horizontal axis and vertical axis;Mis bending moment after releasing constraint of, N·mm;Pis force after releasing constraint of, N;γis angle betweenQand, rad;is integral angle variable, rad.
圖2 外圈變形受力簡圖
Fig.2 Forces state of outer ring
由于對稱性可知面解除約束后會產生拉力與彎矩,以面轉角為零作為條件,建立變形協調方程[11]
將式(2)轉化為正則方程
因為面解除約束后變?yōu)樽杂啥耍瑢τ诨鶞熟o定基來說,支撐力 Q在QD段不再產生彎矩,QD彎矩由解除約束后的MP產生。則由Q引起的力矩為[12]
根據莫爾積分定理,可求出
式中為材料彈性模量,MPa;為截面慣性矩,mm4。
對于> 1,根據靜力平衡條件
代入式(3),得到基準靜定基在MP與Q共同作用下,其任意角度處的彎矩為
其中
即在單位力作用下圓環(huán)內的彎矩為
再次使用莫爾積分,得到在Q作用下圓環(huán)的變形量
則[1,2,…,Q]的共同作用下,外圈長軸最大撓度變形max的計算方程
根據軸承滾動體受力分布理論[13],結合典型波發(fā)生器凸輪所形成的徑向位移,各軸承力之間的關系為
式中= 3/2(對于球軸承)。
聯立方程求解,可得到支撐力Q的大小,再帶入式(9)中就可以解得任意處的彎矩
2.1.1 徑向位移計算
根據薄壁圓環(huán)理論[14],圓環(huán)徑向位移/mm通過式(18)求解
為了便于微分方程的求解,將第一節(jié)求得的彎矩方程進行修改,設
結合式(9)、(10)、(11),圓環(huán)彎矩方程的簡化 如下
將式(22)代入式(18),解得
根據對稱性得到2個邊界條件與2個連續(xù)性條件:1)= 0時,d/d= 0;2)= π/2時,d/d= 0;3)=時,(d1/d) = (d2/d);4)=時,12。式中1、2、3、4為待定解,由上面4個邊界條件求得,由于表達式過于繁瑣,這里不予給出。
2.1.2 周向位移計算
根據薄壁圓環(huán)理論,周向位移/mm與徑向位移的關系由式d/d=-確定[15],將1、2代入可得周向位移方程
根據柔性軸承設計中的中性面不伸長原理,軸承內圈變形后,應與波發(fā)生器凸輪完全貼合,即徑向位移為
將式(27)代入式(18),得到內圈在變形作用下產生的內部彎矩(R為內圈半徑)
在諧波減速器中,柔性軸承受到減速器內部柔輪與剛輪之間嚙合反力的作用,承受較大的外部載荷[16]。剛輪與柔輪之間的嚙合力與輪齒的嚙合區(qū)域、傳遞的扭矩有關,其受載如圖3所示。
注;qr是徑向均布載荷,MPa;qφ是周向均布載荷,MPa;φ1是載荷偏角,rad;φ2是載荷左分布角,rad;φ3是載荷右分布角,rad。
根據Ivanov的試驗所測,減速器內柔輪所承受的載荷分布為[17]。
式中表示諧波減速器輸入扭矩,N·mm,d、b分別表示及其內部柔輪的節(jié)圓直徑與寬度,mm,為柔輪輪齒壓力角,rad。
柔輪將載荷傳遞至柔性軸承[18-19],不考慮偏載的影響,即1= 0,切向力q帶動軸承轉動,徑向力q引起柔性軸承產生附加的彎曲力矩與應力。載荷的分布角為
與內圈不同,柔性軸承受載時,其外圈支承在多個離散的滾動體上,可以簡化為材料力學里的多跨度梁結構。連續(xù)梁的三彎矩方程可用于求解這種多跨梁[20]。將每個支撐點的約束分解成一對力矩,它們大小相等且方向相反。如圖4所示,取任意相鄰的3個支撐點的彎曲力矩M-1、M、M+1可建立方程。
式中l、l+1為相鄰支撐點之間的跨距,ω、ω+1是跨距內載荷q()、q+1()單獨作用下的彎矩圖面積,a、b+1表示彎矩圖的形心到左右兩端的距離。
對每個支點建立三彎矩方程,聯立求解,可得到外部載荷作用時,各支撐點處所產生的額外彎矩。
注:Mn是支撐點彎矩,N·mm;ln是相鄰支撐點之間的跨距,mm;qn(θ)是跨距內載荷,MPa;ωn是跨距內彎矩圖面積,mm2;an是跨距內彎矩圖形心與左端的距離,mm;bn+1是跨距內彎矩圖形心與右左端的距離,mm。
本文以CSF-25-80型號柔性軸承為例,將理論模型編制為MATLAB程序進行計算,計算流程如圖5所示,計算時間約為5~8 min。同時,建立了基于ANSYS Workbench的柔性軸承的有限元仿真模型[21-23]與其對比,模型使用HPZ840工作站進行求解,計算時間約為4~5 h。
首先,對于軸承的變形過程,計算最大變形量max= 0.4 mm時內外圈的彎矩,代入式= (())/中(式中為抗彎截面系數,mm4),得到內外圈變形長軸處彎曲應力(圖6);同時,計算外圈由于滾動體支撐的作用軸承外圈所產生的實際變形量(圖7)。
圖5 計算流程圖
圖6 內外圈彎曲應力對比
圖7 外圈變形量對比
從圖6和圖7中可以看出,理論值與仿真值相差不大。表1給出圖6、圖7中重要計算結果的對比。結果表明,理論計算值和仿真計算結果的誤差值在7%以內,進一步驗證了理論計算的合理性和準確性。
表1 內外圈彎曲應力與變形特征關鍵值對比
內外圈的長軸處最大應力反映了其可承受的變形量的大小。而短軸處的應力值為負,則為壓應力,其大小會影響軸承的壽命[24]。外圈在短軸處位移量小于max,因此軸承變形短軸處內外圈與滾動體之間會形成一定間隙,約為0.016 mm,間隙的大小將影響諧波減速器輪齒的嚙合度[25]。最大周向位移反映了外圈在切向方向的變形程度[26-27]。外圈受載后的最大應力由三彎矩方程求得,其決定了軸承的承載能力。
由于柔性軸承在運轉過程中,外圈會承受載荷帶來的額外彎曲應力,而外圈的主要參數包括其寬度與厚度。因此在這里通過上述理論分析了這2個參數對外圈強度影響[28-29],如圖8所示。
圖8 外圈參數對其應力的影響
由圖8a可知,厚度較小時,柔性軸承的外圈在載荷作用下的最大彎曲應力較大,隨著厚度的增加,載荷作用產生的彎曲應力減小,而變形產生的彎曲應力隨之增加,所以外圈的厚度存在一定的最優(yōu)值。
圖8b顯示了寬度的增加對于變形產生的彎曲應力沒有影響,但可以減小載荷產生的最大應力。因此,在設計柔性軸承時需要選擇合理的外圈厚度并在允許的范圍內[30]適當增加其寬度。對于CSF-25-80型柔性軸承,外圈厚度設計在1.3~1.6 mm,寬度設計在9 mm左右,都可以有效改善外圈的應力狀況,提高軸承的使用壽命。
1)本文提出了一種機械人關節(jié)諧波減速器內柔性軸承變形特征與內部受力的理論求解方法,分析了柔性軸承變形后內外圈彎曲應力大小及外圈的變形量,并通過三彎矩方程求解載荷作用下由于滾動體支撐作用產生的最大彎曲應力。計算結果對于柔性軸承的設計與優(yōu)化具有重要的指導意義。
2)柔性軸承內圈的變形與橢圓波發(fā)生器一致;外圈變形由多個滾動體的離散支撐產生,長軸處的變形量與內圈相同,均為軸承最大變形量,短軸處變形較小,因此在短軸處將產生一定的徑向間隙。間隙的大小將影響諧波減速器輪齒的嚙合度。
3)將有限元仿真分析結果與理論計算進行比較。本次仿真計算使用HP Z840工作站進行求解,計算時間約為4~5 h,而通過理論對方程進行求解僅需5~8 min。二者之間的結果非常接近,對幾個重要的計算結果進行了對比后,最大誤差控制在7%以內,驗證了理論計算的合理性和準確性。
4)理論分析了柔性軸承外圈彎曲應力隨厚度與寬度的變化。計算結果表明,對于CSF-25-80型柔性軸承,外圈厚度設計在1.3~1.6 mm,寬度設計在9 mm左右,都可以有效改善外圈的應力狀況,提高軸承的使用壽命。
[1] 王儒敬,孫丙宇. 農業(yè)機器人的發(fā)展現狀及展望[J]. 中國科學院院刊,2015(6):803-809. Wang Rujing, Sun Bingyu. Development status and expectation of agricultural robot[J]. Bulletin of Chinese Academy of Sciences, 2015(6): 803-809. (in Chinese with English abstract)
[2] 李玉林,崔振德,張園,等. 中國農業(yè)機器人的應用及發(fā)展現狀[J]. 熱帶農業(yè)工程,2014,38(4):30-33. Li Yulin, Cui Zhende, Zhang Yuan, et al. Application and development status of China's agricultural robot[J]. Tropical Agricultural Engineering, 2014, 38(4): 30-33. (in Chinese with English abstract)
[3] 夏田,楊世勇,何乃如,等. 工業(yè)機器人用諧波減速器傳動性能正交試驗分析[J]. 科學技術與工程,2017(19): 138-141.
Xia Tian, Yang Shiyong, He Nairu, et al. Orthogonal experiment analysis on transmission performance of harmonic drive for industrial robots[J]. Science Technology and Engineering, 2017(19): 138-141. (in Chinese with English abstract)
[4] Taghirad H D, Belanger P R. Modeling and parameter identification of harmonic drive systems[J]. Journal of Dynamic Systems Measurement & Control, 1997, 120(4): 439-444.
[5] Timothy D, Tuttle T, Seering W P, et al. A nonlinear model of a harmonic drive gear transmission[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3): 368-374.
[6] Shah D B, Patel K M, Trivedi R D. Analyzing hertzian contact stress developed in a double row spherical roller bearing and its effect on fatigue life[J]. Industrial Lubrication & Tribology, 2016, 68(3): 361-368.
[7] Gunia D, Smolnicki T. The analysis of the stress distribution in contact pairs ball-wire and wire-ring in wire raceway slewing bearing[C]//International Conference on Renewable Energy Sources-Research & Business. Springer, Cham, 2016.
[8] You Bindi, Wen Jianmin. Load distribution calculation of fexible ball bearing with elliptical cam wave generator[C]// International Conference on Mechanics, 2016.
[9] 張立勇,劉新猛,王長路,等. 徑向變形量對諧波減速器嚙合特性及柔輪應力的影響分析[J]. 機械傳動,2017(9):172-175.
Zhang Liyong, Liu Xinmeng, Wang Changlu, et al. Influence of radial deformation on stress of flexspline and meshing characteristic of harmonic reducer[J]. Journal of Mechanical Transmission, 2017(9):172-175. (in Chinese with English abstract)
[10] 關崇復. 柔性軸承動載荷下的接觸應力計算[J]. 燕山大學學報,1994(3):220-226. Guan Chongfu. Calculation for the contact pressure of flexible bearings under dynamic load[J]. Journal of Yanshan University, 1994(3): 220-226. (in Chinese with English abstract)
[11] 劉鴻文. 材料力學[M]. 北京:高等教育出版社,1985.
[12] 陳曉霞,劉玉生,邢靜忠,等. 諧波齒輪中柔輪中性層的伸縮變形規(guī)律[J]. 機械工程學報,2014,50(21):189-196. Cheng Xiaoxia, Liu Yusheng, Xing Jingzhong, et al. Neutral line stretch of flexspline in harmonic driver[J]. Journal of Mechnical Engineering, 2014, 50(21): 189-196. (in Chinese with English abstract)
[13] Harris T A, Kotzalas M N. Advanced Concepts of Bearing Technology: Rolling Bearing Analysis[M].Boca Raton: CRC Press, 2007.
[14] 王靜靜. 某諧波減速機波發(fā)生器柔性軸承疲勞壽命研究與結構優(yōu)化[D]. 長沙:湖南大學,2016. Wang Jingjing. The Research on Fatigue Life and Structure Optimization of the Flexible Bearing in a Harmonic Rreducer Wave Generator[D]. Changsha: Hunan University, 2016. (in Chinese with English abstract)
[15] 伊萬諾夫,沈允文,李克美. 諧波齒輪傳動[M]. 北京:國防工業(yè)出版社,1987.
[16] 柏德恩,全齊全,李賀,等. 伺服加載的諧波減速器啟動力矩測試系統(tǒng)[J]. 吉林大學學報:工學版,2017(6):141-147.
Bai Deen, Quan Qiquan, Li He, et al. Starting torque test system for harmonic driver based on servo loading[J]. Journal of Jilin University: Engineering and Technology Edition, 2017(6):141-147. (in Chinese with English abstract)
[17] Kayabasi O, Erzincanli F. Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modelling[J]. Materials & Design, 2007, 28(2): 441-447.
[18] 唐小歡,王湘江,馮棟彥. 諧波減速器輸入軸遲滯曲線的特性研究[J]. 機械傳動,2016(8):29-32. Tang Xiaohuan, Wang Xiangjiang, Feng Dongyan. Study on hysteresis curve characteristic of input shaft of harmonic reducer[J]. Journal of Mechanical Transmission, 2016(8): 29-32. (in Chinese with English abstract)
[19] Tian Lin, Jiang Yi, Wang Yazhen, et al. Load distribution research on flexible bearing in harmonic drive[C]//International Conference on Mechanical Design. Springer, Singapore, 2017: 165-176.
[20] 劉正寧. 諧波齒輪傳動柔性軸承受力分析[J]. 大連大學學報,1995(4):512-517. Liu Zhengning. Analysing stress of fIexible bearing under harmonic gear drive[J]. Journal of Dalian University, 1995(4): 512-517. (in Chinese with English abstract)
[21] Ostapski W. Analysis of the stress state in the harmonic drive generator-flexspline system in relation to selected structural parameters and manufacturing deviations[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58(4): 683-698.
[22] Ostapski W, Mukha I. Stress state analysis of harmonic drive elements by FEM[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2007, 55(1): 115-123.
[23] Pacana J, Witkowski W, Mucha J. FEM analysis of stress distribution in the hermetic harmonic drive flexspline[J]. Strength of Materials, 2017, 49(1):1-11.
[24] Li Junyang, Wang Jiaxun, Fan Kaijie, et al. Accelerated life model for harmonic drive under adhesive wear[J]. Tribology, 2016(3): 297-303.
[25] Liang Yong, Fan Yuanxun. Analysis of tooth deflection of flexspline and its influence on harmonic drive[J]. Journal of Mechanical Transmission, 2018(2): 31-35.
[26] Gravagno F, Mucino V H, Pennestrì, et al. Influence of wave generator profile on the pure kinematic error and centrodes of harmonic drive[J]. Mechanism and Machine Theory, 2016, 104: 100-117.
[27] Dennis León, Arzola N, Andrés Tovar. Statistical analysis of the influence of tooth geometry in the performance of a harmonic drive[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2015, 37(2):723-735.
[28] 沙曉晨,范元勛. 諧波減速器傳動誤差的研究[J]. 機械制造與自動化,2015(5):50-54. Sha Xiaochen, Fan Yuanxun. Study of transmission error of harmonic drive reducer[J]. Machine Building & Automation, 2015(5): 50-54. (in Chinese with English abstract)
[29] Ye Zhenhuan, Liu Zhansheng, Wang Liqin. Optimization analysis of structure parameter of angular-contact ball bearings based on fatigue life[J]. Journal of Mechanical Transmission, 2016(1): 59-63.
[30] Kim S W, Kang K , Yoon K, et al. Design optimization of an angular contact ball bearing for the main shaft of a grinder[J]. Mechanism & Machine Theory, 2016, 104: 287-302.
Fast solution for deformation characteristics of flexible bearing of robot based on thin-walled ring theory
Wang Yazhen1, Wang Anming1, Zhao Kun2, Song Li2
(1.201900,; 2.315301,)
Agricultural robots are an important part of the modern agriculture, and its function execution is mainly accomplished by robotic arm. Flexible bearing of the harmonic driver is a key part of the joint of the robots' arm. At present, there is little research on the design of flexible bearings. Different from most rolling bearings which are used as supporting components in ordinary, the flexible bearings are used as transmission components. A non-circular cam which is called wave generator is assembled into the inner ring of the bearing before working and causes a greatly pre-deformation of the flexible bearing. Previous theories of rolling bearing will not applicable because of this deformation. Meanwhile, a pair of radial force in the opposite direction is applied to both ends of the long axis of deformation of the flexible bearing in the transmission process. Therefore, more complicated shape state and bending stresses are generated. Those unusual working conditions will lead the flexible bearing more prone to damage than ordinary bearing. Although FEA simulation can get relatively accurate results, it usually takes several hours to solve finite element model, and the calculation process is difficult to converge. Therefore, it is necessary to establish a new calculation method to obtain the performance of flexible bearings. In this paper, the stress and deformation characteristics of the inner and outer rings of the flexible bearing were solved separately by the following methods: 1) First, the outer ring was equivalent to a statically indeterminate structure. The deformation coordination equation of the outer ring was established according to the equivalent model and solved by Mohr's integral theory. Overall bending moment of the outer ring of the flexible bearing formed by deformation was obtained. 2) Combined the theory of thin-walled ring with the bending moment equation which was obtained above, the radial and circumferential deformation characteristics of the outer ring of the flexible bearing were obtained. 3) According to the theory of multi span beam which was introduced in mechanics of materials, the loading model of the outer ring of the flexible bearing was built into three moment equations. The maximum stress was obtained by combining the three moment equation and the loading formula which was summarized by Ivanov’s experiment. Above theoretical equations were compiled by MATLAB programs. Finally, a finite element simulation model of flexible bearing was established by ANSYS Workbench. The time consumed by simulation was about 4 - 5 hours while the calculation of theoretical equations only needed 5-8 min. By comparison, the maximum error between simulation value and theoretical value was only within 7%, it proved the correctness of the theoretical model calculation. Through analysis of bending stress and deformation of the flexible bearing, conclusions can be drawn as the following: 1) the force state of the outer ring was different from the inner one during rotation of flexible bearings in harmonic drive, cyclic deformation of the outer ring caused a large alternating bending stress and prone to fatigue failure; 2) stress of the outer ring formed by deformation increased sharply with the thickness while stress caused by external load would decline. And width only affected stress caused by external load. Increase of thickness was beneficial to carrying capacity of flexible bearing. However, increase of thickness lead to increasing of bending stress formed by deformation. The total bending stress had a minimum value in optimal thickness. 3) Width was an important parameter which had a greater effect on the carrying capacity of the bearing, but it was constrained by external structural and cannot be too large. Calculation results would provide a theoretical reference for the design and optimization of flexible bearings.
robots; bearings; models; thin-walled ring theory; pre-deformation
王亞珍,汪安明,趙 坤,宋 麗. 基于薄壁圓環(huán)理論的機器人用柔性軸承變形特征快速求解[J]. 農業(yè)工程學報,2019,35(3):60-66.doi:10.11975/j.issn.1002-6819.2019.03.008 http://www.tcsae.org
Wang Yazhen, Wang Anming, Zhao Kun, Song Li. Fast solution for deformation characteristics of flexible bearing of robot based on thin-walled ring theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 60-66. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.008 http://www.tcsae.org
2018-10-08
2018-12-30
國家“863”計劃(2015AA043005);寧波市科技攻關項目(2014B1006);寧波市科技創(chuàng)新團隊項目(2015B11012)
王亞珍,副研究員,研究方向為軸承摩擦學及優(yōu)化設計。 Email:meyzwang@shu.edu.cn
10.11975/j.issn.1002-6819.2019.03.008
TH133.33; TH113
A
1002-6819(2019)-03-0060-07