馬躍進(jìn),王 安,趙建國(guó),郝建軍,李建昌,馬璐萍,趙偉博,吳 月
?
基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗(yàn)
馬躍進(jìn),王 安,趙建國(guó),郝建軍,李建昌,馬璐萍,趙偉博,吳 月
(河北農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,保定 071001)
針對(duì)深松作業(yè)阻力大、能耗高等問(wèn)題,該文在深松鏟鏟尖頂部設(shè)計(jì)了一種能有效減阻降耗的凸圓刃。以安裝凸圓刃的凸圓刃式深松鏟為研究對(duì)象,建立了土壤模型。為提高土壤模型的準(zhǔn)確性,選用非線性粘結(jié)彈性塑形接觸模型(edinburgh elasto-plastic adhesion model,EEPA),對(duì)凸圓刃式深松鏟進(jìn)行耕作阻力虛擬仿真。利用插件將顆粒與深松鏟接觸作用力導(dǎo)出,分析凸圓刃式深松鏟應(yīng)力和形變,校驗(yàn)其結(jié)構(gòu)強(qiáng)度;采用EDEM軟件分析不同耕深和速度對(duì)深松耕作阻力的影響,并以國(guó)標(biāo)深松鏟為比較對(duì)象,分析了凸圓刃式深松鏟的減阻效果;通過(guò)田間試驗(yàn)驗(yàn)證了土壤模型和凸圓刃式深松鏟設(shè)計(jì)的準(zhǔn)確性和可行性。田間試驗(yàn)結(jié)果表明,與國(guó)標(biāo)深松鏟相比,凸圓刃式深松鏟耕作阻力平均降低了10.24%。仿真結(jié)果與實(shí)測(cè)值較為接近,數(shù)值誤差在3%~10%,證明土壤模型基本符合土壤的力學(xué)特性,能近似代替真實(shí)的土壤環(huán)境。該研究證明了采用離散元法分析深松耕作阻力可行性,可為進(jìn)一步優(yōu)化深松鏟結(jié)構(gòu)提供參考。
農(nóng)業(yè)機(jī)械;離散元法;深松;試驗(yàn);凸圓刃;耕作阻力
深松可以改善土壤的耕層結(jié)構(gòu),增強(qiáng)土壤的通透性,提高土壤蓄水能力和改善植物根系生長(zhǎng)環(huán)境,從而提高作物的產(chǎn)量[1-2]。由于土壤工況復(fù)雜多變,欲通過(guò)田間試驗(yàn)的方法,研究土壤的變形、破碎和觸土部件的受力狀態(tài),不僅過(guò)程繁瑣,而且很難獲得理想的結(jié)果。因此,Mouazen和張強(qiáng)等[3-4]采用有限元方法(finite element method,F(xiàn)EM)研究土壤對(duì)深松鏟阻力作用,其把土壤假設(shè)成一個(gè)時(shí)間和空間上的連續(xù)介質(zhì)模型,但其僅表征了土壤物理特性而未考慮土壤顆粒特性[5]。此外,文獻(xiàn)[6]采用光滑質(zhì)子動(dòng)力學(xué)方法(smoothed particle hydrodynamics,SPH),該方法把土壤顆粒簡(jiǎn)化成單一的質(zhì)點(diǎn),并未考慮顆粒形狀的影響。由于土壤是由呈膠狀或凝聚狀不同粒徑的巖石風(fēng)化礦物質(zhì)顆粒堆積而成[7],本身具有離散性,耕作過(guò)程中土壤的運(yùn)動(dòng)、變形和撕裂用FEM或SPH方法處理存在較大的誤差。于是Cundall和Strack[8]提出一種以不連續(xù)、獨(dú)立運(yùn)動(dòng)單體為研究對(duì)象的離散元方法(discrete element method,DEM),單體的運(yùn)動(dòng)和力由與之接觸單體之間的靜態(tài)力和牛頓第二定律決定。采用離散元方法研究耕整地機(jī)械觸土部件受力和土壤擾動(dòng)情況,改變了將土壤視為連續(xù)單元的方式,與實(shí)際土壤條件較類似。Shmulevich等[9]通過(guò)對(duì)推土板的虛擬仿真分析研究發(fā)現(xiàn),離散元方法更適合分析土壤高塑性變形和顆粒流動(dòng)問(wèn)題。目前,基于EDEM軟件應(yīng)用的土壤顆粒接觸模型多數(shù)只考慮土壤顆粒間的接觸力和摩擦力,只有少部分同時(shí)考慮土壤顆粒間的黏聚和塑性形變。趙淑紅等[10]采用Hertz-Mindlin 無(wú)滑動(dòng)接觸模型研究了深松鏟鏟尖土壤顆粒的運(yùn)動(dòng)軌跡,并根據(jù)運(yùn)動(dòng)軌跡擬合設(shè)計(jì)了深松鏟。但無(wú)滑動(dòng)接觸模型只考慮土壤間的接觸力和摩擦力,并不能研究土壤塑性形變和黏性作用對(duì)深松鏟尖的影響;Hang Chengguang和方會(huì)敏等[11-12]采用Hertz-Mindlin粘結(jié)模型,表征土壤的黏聚力,對(duì)土壤的擾動(dòng)機(jī)理進(jìn)行了研究。當(dāng)顆粒間的接觸力達(dá)到粘結(jié)模型最大可承受的法向或切向剪切應(yīng)力時(shí),顆粒間的粘結(jié)鍵斷裂,但斷裂后的顆粒不會(huì)發(fā)生二次黏聚,與實(shí)際的土壤顆粒存在一定差異;王金武等[13]采用Hertz-Mindlin JKR粘結(jié)模型,表征了含水土壤的黏聚力,分析了深埋秸稈還田機(jī)耕作業(yè)時(shí)土壤和秸稈的運(yùn)動(dòng)軌跡,但其接觸模型并不能分析土壤塑性形變的影響;Walton等[14]針對(duì)塑性材料變形問(wèn)題創(chuàng)建遲滯彈簧模型(hysteretic spring model,HSM),表征物料的塑性形變,以某一設(shè)定值為標(biāo)準(zhǔn),當(dāng)顆粒間接觸未超過(guò)該值時(shí),顆粒間接觸按線彈性接觸模型計(jì)算;反之,顆粒間接觸按照塑性接觸模型計(jì)算。Janda等[15-16]通過(guò)土壤在靜態(tài)載荷作用下的力學(xué)特性仿真分析和后掠式深松鏟在無(wú)黏性土壤中的仿真分析,驗(yàn)證了HSM的準(zhǔn)確性;Ucgul等[17-18]將遲滯彈簧模型(HSM)和法向粘聚力模型(linear cohension model,LCM)結(jié)合來(lái)表征土壤的塑性形變和黏聚力,解決了黏性土壤塑性形變問(wèn)題。鄭凱等根據(jù)耕作層、犁底層和心土層的土壤性質(zhì),設(shè)計(jì)了具有不同滑切角的折線深松鏟柄,通過(guò)試驗(yàn)分析,驗(yàn)證了HSM+ LCM接觸模型和設(shè)計(jì)的合理性[19]。
近年來(lái),HSM和LCM結(jié)合,常用來(lái)作為土壤顆粒的接觸模型[17-20]。但研究發(fā)現(xiàn)HSM+LCM模型的法向力隨顆粒間迭代量呈線性關(guān)系,實(shí)際在土壤擠壓變形過(guò)程中塑性形變和黏聚力是非線性,與土壤擠壓變形過(guò)程有一定差別。因此本文采用非線性粘結(jié)彈性塑形接觸模型(edinburgh elasto-plastic adhesion model,EEPA),建立土壤模型并對(duì)自行設(shè)計(jì)的凸圓刃式深松鏟耕作阻力進(jìn)行分析和驗(yàn)證。
圖1 凸圓刃式深松鏟結(jié)構(gòu)示意圖
如圖2所示,設(shè)計(jì)中,凸圓刃刃口曲線形式選用一元二次函數(shù),并建立坐標(biāo)系,曲線的方程為
=2++(2)
求導(dǎo)得
= 2+(3)
= -6.594×10–32+5.573×10–1+64.471 (4)
注:o為坐標(biāo)原點(diǎn);x為刃口曲線橫坐標(biāo),mm;y為刃口曲線縱坐標(biāo),mm;AB為圓弧刃線;bA為在凸圓刃A點(diǎn)的滑切角,(°);g為深松鏟入土角[24],g=23°;l為深松鏟鏟尖長(zhǎng)度[24],l=165 mm;β凸圓刃刃口任意點(diǎn)滑切角,(°);n為凸圓刃刃口任意點(diǎn)法向方向;v為深松鏟的運(yùn)動(dòng)速度,m·s-1。
根據(jù)文獻(xiàn)[25-26],土壤顆粒的形狀通常為核狀、條狀、片狀、塊狀等幾種形式,如圖3所示。土壤顆粒的粒徑越小,仿真計(jì)算用時(shí)越長(zhǎng),為提高計(jì)算效率節(jié)省計(jì)算時(shí)間,用半徑10 mm的球形顆粒分別組合成核狀、條狀、片狀和塊狀4種形式。因犁底層土壤團(tuán)聚現(xiàn)象十分明顯,為了模擬的準(zhǔn)確性,犁底層土壤采用半徑為1.5~3.5 mm球形顆粒填充的團(tuán)聚體模擬[25];土壤顆粒密度為2 600 kg/m3,土壤剪切模量1′106Pa,土壤顆粒泊松比0.3[27]。土壤和土壤之間恢復(fù)系數(shù)0.6[16],土壤間靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)設(shè)置參考文獻(xiàn)[19],如表1所示。
核狀 Nucleation條狀 Strip片狀1 Flake 1片狀2 Flake 2塊狀 Lump團(tuán)聚體 Aggregate
表1 土壤間接觸參數(shù)[19]
Table 1 Contact parameters between soils[19]
注:fn為顆粒間法向力,N;δ為顆粒間的法向重疊量,m;f0為顆粒間現(xiàn)存的接觸力,如范德華力或靜電力等,N;k1為初始加載剛度,N·m–1;k2為卸載/重新加載剛度,N·m–1;fmax為顆粒間最大粘結(jié)力,N;–kabh為粘結(jié)力衰減剛度,N·m–1。
由于長(zhǎng)期的淺翻、旋耕作業(yè)和車輪碾壓,致使耕作層和心土層之間形成一層堅(jiān)硬密實(shí)的犁底層,故仿真用土壤模型分為耕作層、犁底層和心土層3層。土壤耕作層厚度在150 mm左右[33],犁底層平均厚度約為120 mm[34],通過(guò)土壤顆粒模型構(gòu)建和接觸模型的選取,建立1 200 mm(長(zhǎng))′800 mm(寬)′600 mm(高)虛擬土槽。參考文獻(xiàn)[26],在填充虛擬土槽時(shí),條狀、片狀1、片狀2的顆粒數(shù),在各土層的占比基本一致,變化不大;而核狀顆粒數(shù)量占比隨土層深度的增而增加,塊狀顆粒占比隨土層深度增加而減少。因此,虛擬土槽仿真設(shè)置0~150 mm為耕作層,尺寸分布為0.95~1.05,隨機(jī)填充核狀2 948個(gè)、條狀1 129個(gè)、片狀1共1 285個(gè)、片狀2共1 112個(gè)和塊狀565個(gè);150~270 mm為犁底層,尺寸分布(生成顆粒半徑同原始顆粒土壤模型半徑的倍數(shù))為1,隨機(jī)填充粘聚體18 494個(gè);270~570 mm為心土層,尺寸分布為0.95~1.05,隨機(jī)填充核狀24 980個(gè)、條狀2 185個(gè)、片狀1共3 615個(gè)、片狀2共1 469個(gè)和塊狀57個(gè)。
采用INVENTOR三維軟件創(chuàng)建的國(guó)標(biāo)深松鏟和凸圓刃式深松鏟的幾何模型,材料選用65 Mn,材料密度 7 820 kg/m3,彈性模量2.11×10-11N/m2,屈服極限強(qiáng)度430 MPa,泊松比0.288。深松鏟和土壤之間恢復(fù)系數(shù)為0.6。深松鏟同耕作層、犁底層和心土層之間的靜摩擦因數(shù)分別為0.313、0.639和0.427;滾動(dòng)摩擦因數(shù)分別為0.107、0.13和0.078[19]。三維模型和仿真土槽如圖4所示。
圖5 土槽與深松鏟仿真模型
利用土槽仿真模型,對(duì)凸圓刃式深松鏟和國(guó)標(biāo)深松鏟進(jìn)行仿真試驗(yàn),檢驗(yàn)凸圓刃的減阻效果。根據(jù)虛擬土槽長(zhǎng)度和深松深度農(nóng)藝要求,設(shè)置深松鏟作業(yè)速度為1.14和1.42 m/s,耕深250和350 mm。仿真Rayleigh時(shí)間步長(zhǎng)采用自動(dòng)時(shí)間步,網(wǎng)格尺寸單元為2.5倍的最小顆粒半徑,進(jìn)行離散元仿真分析。深松鏟耕作阻力仿真曲線如圖6所示。
如圖6可知:凸圓刃式深松鏟耕作阻力小于國(guó)標(biāo)深松鏟耕作阻力。隨著深松鏟從左側(cè)進(jìn)入虛擬土槽,深松鏟的阻力從0開(kāi)始逐漸增加,深松鏟完全進(jìn)入虛擬土槽后阻力基本處于穩(wěn)定狀態(tài)。因在仿真過(guò)程中深松鏟前面的土壤顆粒的積累,導(dǎo)致耕作阻力增加,仿真曲線呈現(xiàn)上升趨勢(shì)。采用深松鏟完全入土后的平均阻力來(lái)模擬耕作阻力,結(jié)果如表2所示。耕深250 mm、作業(yè)速度1.14 m/s,耕深250 mm、作業(yè)速度1.42 m/s,耕深350 mm、作業(yè)速度1.14 m/s和耕深350 mm、作業(yè)速度1.42 m/s 的4種作業(yè)條件下,與國(guó)標(biāo)深松鏟相比,凸圓刃式深松鏟的平均耕作阻力分別降低了7.89%、7.19%、7.26%和8.33%。仿真結(jié)果表明凸圓刃式深松鏟具有減阻效果,平均減阻7.56%。
為了校驗(yàn)凸圓刃式深松鏟的結(jié)構(gòu)強(qiáng)度,本文采用EDEM_Addin_1.0.0接口,將仿真過(guò)程中土壤模型顆粒同凸圓刃式深松鏟上的接觸作用力導(dǎo)入ANSYS WORKBENCH 17.0中;對(duì)凸圓刃式深松鏟進(jìn)行網(wǎng)格劃分,共劃分633,得到1 412個(gè)節(jié)點(diǎn);由于深松鏟在鏟柄端部由螺栓固定在機(jī)架上,所以對(duì)深松鏟柄端部添加固定約束。有限元分析結(jié)果如圖7所示,凸圓刃式深松鏟工作時(shí)最大變形量發(fā)生在鏟尖處,為8.68 mm;凸圓刃式深松鏟其整體所受應(yīng)力較小且多在80 MPa以下,在鏟柄固定處應(yīng)力最大為123.36 MPa,但遠(yuǎn)小于材料的屈服極限強(qiáng)度430 MPa,最大應(yīng)力小于材料本身的許用應(yīng)力[35](150~286 MPa),故凸圓刃式深松鏟在工作狀態(tài)下滿足設(shè)計(jì)要求。
圖6 深松鏟耕作阻力仿真曲線
表2 凸圓刃式深松鏟與對(duì)照深松鏟耕作阻力仿真結(jié)果
圖7 凸圓刃式深松鏟有限元分析結(jié)果
為了進(jìn)一步驗(yàn)證凸圓刃式深松鏟設(shè)計(jì)的合理性并判斷土壤模型構(gòu)建的合理性,以牽引阻力為指標(biāo),于2018年3月在河北省定州市新興莊村農(nóng)田進(jìn)行試驗(yàn)。試驗(yàn)地土壤質(zhì)地為壤土,地勢(shì)平坦,土壤緊實(shí)度、土壤容重和土壤含水率分別為2.215 MPa、1.453 g/cm3和19.8%。深松鏟牽引阻力測(cè)量采用電阻應(yīng)變片測(cè)力方法,試驗(yàn)設(shè)備主要包括東方紅LG150-4拖拉機(jī)、深松機(jī)架(開(kāi)元刀神1S-200深松機(jī))、凸圓刃式深松鏟、國(guó)標(biāo)深松鏟[21]、DH5908無(wú)線動(dòng)態(tài)應(yīng)變測(cè)試系統(tǒng)(量程:-30 000~+30 000,系統(tǒng)不確定度:不大于0.5%±3)、SL-TYD土壤硬度計(jì)(0~400 mm,0~50 kg/cm2)、BX120-5AA電阻式應(yīng)變片(量程:120W,靈敏度:2.08,敏感柵尺寸:5 mm′3 mm)、環(huán)刀(體積:100 cm2)、BSA224S電子天平(量程:300 g,精度:0.001 g)、DGG-9626A電熱恒溫鼓風(fēng)干燥箱(北京雅士林試驗(yàn)設(shè)備有限公司)、秤砣(質(zhì)量:10 kg)、鋼板尺(量程50 mm,精度:1 mm)、卷尺(量程:30 m,精度:1 mm)502膠水等。
深松鏟由河北農(nóng)哈哈機(jī)械集團(tuán)有限公司加工,材料為65 Mn,深松鏟實(shí)物如圖8所示。將電阻式應(yīng)變片粘貼在深松鏟前后兩側(cè)。采用屏蔽線按照半橋連接方式將電阻應(yīng)變片接入到東華DH5908無(wú)線動(dòng)態(tài)應(yīng)變采集器中。檢查無(wú)誤后,固定鏟柄,在鏟尖一側(cè)垂直向下添加秤砣,每組試驗(yàn)重復(fù)3次,對(duì)深松鏟進(jìn)行標(biāo)定[36],并采用Duncan氏新復(fù)極差法處理得出均值和標(biāo)準(zhǔn)誤,結(jié)果如表3所示。由表3得出深松鏟受力同應(yīng)變片電阻值的關(guān)系,其標(biāo)定結(jié)果為
將國(guó)標(biāo)深松鏟和凸圓刃式深松鏟安裝在同一深松機(jī)架上。田間試驗(yàn)速度和耕深同仿真試驗(yàn)相同,拖拉機(jī)的牽引速度設(shè)置1.14(低Ⅲ檔)和1.42 m/s(低Ⅳ檔)2個(gè)水平。耕深設(shè)置250和350 mm 2個(gè)水平。動(dòng)態(tài)應(yīng)變測(cè)試系統(tǒng)采樣頻率10 Hz,選取地勢(shì)平坦的地塊進(jìn)行田間試驗(yàn)(圖9),每組試驗(yàn)進(jìn)行1次,待工作穩(wěn)定后采集耕作阻力。分析對(duì)比田間試驗(yàn)同虛擬仿真阻力結(jié)果相似程度和凸圓刃式深松鏟的減阻效果。
圖8 試驗(yàn)用深松鏟
表3 深松鏟標(biāo)定結(jié)果
圖9 田間試驗(yàn)
圖10為2種深松鏟耕作阻力田間試驗(yàn)對(duì)比曲線。由圖10可知,耕作阻力隨時(shí)間變化呈現(xiàn)不規(guī)律的上下浮動(dòng),主要是由土壤條件差異和土壤中植物根系造成。總體上,凸圓刃式深松鏟耕作阻力小于國(guó)標(biāo)深松鏟耕作阻力,表明凸圓刃式深松鏟有較好的減阻效果。
圖10 深松鏟耕作阻力試驗(yàn)曲線
表4為2種類型深松鏟在相同工況條件下的耕作阻力平均值。耕深250 mm、作業(yè)速度1.14 m/s,耕深250 mm、作業(yè)速度1.42 m/s,耕深350mm、作業(yè)速度1.14 m/s和耕深350 mm、作業(yè)速度1.42 m/s的4種條件下,與國(guó)標(biāo)深松鏟相比凸圓刃式深松鏟的耕作阻力分別降低了11.57%、10.42%、9.29%和9.69%。結(jié)果表明,凸圓刃式深松鏟具有減阻的效果,平均減阻10.24%。田間試驗(yàn)結(jié)果同仿真結(jié)果相比,誤差在3%~10%。分析認(rèn)為誤差存在的原因:1)田間工況復(fù)雜,如存在秸稈、植物根系、碎石等,仿真中未能考慮到這些因素的存在;2)同仿真相比,田間地表平整度,差易造成數(shù)據(jù)的波動(dòng)。3)仿真是在1 200 mm(長(zhǎng))′800 mm(寬)′500 mm(高)虛擬土槽中進(jìn)行,土槽的剛性墻會(huì)對(duì)土壤顆粒的移動(dòng)產(chǎn)生一定的影響,造成耕作阻力與實(shí)際情況不同??傮w而言,仿真結(jié)果與田間試驗(yàn)結(jié)果基本一致,表明土壤模型基本符合實(shí)際土壤的力學(xué)特性,進(jìn)一步驗(yàn)證了凸圓刃式深松鏟具有較好的減阻效果。同時(shí)由表2和表4可知,耕深和作業(yè)速度對(duì)耕作阻力有一定的影響,耕作阻力隨耕深或作業(yè)速度的增加而增加。
表4 深松鏟耕作阻力試驗(yàn)結(jié)果
1)基于華北平原土壤特性,應(yīng)用離散元軟件EDEM建立了適用于壤土的土壤模型。采用非線性粘結(jié)彈性塑形接觸模型(EEPA)來(lái)表征土壤的應(yīng)力—應(yīng)變關(guān)系。通過(guò)對(duì)比分析虛擬仿真與田間試驗(yàn)驗(yàn)的深松阻力值,仿真值與實(shí)測(cè)值之間誤差在3%~10%,表明土壤模型的力學(xué)特性基本符合華北平原地區(qū)的土壤特性。
2)為降低深松作業(yè)阻力,在鏟尖頂部設(shè)計(jì)了凸圓刃。田間試驗(yàn)結(jié)果表明,安裝凸圓刃的凸圓刃式深松鏟具有減阻的效果,與國(guó)標(biāo)深松鏟相比,耕作阻力平均降低10.24%。
3)利用EDEM_Addin插件將土壤顆粒同凸圓刃式深松鏟的接觸力導(dǎo)入到ANSYS WORKBENCH中對(duì)凸圓刃式深松鏟進(jìn)行靜力學(xué)分析分析。凸圓刃式深松鏟應(yīng)力主要集中在鏟柄固定處,最大應(yīng)力值為123.36 MPa,最大變形量發(fā)生在鏟尖處,為8.68 mm,滿足設(shè)計(jì)強(qiáng)度需求。
4)通過(guò)仿真分析和田間試驗(yàn)研究發(fā)現(xiàn)。耕深和作業(yè)速度對(duì)耕作阻力影響顯著,耕深或作業(yè)速度越大,耕作阻力越大。
現(xiàn)有深松鏟類型較多,本文對(duì)照僅用國(guó)標(biāo)深松鏟深松鏟,不能代替全部,后續(xù)將進(jìn)一步同其他深松鏟進(jìn)行耕作阻力對(duì)比研究。此外,試驗(yàn)僅從阻力角度分析了凸圓刃式深松鏟的減阻效果。下一階段還需從土壤擾動(dòng)系數(shù)、土壤蓬松度等多項(xiàng)指標(biāo),綜合評(píng)定凸圓刃式深松鏟的作業(yè)性能。
[1] 何明,高煥文,董培巖,等. 一年兩熟地區(qū)保護(hù)性耕作深松試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):58-63. He Ming, Gao Huanwen, Dong Peiyan, et al. Sub-soiling experiment and research in two crops a year and conservation tillage adopted area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 58-63. (in Chinese with English abstract)
[2] Pikul J L, Aase J K. Water Infiltration and storage affected by subsoiling and subsequent tillage[J]. Soilence Society of America Journal, 2003, 67(3): 859-866.
[3] Mouazen A M, Neményi M. Finite element analysis of subsoiler cutting in non-homogeneous sandy loam soil[J]. Soil & Tillage Research, 1999, 51(1/2): 1-15.
[4] 張強(qiáng),張璐,于海業(yè),等. 復(fù)合形態(tài)深松鏟耕作阻力有限元分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):61-65. Zhang Qiang, Zhang Lu, Yu Haiye, et al. Finite element analysis and experiment of soil resistance of multiplex- modality subsoile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 61-65. (in Chinese with English abstract)
[5] 傅巍,蔡九菊,董輝,等. 顆粒流數(shù)值模擬的現(xiàn)狀[J]. 材料與冶金學(xué)報(bào),2004,3(3):172-175. Fu Wei, Cai Jiuju, Dong Hui, et al. Current status of numerical simulation of granular flow[J]. Journal of Materials and Metallurgy, 2004, 3(3): 172-175. (in Chinese with English abstract)
[6] 劉宏俊,韓濟(jì)遠(yuǎn),陳佳奇,等. 丘陵地區(qū)剛性鎮(zhèn)壓輪性能仿真與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):114-122. Liu Hongjun, Han Jiyuan, Chen Jiaqi, et al. Performance simulation and experiment on rigid press wheel for hilly area [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 114-122. (in Chinese with English abstract)
[7] Craig R F. Craig's Soil Mechanics[M]. London: Spon Press, 2004.
[8] Cundall P A, Strack O D L. A discrete numerical mode for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
[9] Shmulevich I, Horn R. State of the art modeling of soil-tillage interaction using discrete element method[J]. Soil & Tillage Research, 2010, 111(1): 41-53.
[10] 趙淑紅,王加一,陳君執(zhí),等. 保護(hù)性耕作擬合曲線型深松鏟設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):82-92. Zhao Shuhong, Wang Jiayi, Chen Junzhi, et al. Design and experiment of fitting curve subsoiler of conservation tillage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 82-92. (in Chinese with English abstract)
[11] Hang Chengguang, Gao Xijie, Yuan Mengchan, et al. Discrete element simulations and experiments of soil disturbance as affected by the tine spacing of subsoiler[J]. Biosystems Engineering, 2017, 168: 73-82.
[12] 方會(huì)敏,姬長(zhǎng)英,張慶怡,等. 基于離散元法的旋耕刀受力分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21):54-59. Fang Huimin, Ji Changying, Zhang Qingyi, et al. Force analysis of rotary blade based on distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract)
[13] 王金武,王奇,唐漢,等. 水稻秸稈深埋整稈還田裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):112-117. Wang Jinwu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and whole straw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117. (in Chinese with English abstract)
[14] Walton O R, Braun R L. Stress calculations for assemblies of inelastic speres in uniform shear[J]. Acta Mechanica, 1986, 63(1-4): 73-86.
[15] Janda A, Jin Y O. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68.
[16] Ucgul M, Fielke J M, Saunders C. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil & Tillage Research, 2014, 144(4): 220-227.
[17] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306.
[18] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121(2): 105-117.
[19] 鄭侃,何進(jìn),李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9): 62-72. Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)
[20] 石林榕,趙武云,孫偉. 基于離散元的西北旱區(qū)農(nóng)田土壤顆粒接觸模型和參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):181-187. Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)
[21] 全國(guó)農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會(huì). 深松鏟和深松鏟柄:JB/T9788-1999 [S]. 北京.中國(guó)標(biāo)準(zhǔn)出版社.1999:2-6
[22] 尋懷義. 滑切理論探討[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1979(4): 107-111.
[23] 龐聲海. 關(guān)于滑切理論與滑切角的選用[J]. 華中農(nóng)學(xué)院學(xué)報(bào),1982(2):64-69.
[24] 西涅阿科夫,李福桂,高爾光,等. 土壤耕作機(jī)械的理論和計(jì)算[M]. 北京:中國(guó)農(nóng)業(yè)機(jī)械出版社,1981.
[25] 王燕. 基于離散元法的深松鏟結(jié)構(gòu)與松土效果研究[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2014. Wang Yan. Simulation Analysis of Structure and Effect of the Subsoiler Based on DEM[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)
[26] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標(biāo)定方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)
[27] Das B M. Advanced soil mechanics[M]. London: TAYLOR & FRANCIS, 2008.
[28] Morrissey J P. Discrete Element Modelling of Iron Ore Pellets to Include the Effects of Moisture and Fines[D]. Edinburgh : University of Edinburgh, 2013.
[29] Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16(3): 383-400.
[30] EDEM 2018 documentation: Version 2018[EB/OL]. (2018-07-14).https://www.edemsimulation.com/login/?redirect_to=%2Fedem-2018-0-documentation. [2018-09-21]
[31] John P M, Subhash C T, Jin Y O. EDEM contact model:adhesive elasto-plastic model[EB/OL]. (2014-06-23).https:// www.edemsimulation.com/resources-learning. [2018-09-21]
[32] EDEM 2018 soils starter pack: compressible sticky materia [EB/OL]. https://www.edemsimulation.com. [2018-09-21].
[33] 石彥琴,高旺盛,陳源泉,等. 耕層厚度對(duì)華北高產(chǎn)灌溉農(nóng)田土壤有機(jī)碳儲(chǔ)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):85-90. Shi Yanqin, Gao Wangsheng, Chen Yuanquan, et al. Effect of topsoil thickness on soil organic carbon in high-yield and irrigated farmland in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 85-90. (in Chinese with English abstract)
[34] 郭家萌,劉振朝,高強(qiáng),等. 深松對(duì)玉米產(chǎn)量和養(yǎng)分吸收的影響[J]. 水土保持學(xué)報(bào),2016,30(2):249-254. Guo Jiameng, Liu Zhenchao, Gao Qiang, et al. Effect of subsoiling on yield and nutrient uptake of maize[J]. Journal Soil and Water Conservation, 2016, 30(2): 249-254. (in Chinese with English abstract)
[35] 鄭侃,何進(jìn),李洪文,等. 反旋深松聯(lián)合作業(yè)耕整機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):61-71. Zheng Kan, He Jin, Li Hongwen, et al. Design and experiment of combined tillage implement of reverse-rotary and Subsoiling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 61-71. (in Chinese with English abstract)
[36] 李惠利. 深松鏟工作性能實(shí)時(shí)測(cè)試系統(tǒng)的研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2017. Li Huili. Research on Real-time Working Performance Test System of the Deep Shovel [D]. Baoding: Agricultural University of Hebei, 2017. (in Chinese with English abstract)
Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method
Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue
(071001,)
Due to long-term shallow ploughing, rotary tillage and tractor wheel rolling, a hard and compact Plow pan layer is formed between the tillage layer and the subsoil layer. The presence of plow pan layer can inhibit roots growing and prevent material transfer between tillage layer and the susoil layer, thus reducing crop yield. The subsoiling can improve the soil water storage, improve soil water retention capacity, promote roots growth, and effectively improve crop yield effectively, but the resistance and energy consumption of subsoiling is high. The convex blade subsoiler was designed to reduce the subsoiling resistance in the paper. The convex blade subsoiler was mainly composed of subsoiler handle, subsoiler tip and convex edge, in the process of subsoiling, the convex edge on the subsoiler tip slip cutting the soil on the upper surface of the subsoiler tip, which reducing the pressure of the soil on the upper surface of the subsoiler tip, thereby reducing the subsoiling resistance. Firstly, the curve expression of convex blade edge was calculated based on the sliding cutting condition. And then, the convex blade subsoiler with convex blade and stander subsoiler were selected as the study object by EDEM simulation and field experiment, which used to verify the drag reduction effect of convex blade and the accuracy of soil simulation model. Taking North China Plain as the research object, the physical parameters of soil particle was determined, and the soil geometry model which consists of tillage layer, the subsoil layer and plow pan layer was constructed by 3D graphics software NVENTOR. In order to improve the accuracy of the soil model, the Edinburgh Elasto-Plastic Adhesion Model was used as soil contact model to simulate the tillage resistance of subsoiler. The EDEM software was employed to analyze the drag reduction effect of convex blade subsoiler at different tillage depths and forward speeds, which had been compared with the stander subsoiler. The experiment results showed that convex blade subsoiler had a drag reduction effect compared with stander subsoiler, and the average drag reduction was 7.56%. In addition, the EDEM_Addin plug-in was used to introduce the contact force of the soil with convex blade subsoiler into ANSYS WORKBENCH 17.0 for finite element analysis, and the results of finite element analysis showed that the convex blade subsoiler stress was mainly concentrated in the fixed position of the subsoiler handle, the maximum stress value was 123.36 MPa and the maximum deformation variable was 8.68 mm at the tip of the subsoiler, which meetting the design requirements. In order to verify the rationality of the designed convex blade subsoiler and judge the rationality of the constructed soil model, the field experiments were carried out according to the tillage depth and the working speed of the simulation. The field experiments proved that the convex blade subsoiler had dragged reduction effect compared with stander subsoiler, and the average drag reduction was 10.24%, and compared with the simulation results, the numerical error was 3%-10%. the tillage depth and forward speed could have an appreciable impact on tillage resistance and the tillage resistance increased with the tillage depth and forward velocity. The results of simulation and experiment showed that the proposed soil model basically matched the soil mechanical properties in North China Plain and could approximating substitute the real soil environment. The study proved that it was feasible to analyze the tillage resistance of the subsoiler by using the DEM and it was of great significance to further optimize the structure of subsoiler.
agricultural machinery; discrete element method;subsoiling; experiment; convex blade; tillage resistance
馬躍進(jìn),王 安,趙建國(guó),郝建軍,李建昌,馬璐萍,趙偉博,吳 月. 基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):16-23. doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org
Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 16-23. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org
10.11975/j.issn.1002-6819.2019.03.003
S222.12+9
A
1002-6819(2019)-03-016-08
2018-09-26
2019-01-04
國(guó)家“十三五”科技支撐重大項(xiàng)目糧食豐產(chǎn)增效科技創(chuàng)新(2017YFD0300907)
馬躍進(jìn),教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械裝備與農(nóng)機(jī)材料表面改性及涂層制備方面的研究。Email:mayuejin58@126.com
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:馬躍進(jìn)(E041200452S)