關(guān)卓懷,吳崇友,王 剛,李海同,沐森林
?
油菜聯(lián)合收割機(jī)雙向電驅(qū)動(dòng)分行豎割刀設(shè)計(jì)
關(guān)卓懷,吳崇友,王 剛,李海同,沐森林※
(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
針對(duì)傳統(tǒng)油菜聯(lián)合收割機(jī)分行豎割刀存在振動(dòng)大、損失率高的問(wèn)題,該文設(shè)計(jì)了雙向電驅(qū)動(dòng)分行豎割刀裝置。根據(jù)對(duì)稱(chēng)式雙偏心輪的運(yùn)動(dòng)學(xué)特征和雙動(dòng)刀片切割油菜莖稈的力學(xué)模型,確定了傳動(dòng)機(jī)構(gòu)和刀片的主要參數(shù);建立了動(dòng)刀切割運(yùn)動(dòng)軌跡方程,通過(guò)數(shù)值模擬分析不同切割速比(割刀平均速度與收割機(jī)前進(jìn)速度之比)下的切割效果,以未切割率與重復(fù)切割率之和最小為約束條件,確定切割速比為1.1時(shí)切割效果最優(yōu);將雙向電驅(qū)動(dòng)分行豎割刀應(yīng)用于4LZ-6T型油菜聯(lián)合收割機(jī)并開(kāi)展振動(dòng)測(cè)試,僅豎割刀工作時(shí),割臺(tái)振動(dòng)加速度為0.11,為橫割刀振動(dòng)加速度的11%;田間試驗(yàn)表明,裝有雙向電驅(qū)動(dòng)分行豎割刀的油菜聯(lián)合收割機(jī)收獲總損失率為6.15%,其中割臺(tái)損失率為3.37%,豎割刀分行平均損失率為1.03%;在切割速比為1.08、1.63、2.40時(shí),豎割刀的分行損失率分別為0.90%、1.04%和1.14%,在接近最優(yōu)切割速比1.1時(shí),豎割刀分行損失率最小為0.90%,相較另外2種切割速比,豎割刀分行損失率分別減小了13.5%和26.7%。該研究和設(shè)計(jì)可為油菜割臺(tái)結(jié)構(gòu)改進(jìn)和降低油菜聯(lián)合收割機(jī)收獲損失提供參考。
機(jī)械化;收獲;設(shè)計(jì);油菜聯(lián)合收割機(jī);豎割刀;切割軌跡;振動(dòng)
油菜是重要的油料作物,中國(guó)油菜的種植面積和產(chǎn)量均居世界前列。油菜分枝多且縱橫交錯(cuò)相互牽扯,單株角果層直徑大于株距和行距。油菜收割時(shí),通過(guò)側(cè)邊分行豎割刀將已割與未割油菜強(qiáng)制分開(kāi),使得收割機(jī)能夠正常作業(yè)。但是,豎割刀在強(qiáng)制分行過(guò)程中會(huì)切斷莢果、擾動(dòng)植株,造成的籽粒落粒和飛濺損失,目前豎割刀分行損失占割臺(tái)損失的的40%以上[1-2],是導(dǎo)致油菜割臺(tái)損失高的一個(gè)重要原因。
傳統(tǒng)的油菜割臺(tái)分行豎割刀切割器一般為機(jī)械傳動(dòng),采用動(dòng)刀片加定刀片的切割形式。單動(dòng)刀式切割器存在未切割區(qū)[3],拉扯油菜枝杈,增加了損失[4];曲柄連桿機(jī)構(gòu)和動(dòng)刀往復(fù)運(yùn)動(dòng)的慣性力,加劇了割臺(tái)和收割機(jī)的振動(dòng)[5-9]。雙動(dòng)往復(fù)式切割器具有切割速度快、振動(dòng)小的特點(diǎn)[10-11],在稻麥、苧麻、牧草、灌木收割機(jī)上均有應(yīng)用[12-16]。徐立章等將雙動(dòng)式割刀應(yīng)用在油菜割臺(tái)上,并采用液壓馬達(dá)驅(qū)動(dòng),但所設(shè)計(jì)雙動(dòng)刀切割器仍存在未切割區(qū)[17]。若采用電機(jī)驅(qū)動(dòng)豎割刀,切割速度可以根據(jù)需要隨時(shí)調(diào)整,并且可以避免復(fù)雜的機(jī)械結(jié)構(gòu),簡(jiǎn)化傳動(dòng)。
油菜聯(lián)合收割機(jī)分行豎割刀切割直徑較細(xì)的油菜分枝,所需要的切割力較小。為了減小功耗、減輕割臺(tái)質(zhì)量、降低工作振動(dòng)、簡(jiǎn)化傳動(dòng),本文設(shè)計(jì)了一種油菜聯(lián)合收割機(jī)雙向電驅(qū)動(dòng)分行豎割刀。割刀采用光刃刀片,由直流電機(jī)驅(qū)動(dòng),以對(duì)稱(chēng)式雙偏心輪為傳動(dòng)結(jié)構(gòu)。根據(jù)對(duì)稱(chēng)式雙偏心輪的運(yùn)動(dòng)學(xué)特征和雙動(dòng)刀片切割油菜莖稈的力學(xué)模型,確定傳動(dòng)機(jī)構(gòu)和刀片的主要參數(shù);建立雙動(dòng)刀切割軌跡方程,分析不同切割速比(割刀平均速度與收割機(jī)前進(jìn)速度之比)下的切割效果,優(yōu)化切割速度,以獲得振動(dòng)小、損失率低的豎割刀裝置,以期為油菜割臺(tái)結(jié)構(gòu)改進(jìn)、降低油菜聯(lián)合收割機(jī)分行損失提供參考。
油菜聯(lián)合收割機(jī)雙向電驅(qū)動(dòng)分行豎割刀安裝在割臺(tái)側(cè)板上,主要包括驅(qū)動(dòng)機(jī)構(gòu)和刀片,驅(qū)動(dòng)機(jī)構(gòu)由電機(jī)、齒輪、偏心輪、曲柄組成,結(jié)構(gòu)如圖1所示。
雙向電驅(qū)動(dòng)分行豎割刀由電機(jī)單獨(dú)驅(qū)動(dòng),電機(jī)通過(guò)一對(duì)傳動(dòng)齒輪帶動(dòng)2個(gè)偏心輪,偏心輪上安裝曲柄,曲柄末端連接刀片。電機(jī)通過(guò)上述傳動(dòng)機(jī)構(gòu)帶動(dòng)上下刀片往復(fù)運(yùn)動(dòng),實(shí)現(xiàn)雙動(dòng)刀切割。
為實(shí)現(xiàn)雙動(dòng)刀反相位對(duì)稱(chēng)切割采用對(duì)稱(chēng)雙偏心輪驅(qū)動(dòng)機(jī)構(gòu),如圖2所示。第一偏心輪的圓心為1,第二偏心輪的圓心2,設(shè)偏心距為。偏心軸固定在2個(gè)偏心輪圓心連線(xiàn)12的中點(diǎn)處,帶動(dòng)2個(gè)偏心輪同步運(yùn)動(dòng),以偏心軸為原點(diǎn)建立坐標(biāo)系。曲柄連偏心輪和刀片,與2個(gè)刀片的連接點(diǎn)為、。2個(gè)曲柄2、1的長(zhǎng)度均為。刀片沿軸運(yùn)動(dòng),在軸方向上,刀片上各點(diǎn)的運(yùn)動(dòng)規(guī)律相同。對(duì)驅(qū)動(dòng)機(jī)構(gòu)的位移進(jìn)行分析,根據(jù)幾何關(guān)系,、點(diǎn)的縱坐標(biāo)分別為:
式中y,y分別為點(diǎn)、的縱坐標(biāo);為偏心輪圓心連線(xiàn)12與軸的夾角,(°);為曲柄與軸的夾角,(°)。
1. 電機(jī) 2. 齒輪 3. 箱體 4. 曲柄 5. 限位塊 6. 刀座 7. 偏心輪 8. 偏心軸 9. 上刀片 10. 下刀片
1. Motor 2. Gear 3. Cabinet 4. Crank 5. Limit block 6. Cutter holder 7. Eccentric wheel 8. Eccentric shaft 9. Upper blade 10. Lower blade
圖1 雙向電驅(qū)動(dòng)分行豎割刀結(jié)構(gòu)示意圖
Fig.1 Schematic diagram of bidirectional electric driven side vertical cutter
根據(jù)方程(1),2個(gè)刀片的運(yùn)動(dòng)軌跡相同,相位相差π。在任意時(shí)刻,2個(gè)刀片相對(duì)于起始點(diǎn)位移大小相等,方向相反。當(dāng)π(0,1,2…)時(shí),=0,位移達(dá)到極值大小與偏心距相同。
對(duì)驅(qū)動(dòng)機(jī)構(gòu)的速度進(jìn)行分析,將式(1)對(duì)時(shí)間求導(dǎo),得到刀片切割速度的表達(dá)式為:
式中v為點(diǎn)速度,m/s;v為點(diǎn)的速度m/s;1曲柄擺動(dòng)角速度,rad/s;2為偏心輪轉(zhuǎn)動(dòng)角速度rad/s。
對(duì)驅(qū)動(dòng)機(jī)構(gòu)的加速度進(jìn)行分析,將式(2)對(duì)時(shí)間求導(dǎo),刀片的加速度為:
式中a為點(diǎn)加速度,m/s2;a為點(diǎn)加速度,m/s2;1為曲柄2的角加速度,rad/s2;2為曲柄1的角加速度,rad/s2。
注:O1為第一偏心輪的圓心;O2為第二偏心輪的圓心;O為O1O2的中點(diǎn);θ為O1O2與y軸的夾角,(°);β為曲柄與y軸的夾角,(°);e為偏心距,mm;l為曲柄O2E、O1F的長(zhǎng)度,mm;E、F為曲柄與2個(gè)刀片的連接點(diǎn)。
根據(jù)漸開(kāi)線(xiàn)圓柱齒輪設(shè)計(jì)原則,應(yīng)保證齒數(shù)大于發(fā)生根切的最少齒數(shù)且大小齒數(shù)互質(zhì),設(shè)計(jì)傳動(dòng)齒輪的小齒輪齒數(shù)為29,大齒輪齒數(shù)85,減速比為3∶1,大齒輪輪齒根圓直徑d=104 mm。由式(1)~(3)可知,影響驅(qū)動(dòng)機(jī)構(gòu)運(yùn)動(dòng)學(xué)特性的關(guān)鍵參數(shù)是偏心輪偏心距和曲柄長(zhǎng)度。偏心距與刀片的運(yùn)動(dòng)范圍有關(guān),影響刀片夾持莖稈和切割的效果,曲柄長(zhǎng)度影響動(dòng)刀往復(fù)運(yùn)動(dòng)的行程速比。根據(jù)標(biāo)準(zhǔn)型Ⅱ型切割器的行程距離和行程速比[18],結(jié)合大齒輪齒根圓直徑,設(shè)計(jì)偏心距=30 mm,曲柄長(zhǎng)度=80 mm。
式中1、2為切削莖稈的徑向分力,N;α為滑切角,(°);1、2為切削刃與莖稈間的摩擦力,N。
式中φ為摩擦角,(°)。
莖稈兩側(cè)的受力是對(duì)稱(chēng)的,故1=2,1=2。代入式(5),式(4)可簡(jiǎn)化為:
所以莖稈被切割不滑動(dòng)的條件是:
對(duì)于油菜莖稈,摩擦角φ一般為20°~25°[20],本文取滑切角α19°,滿(mǎn)足切割不滑動(dòng)條件。
注:N1、N2為切削莖稈的徑向分力,N;αb為滑切角,(°);F1、F2為切削刃與莖稈間的摩擦力,N。
由于刀片上下切割的位移極限值為,所以根據(jù)式(1),刀片行程=2=60 mm,2個(gè)動(dòng)刀片對(duì)稱(chēng)切割,刀片中心距=60 mm,刀片底部寬=0.5= 30 mm。選用梯形光刃刀片,根據(jù)滑切角,設(shè)計(jì)刀片前橋?qū)?10 mm,刃部高=40 mm。刀片總長(zhǎng)=1 300 mm,滿(mǎn)足油菜的分行高度需要。
注:a為刀片前橋?qū)挾?,mm;b為相鄰刀片的中心距,mm;c為刀片刃高,mm;d為刀片底部寬度,mm。
為了明確油菜聯(lián)合收割機(jī)雙向電驅(qū)動(dòng)分行豎割刀的最佳工作參數(shù),開(kāi)展豎割刀切割區(qū)域數(shù)值模擬分析。豎割刀運(yùn)動(dòng)的絕對(duì)路徑由收割機(jī)的前進(jìn)運(yùn)動(dòng)和刀片相對(duì)于機(jī)器的簡(jiǎn)諧運(yùn)動(dòng)組成,如圖5所示,豎割刀切割區(qū)域邊界為01、01、01、01。在1個(gè)切割周期內(nèi),刀片刃口由0B移動(dòng)至11,時(shí)間=π/ω,ω為曲柄旋轉(zhuǎn)角速度,ω=2π/60,為偏心軸的轉(zhuǎn)速。在1個(gè)切割周期內(nèi),割刀的進(jìn)給距離1為0¢0,進(jìn)給面積為0¢0¢11:
式中v為收割機(jī)前進(jìn)速度,m/s;1為割刀的進(jìn)給距離,mm;¢為偏心軸的轉(zhuǎn)速,rad/min。
注:1為進(jìn)給距離;0¢0¢11為進(jìn)給面積;單動(dòng)刀切割區(qū)為0011、0011、2233、2233;雙動(dòng)刀切割區(qū)域?yàn)?;未切割區(qū)域?yàn)椤?;重?fù)切割區(qū)域?yàn)?、2。
Note:1is feeding distance;0¢0¢11is feeding area;Cutting areas of single action blade are0011,0011,2233and2233;Cutting area of double action blades is;Cutting area of missing cutting is′; Cutting areas of repeated cutting are2and2.
圖5 豎割刀切割軌跡與切割區(qū)域示意圖
Fig.5 Schematic diagram of side vertical cutter cutting trajectory and cutting area
切割區(qū)域邊界方程為
在1個(gè)切割周期內(nèi),2個(gè)刀片的切割區(qū)域分別是0011、0011,面積均為1;雙動(dòng)刀切割區(qū)域?yàn)椋娣e為2;未切割區(qū)域(單動(dòng)刀和雙動(dòng)刀都沒(méi)有切割到的區(qū)域)為¢,面積為3;重復(fù)切割區(qū)域(包括單動(dòng)刀重復(fù)切割和雙動(dòng)刀重復(fù)切割)為2、2,面積均為4。各區(qū)域面積的表達(dá)式為:
豎割刀切割油菜枝杈時(shí),切割速度過(guò)快會(huì)重復(fù)切割,更多的剪斷油菜莢果,造成油菜籽粒飛濺損失;切割速度過(guò)慢會(huì)遺漏切割,牽扯油菜枝杈,造成油菜落粒損失。所以,未切割區(qū)和重復(fù)切割區(qū)都是越小越好。
為了量化切割效果,采用數(shù)值模擬的方法,根據(jù)各切割區(qū)域的面積方程,在Matlab中計(jì)算各切割區(qū)域的面積。影響切割面積的因素包括豎割刀切割速度和收割機(jī)前進(jìn)速度。引入切割速比表示割刀平均速度v與機(jī)器前進(jìn)速度v之間的關(guān)系:
式中¢為刀片沿豎割刀方向的切割距離,在1個(gè)切割周期內(nèi),¢==60 mm。
將各切割區(qū)域面積表示為切割速度的函數(shù):
切割率P為切割面積與進(jìn)給面積之比:
P=S/(=1,2,3,4) (13)
在不同的值下,計(jì)算1個(gè)切割周期內(nèi)的切割區(qū)域面積和切割率,結(jié)果如表1所示。未切割率3、重復(fù)切割率4與切割速比的關(guān)系如圖6所示。
根據(jù)數(shù)值模擬結(jié)果,未切割率3與切割速比的關(guān)系可擬合為3=0.285 12-0.765 6+0.513 9,2值為1,未切割率3與切割速比呈二次關(guān)系,切割速比越大,未切割率越小,對(duì)油菜的牽扯也越小,油菜豎割刀的分行效果越好、切割損失越小,但當(dāng)=4/3時(shí),未切割區(qū)面積為0,繼續(xù)增大也不會(huì)再降低未切割率。重復(fù)切割率4與切割速比的關(guān)系可擬合為4= 0.2042-0.309 2+0.127,2值為0.998 1,重復(fù)切割率4與切割速比呈二次關(guān)系,在數(shù)值模擬范圍內(nèi),重復(fù)切割率4隨切割速比的增大而增大,對(duì)切割時(shí)對(duì)油菜的重復(fù)切割增多切割損失增大。
表1 切割區(qū)域數(shù)值模擬結(jié)果
圖6 切割率與切割速比的關(guān)系
綜合考慮切割未切割率和重復(fù)切割率,當(dāng)兩者之和=3+4取極小值時(shí),切割效果最好。=0.489 12-1.074 8+0.640 9,當(dāng)=1.1時(shí)取極小值,此時(shí)切未切割率和重復(fù)切割率之和最小,豎割刀切割效果最好。根據(jù)式(11),此時(shí)割刀的進(jìn)給距離1=54.5 mm。為了保持最佳切割效果,豎割刀切割速度需與收割機(jī)前進(jìn)速度匹配。根據(jù)傳動(dòng)齒輪的減速比和式(8),豎割刀驅(qū)動(dòng)電機(jī)轉(zhuǎn)速與收割機(jī)前進(jìn)速度間的最佳匹配關(guān)系為:
式中¢為偏心輪驅(qū)動(dòng)軸轉(zhuǎn)速,rad/min;
為了將本文設(shè)計(jì)的雙向電驅(qū)動(dòng)分行豎割刀應(yīng)用于油菜聯(lián)合收割機(jī)并驗(yàn)證其作業(yè)性能,基于農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所研制的4LZ-6T型油菜聯(lián)合收割機(jī)開(kāi)展試驗(yàn)研究,如圖7所示,整機(jī)參數(shù)如表2所示。
圖7 4LZ-6T型油菜聯(lián)合收割機(jī)
表2 聯(lián)合收割機(jī)主要參數(shù)
為評(píng)價(jià)雙向電驅(qū)動(dòng)分行豎割刀的工作振動(dòng),開(kāi)展割臺(tái)振動(dòng)測(cè)試試驗(yàn)[21]。如圖8a,試驗(yàn)儀器主要包括DH5922N動(dòng)態(tài)信號(hào)測(cè)試分析系統(tǒng),DH5857-1電荷適調(diào)器,DH311三向加速度傳感器和計(jì)算機(jī)。通過(guò)三向加速度傳感器檢測(cè)振動(dòng)加速度,比較不同工況下割臺(tái)的振動(dòng)情況,測(cè)點(diǎn)分布如圖8b所示。工況1為僅豎割刀工作;工況2為僅橫割刀工作;工況3為橫、豎割刀同時(shí)工作;為排除其他振源(主要是發(fā)動(dòng)機(jī))對(duì)割臺(tái)工作振動(dòng)的影響,工況4為發(fā)動(dòng)機(jī)空轉(zhuǎn)。圖9示出不同況下的油菜聯(lián)合收割機(jī)割臺(tái)振動(dòng)加速度(測(cè)點(diǎn)1,其他測(cè)點(diǎn)同理)。振動(dòng)測(cè)試試驗(yàn)結(jié)果如表3所示。
圖8 振動(dòng)試驗(yàn)
圖9 不同工況下割臺(tái)的振動(dòng)加速度(測(cè)點(diǎn)1)
由表3可知,4種工況下,工況1僅豎割刀工作時(shí)的割臺(tái)振動(dòng)最小,為0.11,這是由于豎割刀是電機(jī)單獨(dú)驅(qū)動(dòng),無(wú)需發(fā)動(dòng)機(jī)提供動(dòng)力,雙向電驅(qū)動(dòng)分行豎割刀可以平衡運(yùn)動(dòng)方向的慣性力,大大減小了工作振動(dòng)。工況4發(fā)動(dòng)機(jī)空轉(zhuǎn)時(shí),割臺(tái)振動(dòng)加速度為0.13,說(shuō)明僅發(fā)動(dòng)機(jī)工作時(shí),割臺(tái)振動(dòng)并不大,排除割臺(tái)外振源對(duì)割臺(tái)振動(dòng)的影響。工況2橫割刀工作時(shí),割臺(tái)振動(dòng)較大為1.01,主要原因是橫割刀為單動(dòng)刀片加定刀切割,并采用機(jī)械傳動(dòng),刀片和傳動(dòng)部件往復(fù)運(yùn)動(dòng)的不平衡慣性力導(dǎo)致了割臺(tái)的強(qiáng)烈振動(dòng)。傳統(tǒng)油菜聯(lián)合收割機(jī)分行豎割刀也采用這種切割形式和傳動(dòng)結(jié)構(gòu),更加劇了割臺(tái)振動(dòng)。相比之下,工況4橫割刀和雙向電驅(qū)動(dòng)分行豎割刀同時(shí)工作時(shí),振動(dòng)加速度為1.09,相較只有橫割刀工作時(shí)僅增加了0.08,工況1的割臺(tái)振動(dòng)為工況3的11%,說(shuō)明所設(shè)計(jì)的雙向電驅(qū)動(dòng)分行豎割刀對(duì)割臺(tái)振動(dòng)的影響較小。
表3 測(cè)點(diǎn)振動(dòng)加速度值
2018年6月2日在江蘇大豐開(kāi)展田間試驗(yàn)。試驗(yàn)所用油菜品種為浙油51,油菜的物質(zhì)特性如下:籽粒含水率18.1%,莖稈含水率52.6%,千粒質(zhì)量3.93 g,底莢高46.0 cm,冠狀直徑33.5 mm,植株高度128.3 cm,產(chǎn)量3 118 kg·hm-2。
根據(jù)農(nóng)業(yè)機(jī)械推廣鑒定大綱《油菜聯(lián)合收獲機(jī)》(DG/ T057)、中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)-油菜聯(lián)合收獲機(jī)質(zhì)量評(píng)價(jià)技術(shù)規(guī)范(NY/T 1231-2006)中的試驗(yàn)方法開(kāi)展田間試驗(yàn)[22-23]。試驗(yàn)預(yù)備區(qū)長(zhǎng)度25 m,測(cè)區(qū)長(zhǎng)度25 m。收割機(jī)以3種不同的前進(jìn)速度進(jìn)行收獲試驗(yàn),每種速度重復(fù)試驗(yàn)3次取平均值,試驗(yàn)共開(kāi)展9次。每次試驗(yàn)結(jié)束后,計(jì)算割臺(tái)損失率、豎割刀分行損失率、收獲總損失率和切割速比,檢測(cè)裝備雙向電驅(qū)動(dòng)分行豎割刀后油菜聯(lián)合收割機(jī)的收獲效果,對(duì)比不同切割速度速比下豎割刀的分行損失。
割臺(tái)損失的檢測(cè)方法為:在測(cè)區(qū)內(nèi)橫向等間距放置3個(gè)尺寸為3 m×0.15 m×0.06 m的鋼板接料槽,槽內(nèi)鋪有絨布,超出割臺(tái)割幅的部分放置于豎割刀一側(cè),接取機(jī)器經(jīng)過(guò)測(cè)點(diǎn)時(shí)所掉落的籽粒和莢果,清選分離后稱(chēng)量籽粒質(zhì)量。測(cè)區(qū)內(nèi)割臺(tái)損失的計(jì)算方法為:
式中1為割臺(tái)損失質(zhì)量,g;1為接料槽中收集的籽粒質(zhì)量,g;1=25為測(cè)區(qū)面積,m2;為割幅,通過(guò)測(cè)量收割前后作物邊界線(xiàn)與標(biāo)桿的距離獲得,m;2為3個(gè)接料槽的槽內(nèi)口面積之和,m2。
豎割刀分行損失的檢測(cè)方法為:試驗(yàn)開(kāi)始前,沿豎割刀作業(yè)區(qū)域放置1.5 m×0.3 m×0.06 m的接料槽(長(zhǎng)邊與收割機(jī)前進(jìn)方向平行),接取豎割刀分行造成的散落籽粒和莢果,清選分離后稱(chēng)量籽粒質(zhì)量,測(cè)區(qū)內(nèi)豎割刀分行損失的計(jì)算方法為:
式中2為豎割刀分行損失質(zhì)量,g;2為接料槽中收集的籽粒質(zhì)量,g。
脫粒清選損失測(cè)試用透氣編織網(wǎng)袋接取清選機(jī)構(gòu)上篩和下篩排出物,分離出角果和籽粒,稱(chēng)量籽粒質(zhì)量3為脫粒清選損失質(zhì)量。
設(shè)測(cè)區(qū)內(nèi)收獲的籽??傎|(zhì)量為4,測(cè)區(qū)內(nèi)籽粒的總質(zhì)量包括割臺(tái)損失質(zhì)量1、脫粒清選損失質(zhì)量3和收獲到的籽粒質(zhì)量:
=1+3+4(17)
損失率計(jì)算方法為:
i= M/(=1,2,3) (18)
式中1為割臺(tái)損失率,%;2為豎割刀分行損失率,%;3為脫粒清選損失率,%。
通過(guò)電機(jī)驅(qū)動(dòng)器調(diào)節(jié)豎割刀驅(qū)動(dòng)電機(jī)轉(zhuǎn)速至650 rad/min,依據(jù)式(8)、式(10)計(jì)算切割速比,試驗(yàn)結(jié)果如表4所示。
表4 田間試驗(yàn)結(jié)果
裝備雙向電驅(qū)動(dòng)分行豎割刀的油菜聯(lián)合收割機(jī)割臺(tái)損失率平均值為3.37%,油菜聯(lián)合收割機(jī)收獲總損失率平均值為6.15%,豎割刀分行損失率平均值為1.03%,占割臺(tái)損失的27.84%,而傳統(tǒng)油菜聯(lián)合收割機(jī)豎割刀分行損失率占割臺(tái)損失的40%以上[1-2]。
在切割速比為1.08、1.63、2.40時(shí),豎割刀的分行損失率分別為0.90%、1.04%、1.14%。在接近最優(yōu)切割速比1.1時(shí),豎割刀分行損失率最小為0.90%,相較另外2種切割速比,豎割刀分行損失率分別減小了13.5%和26.7%,在最優(yōu)切割速比下工作可以有效降低豎割刀分行損失。
試驗(yàn)表明,所設(shè)計(jì)的電驅(qū)雙動(dòng)式豎割刀可以降低收割機(jī)的工作振動(dòng),減小豎割刀分行損失,并且在最優(yōu)切割速比下作業(yè)分行損失率最小。
1)設(shè)計(jì)了一種雙偏心輪驅(qū)動(dòng)機(jī)構(gòu)驅(qū)動(dòng)雙動(dòng)割刀,2個(gè)刀片的位移、速度和加速度曲線(xiàn)相同,但相位相差π,加速度慣性力相互抵消,減小了對(duì)割臺(tái)振動(dòng)的影響;以雙動(dòng)片動(dòng)夾持油菜莖稈切割不滑動(dòng)為約束條件,得到動(dòng)刀滑切角為19°。
2)建立了雙動(dòng)刀切割軌跡方程,通過(guò)數(shù)值分析,擬合了未切割率、重復(fù)切割率與切割速比間的關(guān)系,并以未切割率與重復(fù)切割比之和最小為約束條件,得到最優(yōu)切割速比為1.1。
3)試驗(yàn)表明,豎割刀工作時(shí),割臺(tái)振動(dòng)加速度為0.11g,為橫割刀振動(dòng)加速度的11%,增加豎割刀后,割臺(tái)振動(dòng)加速度僅增加0.08。裝備有電驅(qū)雙動(dòng)式豎割刀的油菜聯(lián)合收割機(jī)收獲總損失率平均值為6.15%,其中割臺(tái)損失率為3.37%,豎割刀平均分行損失率為1.03%。在接近最優(yōu)切割速比1.1時(shí),豎割刀分行損失率最小為0.90%。
后續(xù)研究中需進(jìn)一步研究豎割刀切割速度與前進(jìn)速度自適應(yīng)匹配控制系統(tǒng),根據(jù)收割機(jī)的前進(jìn)速度實(shí)時(shí)自動(dòng)調(diào)節(jié)分行豎割刀驅(qū)動(dòng)電機(jī)轉(zhuǎn)速,在收割機(jī)變速工作時(shí)仍可以維持最優(yōu)切割速比,獲得最佳的切割效果。
[1] Ma Ni, Zhang Chunlei, Li Jun, et al. Mechanical harvesting effects on seed yield loss, quality traits and profitability of winter oilseed rape (L.)[J]. Journal of Integrative Agriculture, 2012, 11(8):1297-1304.
[2] Hobson R N. Seed loss when cutting a standing crop of oilseed rape with two types of combine harvester header[J]. Biosystems Engineering, 2002, 81(3): 281-286
[3] 夏萍,印崧,陳黎卿,等. 收獲機(jī)械往復(fù)式切割器切割圖的數(shù)值模擬與仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(3):65-68. Xia Ping, Yin Song, Chen Liqing, et al. Numerical simulation of cutting pattern of a reciprocating cutter[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(3): 65-68. (in Chinese with English abstract)
[4] 陳翠英,王新忠,何增富. 谷物聯(lián)合收獲機(jī)油菜收獲割臺(tái)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2003,34(5):54-56. Chen Cuiying, Wang Xinzhong, He Zengfu. Design of header for rape harvesting using grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(5): 54-56. (in Chinese with English abstract)
[5] 宋占華,田富洋,張世福,等. 空載狀態(tài)下往復(fù)式棉稈切割器動(dòng)力學(xué)仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):17-22. Song Zhanhua, Tian Fuyang, Zhang Shifu, et al. Simulation and experiment of reciprocating cutter dynamics of cotton stalk under no-load[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(16): 17-22. (in Chinese with English abstract)
[6] 許汝煒,王俊田. 某型號(hào)收割機(jī)割刀機(jī)構(gòu)及其傳動(dòng)部件慣性力平衡的研究[J]. 機(jī)械研究與應(yīng)用,2015,28(1):130-132. Xu Ruwei, Wang Juntian. Research on inertia force equilibrium of cutter and transmission parts in a type of harvester[J]. Mechanical Research and Application, 2015,28(1): 130-132. (in Chinese with English abstract)
[7] 任述光,焦飛,吳明亮,等. 油菜聯(lián)合收獲機(jī)結(jié)構(gòu)參數(shù)對(duì)割臺(tái)振動(dòng)的影響[J]. 農(nóng)機(jī)化研究,2018,40(11):38-43. Ren Shuguang,Jiao Fei,Wu Mingliang,et al. Studies of united harvest machine cutting system structure parameters on the vibration impact[J]. Journal of Agricultural Mechanization Research, 2018,40(11): 38-43. (in Chinese with English abstract)
[8] Somchai Chuan-Udom. Development of a cutter bar driver for reduction of vibration for a rice combine harvester[J]. KKU Res J,2010,15(7): 572-580.
[9] 陳樹(shù)人,盧強(qiáng),仇華錚. 基于LabVIEW的谷物聯(lián)合收獲機(jī)割臺(tái)振動(dòng)測(cè)試分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011,42(增刊):86-89.
Chen Shuren, Lu Qiang, Qiu Huazheng. Header vibration analysis of grain combine harvester based on LabVIEW[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.): 86-89. (in Chinese with English abstract)
[10] 蔡高參,周校民,王忠. 基于雙曲柄滑塊機(jī)構(gòu)的纜線(xiàn)爬行機(jī)器人機(jī)構(gòu)本體設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì),2010,27(11):24-27. Cai Gaocan, Zhou Xiaomin, Wang Zhong. Mechanical structure design based on dual-crank-slider mechanism of the cable crawling robot[J]. Journal of Machine Design, 2010, 27(11): 24-27. (in Chinese with English abstract)
[11] 王紹清,孫鈿科,于紅娟,等. 基于雙偏心輪驅(qū)動(dòng)機(jī)構(gòu)基本參數(shù)的運(yùn)動(dòng)軌跡的分析與研究[J]. 機(jī)械設(shè)計(jì)與制造,2013,51(3):38-40. Wang Shaoqing, Sun Tianke, Yu Hongjuan, et al. The analysis of the trajectories based on the basic parameters of the double eccentric wheel drive mechanism[J]. Machinery Design and Manufacture, 2013, 51(3): 38-40. (in Chinese with English abstract)
[12] 熊永森,龔永堅(jiān). 全喂入聯(lián)合收割機(jī)雙動(dòng)刀切割器設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2007,29(10):92-94. Xiong Yongsen, Gong Yongjian. Design of double moving-blade cutter of whole-feeding combine harvester[J]. Journal of Agricultural Mechanization Research, 2007, 29(10): 92-94. (in Chinese with English abstract)
[13] 陳霓,龔永堅(jiān),陳德俊,等. 全喂入聯(lián)合收獲機(jī)雙動(dòng)刀切割器與驅(qū)動(dòng)機(jī)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(9):60-63. Chen Ni. Gong Yongjian, Chen Junde, et al. Double knife section reciprocating cutter and drive mechanism for combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 60-63. (in Chinese with English abstract)
[14] 張彬,李顯旺,黃繼承,等. 苧麻聯(lián)合收割機(jī)雙動(dòng)刀的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2012,56(6):71-73. Zhang Bin, Li Xianwang, Huang Jicheng, et al. Design and experiment of ramie combine harvester with double blade cut [J]. Chinese Agricultural Mechanization, 2012, 56(6): 71-73. (in Chinese with English abstract)
[15] 徐秀英,張維強(qiáng),楊和梅,等. 小型牧草收獲機(jī)雙動(dòng)切割裝置設(shè)計(jì)與運(yùn)動(dòng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):156-161. Xu Xiuying, Zhang Weiqiang, Yang Hemei, et al. Design and kinematic analysis of double-acting cutting device of walk-type pasture reaper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 156-161. (in Chinese with English abstract)
[16] 劉志剛,王德成,翟改霞,等. 往復(fù)式雙動(dòng)刀灌木收割機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊2):102-106. Liu Zhigang, Wang Decheng, Zhai Gaixia, et al. Design and experiment on reciprocating double knife shrub harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.2): 102-106. (in Chinese with English abstract)
[17] 徐立章,李耀明,馬朝興,等. 4LYB1-2. 0型油菜聯(lián)合收獲機(jī)主要部件的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(8):54-57. Xu Lizhang, Li Yaoming, Ma Chaoxing, et al. Design of main working parts of 4LYB1-2.0 rape combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 54-58. (in Chinese with English abstract)
[18] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 中國(guó)國(guó)家標(biāo)準(zhǔn)委員會(huì). 農(nóng)業(yè)機(jī)械切割器:GB/T 1209.1-2009[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009-11.
[19] 吳明亮,官春云,湯楚宙,等. 油菜莖稈切割力影響因素試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):141-144. Wu Mingliang, Guan Chunyun, Tang Chuzhou, et al. Experiments on influencing factors of cutting force of rape stem.[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 141-144. (in Chinese with English abstract)
[20] Petre Miu. Combine Harvesters: Theory, Modeling, and Design[M]. Boca Raton:Crc Press, 2015.
[21] 李耀明,李有為,徐立章,等. 聯(lián)合收獲機(jī)割臺(tái)機(jī)架結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):30-37. Li Yaoming, Li Youwei, Xu Lizhang, et al. Structural parameter optimization of combine harvester cutting bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 30-37. (in Chinese with English abstract)
[22] 中華人民共和國(guó)農(nóng)業(yè)部.油菜聯(lián)合收獲機(jī):DG/T 057- 2011[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2011-07.
[23] 中華人民共和國(guó)農(nóng)業(yè)部. 油菜聯(lián)合收獲機(jī)質(zhì)量評(píng)價(jià)技術(shù)規(guī)范: NY/T 1231-2006[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2006-12.
Design of bidirectional electric driven side vertical cutter for rape combine harvester
Guan Zhuohuai, Wu Chongyou, Wang Gang, Li Haitong, Mu Senlin※
(,210014)
The side vertical cutter of the rape combine harvester header is generally composed of a moving blade and a fixed blade which were driven by mechanical structure.This kind of cutting form and transmission structure result in high loss and strong working vibration of the rape combine harvester header. In response to the above problems, bidirectional electric driven side vertical cutter was designed. Bidirectional electric driven side vertical cutter mainly includes driving mechanism and 2 blades. The driving mechanism was composed of motor, a pair of driving gears, symmetric double eccentric wheel and 2 cranks. Symmetric double eccentric wheel mechanism was used as transmission mechanism and its kinematic characteristics were analyzed. The displacement, velocity and acceleration curves of the 2 blades had the same shape, but the phase difference was π, and the acceleration inertial forces cancel each other out, which could reduce the influence on the vibration of the header. According to the mechanical model of blade cutting rape stem, main parameters of the transmission mechanism and the blade were determined. The mechanical model of side vertical cutter cutting rapeseed stem was established. According to the mechanical condition that rape stem was clamped by blades but does not slide, the blade slip angle was determined to be 19°. Double action cutters cutting trajectory equations were established. Based on numerical simulation, the cutting effects under different cutting speed ratios (the ratio of the average speed of the cutter to the forward speed of the harvester) were compared. The relationships between missing rate, repeated rate and cutting speed ratio were fitted. Take the minimum of missing rate and repeated rate as constraint, the optimum cutting speed ratio was determined to be 1.1. Bidirectional electric driven side vertical cutter was applied to 4LZ-6T rapeseed combine harvester. Header vibration test showed that header vibration acceleration was 0.11when only the side vertical cutter working. When the cross cutter and side vertical cutter working at the same time, the vibration acceleration of the header was 1.09, which was only 0.08higher than that of the cross cutter working.Field tests showed that the total loss rate of rapeseed combine harvester equipped with bidirectional electric driven side vertical cutter was 6.15%, among which the loss rate of the header was 3.37%, and the loss rate of the side vertical cutter was 1.03%. When the cutting speed ratio were 1.08, 1.63, 2.40, the siding loss rate of vertical cutter were 0.90%, 1.04%, 1.14%, respectively. When cutting speed ratio was close to the optimal value 1.1, siding loss rate of vertical cutter was 0.90%, which was 13.5% and 26.7% lower than that of the other 2 cutting speed ratios, appropriate cutting speed ratio could effectively reduce the siding loss. This study can provide the basis for the improvement of rapeseed headers structure and the performance of rape combine harvester.
mechanization; harvesting; design; rape combine harvester; side vertical cutter; cutting trajectory; vibration
關(guān)卓懷,吳崇友,王 剛,李海同,沐森林.油菜聯(lián)合收割機(jī)雙向電驅(qū)動(dòng)分行豎割刀設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):1-8. doi:10.11975/j.issn.1002-6819.2019.03.001 http://www.tcsae.org
Guan Zhuohuai, Wu Chongyou, Wang Gang, Li Haitong, Mu Senlin. Design of bidirectional electric driven side vertical cutter for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 1-8. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.001 http://www.tcsae.org
2018-09-26
2019-01-13
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0702101);中國(guó)農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(S201821);國(guó)家油菜產(chǎn)業(yè)體系專(zhuān)項(xiàng)資助項(xiàng)目(CARS-13-10B)
關(guān)卓懷,助理研究員,主要從事收獲機(jī)械研究。 Email:guanzhuohuai@163.com
沐森林,副研究員,主要從事收獲機(jī)械研究。 Email:398764546@qq.com
10.11975/j.issn.1002-6819.2019.03.001
S225.31
A
1002-6819(2019)-03-0001-08