• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Topological Indices Computing Results If Archimedean Lattices L(4,6,12)

    2019-02-22 07:32:50KangQiongandXintingLi
    Computers Materials&Continua 2019年1期

    Kang Qiong and Xinting Li

    Abstract: The introduction of graph-theoretical structure descriptors represents an important step forward in the research of predictive models in chemistry and falls within the lines of the increasing use of mathematical and computational methods in contemporary chemistry. The basis for these models is the study of the quantitative structure-property and structure-activity relationship. In this paper, we investigate Great rhom-bitrihexagonal which is a kind of dodecagon honeycomb net-work covered by quadrangle and hexagon. Many topological indexes of Great rhom-bitrihexagonal have being investigated, such as sum-connectivity index, atom-bond connectivity index,geometric-arithmetic index, fifth, harmonic index, Randi? connectivity index, first Zagreb index, second Zagreb index and the corresponding Zagreb polynomials, modified Zagreb index, fourth atom-bond connectivity index, augmented Zagreb index, hyper-Zagreb index, Sankruti index, forgotten topological index, first multiple Zagreb index,second multiple Zagreb index, as well as derived geometric-arithmetic index, Narumi-Katayama index and modified Narumi-Katayama index.

    Keywords: Topological index, L4,6,12 circumference, graph theory, molecular biology.

    1 Introduction

    There is an undirected graph without multiple edges and loops that is considered in this paper. We defineGas a graph, and defineE(G)andV(G)as the edge set and vertex set of G. In additional, we defined(v)as the degree of the a vertexvandN(v)as the set of neighbours ofvin graph. We useEa,bexpress the set of edges that the degrees of end verticesaandb, i.e.Ea,b={uv| {a,b}={d(u),d(v)}. Let the summation of a vertexubesG(u), i.e.sG(u)=and E'a,b={uv|{a,b}={sG(u),sG(v)}}. Topological Index has been derived for many years, the theory of chemical graph contains both compute graph theory and chemical graph theory. As a newly boundary science between chemistry and computer science, which become more and more concerned [Luo and Zhang (2012)]. It has become a significant branch of mathematical chemistry. In traditional chemistry, the researchers exploit the chemical properties of matter by means of experiment. But in molecular chemistry, a molecular structure is viewed as a so-called chemical graph, in which way, vertices is regarded as chemical atom and edge is regarded as chemical bond.As a useful tool of research, chemical graph is applied to reveal the relationships between various physical characteristics and chemical structures, such as biological activity,chemical reactivity [Van, Carter, Grassy et al. (1997)]. In 1947, Harold Wiener first used topological indices on the research of paraffin's boiling points. In his paper, Wiener index is introduced to reveal relationships between the index of their molecular graphs and physicochemical properties of organic compounds [Iranmanesh, Alizadeh and Taherkhani(2008)]. Furthermore, such an index reveals the correlations of physicochemical properties of alkanes, alcohols, amines and their analogous compounds [Ali, Yaser and Bahman(2008)]. There was Randi? connectivity index, one of topological indexes, applied to the study of branching properties of alkanes [Randic (1975)].

    Definition 1The connectivity index (or Randi? Index) of a graph G, denoted by χ(G),was defined as follow:

    There is another Randi? index, named the harmonic index, as is first introduced in Fajtlowicz et al. [Fajtlowicz and Waller (1986)].

    Definition 2The harmonic index H(G) is defined in a graph as follow.

    In 1998, Estrada et al. [Estrada, Torres and Rodríguez et al. (1998)] put forward the atombond connectivity (ABC) index, in order to improve Randi? classic connectivity index.

    Definition 3Estrada introduced ABC index, also named atom-bond connectivity index,in 1998. And ABC index is defined as

    In 1998, Estrada [Estrada (2008)] demonstrated that there is a linear relationship between alkanes’ experimental heats of formation and ABC index. Furthermore, in 2008, Estrada built the physical basis for this relationship. A new version of ABC index was introduced by Ghorbani et al. [Ghorbani and Hosseinzadeh (2010)], named (ABC4) index.

    Definition 4The new version of atom-bond connectivity(ABC4)index is defined as

    In 2010, Furtula et al. [Furtula and Gutman (2015)] refers a new topological index,named “augmented Zagreb index”, and furthermore, the upper and lower bounds of chemical tree can be attained.

    Definition 5The augmented Zagreb index AZI(G) is defined as

    In 1972, Gutman et al. [Gutman and Trinajsti? (1972)] introduced the first and second Zagreb indiecs of a molecular graph.

    Definition 6The first Zagreb index M1(G)[Nikoli?, Kova?evi?, Mili?evi? et al. (2003)] is defined as

    Definition 7The second Zagreb index M2(G)[Nikoli?, Kova?evi?, Mili?evi? et al. (2003)]is defined as

    In 1972, Furtula et al. [Furtula and Gutmanstudied the total π-electron energy’s structure-dependency. He found that there was a relationship between the sum of square of the vertex degrees of the molecular graph and the total π-electron energy’s structuredependency. At the same time, he introduced the “forgotten topological index”.

    Definition 8The forgotten topological index F(G) defined by Furtula is shown as follow:

    On the basis of the above Zagreb indices, the first Zagreb polynomialM1(G,x) and the second Zagreb polynomialM2(G,x) have been defined [Farahani (2013); Fath-Tabar(2009)].

    Definition 9The first Zagreb multinomial M1(G,x)is defined as

    Definition 10The second Zagreb multinomial M2(G,x) is defined as

    A problem with the Zagreb indices is that their contributing parts give greater weights to inner vertices and edges and smaller weights to outer vertices and edges of a graph. This opposes intuitive reasoning that outer atoms and bonds should have greater weights than inner vertices and bonds because outer vertices and bonds are associated with a larger part of the molecular surface and are consequently expected to make a greater contribution to physical, chemical and biological properties [Mili?evi? and Nikoli?(2004)].So the modified Zagreb index was proposed to correct the problem that former Zagreb(G) index contributing more weights to inner bonds and less weights to outer bonds. According to chemists' intuition, this index, on the contrary, outer bonds should have greater weights than inner bonds.

    Definition11The modified Zagreb index M(G) is defined as

    Zhou et al. [Zhou and Trinajsti? (2009)] presents a novel connectivity index for molecular graphs, named sum-connectivity index, gives lower and upper bounds when graph structural invariant.

    Definition12The sum-connectivity index is defined [Zhou and Trinajsti? (2009)] as

    Vuki?evi? proposed a new topological index based on the end-vertex degrees of edges named as geometrical-arithmetic index (GA), and presented its basic features.

    Definition13The expression of geometric-arithmetic index is defined as

    Graovac et al. [Graovac, Ghorbani and Hosseinzadeh (2011)] lately introdue the fifth geometric-arithmetic topological index.

    Definition14The fifth geometric-arithmetic topological index GA5 is defined as

    In 2013, Shirdel et al. [Shirdel, Rezapour and Sayadi (2013)] defined a new distancebased Zagreb indice named “hyper-zagreb index”.

    Definition15The hyper-Zagreb index is defined as

    Based on the many researches recently, Hosamani [Hosamani (2017)] proposed a new topological index, named “Sanskruti index S(G)” of a molecular graph G that can be utilized to estimate the bioactivity of chemical compounds.

    Definition16The Sankruti index of a graph G is defined as

    Based on degrees of vertices in a given molecular graph, Ghorbani et al. [Ghorbani and Azimi (2012)] produced the multiple versions of Zagreb indices. They are named as the first multiple Zagreb index and the second multiple Zagreb index.

    Definition17The first multiple Zagreb index PM1(G)is defined as:

    Definition18The second multiple Zagreb index PM2(G)is defined as:

    In 1984, Narumi et al. [Narumi and Katayama (1984)] defined “simple topological index”as the product of orders at vertexes of a graph. It can be used on the study of thermodynamic data including boiling points. Recently, more studies on the graph widely introduced “Narumi Katayama index” [Tomovic and Gutman (2001)].

    Definition19Narumi et al. [Narumi and Katayama(1984)] defined this index as follow:

    Definition20Ghorbani et al. [Ghorbani and Azimi (2012)] defined the modified Narumi-Katayama index, in which each vertex degree d is multiplied d times.

    It can be seen in this paper, the modified Narumi-Katayama index and second multiplicative Zagreb index are the same.

    2 Results

    The Archimedean lattices are the graphs of vertex transitive, it can be embedded in a plane that each face is a regular polygon [Martinez (1973)].The family of Archimedean lattices contains 11 kinds of 2D lattices, which include the famous honeycomb lattices and square, triangle, kagomé. Based on the sizes of faces incident to a given vertex, the names of the lattices are given. The sizes of face are listed in order, from the smallest to largest. So, in this way, we can nominate the Archimedean lattices as follow (4, 4, 4, 4),abbreviated to (44), Kagome is (3, 6, 3, 6) [Codello (2010)] and honeycomb is called (63).In this paper, we define an archimedean lattice called (4, 6, 12). And we name this lattice L4,6,12circumference. In geometry, the Great rhombitrihexagonal contains one dodecagon,two hexagons, and three squares on each edge, as is shown in Fig. L4,6,12(n) and in Fig.L4,6,12(n) molecular structure wheren=2 circle is shown. Furthermore Fig. L4,6,12(n)presents then=3 circle.

    Figure 1: The Archimedean lattice L4,6,12(n)

    In terms of observing and computing, we can induce the |V2|=6n, |V3|=18n2-6n. And by means of further calculating, we can inferE(s,t)andS(s,t)corresponding to differents,andt, as is shown in the Tab. 1.

    Table 1: Partition the edge set of L4,6,12(n) into Es,t

    Table 2: Partition the edge set of L4,6,12(n) into E’s,t

    Theorem 1Let G be and L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 1.By the definition of ABC4index, we have

    Theorem 2Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2.By the definition of Atom-bond Connectivity index, we have

    Theorem 3Let G be an L4,6,12(n) circumference, then

    ProofBased on the edge partition given in Tab. 2. The result of equation can be obtained.By the definition of Randi? connectivity index, we have

    Theorem 4Let G be an L4,6,12(n) circumference, then Χ(G)=

    ProofThe result is obtained based on the edge partition given in Tab. 2. According to the definition of sum-connectivity index, we have

    Theorem 5Let G be an L4,6,12(n) circumference, then M1(G)= 32n2-60n.

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of First Zagreb index, we have

    Theorem 6Let G be an L4,6,12(n) circumference, then M2G)=486n2-120n.

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Second Zagreb index, we have

    Theorem 7Let G be an L4,6,12(n) circumference, then M1(G,x)=(54n2-24n)x6+12nx5+6nx4

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of First Zagreb polynomialM1(G,x)index, we have

    Theorem 8Let G be an L4,6,12(n) circumference, then M2(G,x)=(54n2-24n)x9+12nx6+6nx4

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Second Zagreb polynomialM2(G,x)index, we have

    Theorem 9Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Augmented Zagreb index, we have

    Theorem 10Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of modified Zagreb index, we have

    Theorem 11Let G be an L4,6,12(n) circumference, then HM(G)=1944 n2-468n

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of hyper-Zagreb index, we have

    Theorem 12Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Geometric-Arithmetic index, we have

    Theorem 13Let G be an L4,6,12(n) circumference, then GA5(G)=54n2+

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of GA5index, we have

    Theorem 14Let G be an L4,6,12(n) circumference, then S(G)=(54n-48n+6)2-

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Sankruti index, we have

    Theorem 15Let G be an L4,6,12(n) circumference, then F(G)=972n2-228n.

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of forgotten index, we have

    Theorem 16Let G be an L4,6,12(n) circumference, then H(G)=18n2-

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of Harmonic index, we have

    Theorem 17Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of first multiple Zagreb index, we have

    Theorem 18Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of first multiple Zagreb index, we have

    Theorem 19Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of second multiple Zagreb index, we have

    Theorem 20Let G be an L4,6,12(n) circumference, then

    ProofThe result is obtained based on the edge partition given in Tab. 2. By the definition of modified Narumi-Katayama index, we have

    3 Conclusions

    The topological index is defined for a topological graph which has nothing to do with distances, angles, steric strain, or hindrance. Therefore, without substantial modification,the topological index cannot account for the difference in physical quantities of geometrical isomers, or for the overcrowded effect expected for compounds having vicinal quarter carbon atoms. So these indexes are expected to be dependent on the topological nature of the skeleton of a system like a molecule.

    A class of dodecagon honeycomb network which is covered by C4, C8and C12has been investigated here, and formulas for their Randi? connectivity index, fourth Atom-Bond Connectivity index, Geometric-Arithmetic index, fifth Geometric-Arithmetic index,Atom-Bond Connectivity index, First Zagreb index, Second Zagreb index and the corresponding Zagreb polynomials, modified Zagreb index, Augmented Zagreb index,hyper-Zagreb index, forgotten topological index, first multiple Zagreb index, second multiple Zagreb, harmonic index, Sankruti index, index, Narumi-Katayama index and modified Narumi-Katayama index have been derived.

    免费不卡黄色视频| 成人欧美大片| 久久中文看片网| 窝窝影院91人妻| 村上凉子中文字幕在线| 亚洲av成人不卡在线观看播放网| 欧美国产日韩亚洲一区| 中文字幕人妻熟女乱码| 久久精品国产亚洲av高清一级| 久久天堂一区二区三区四区| 日韩免费av在线播放| 搡老熟女国产l中国老女人| 国产高清videossex| 久久香蕉激情| 久久久久久久精品吃奶| 免费在线观看完整版高清| 国产三级在线视频| 9热在线视频观看99| aaaaa片日本免费| 制服丝袜大香蕉在线| 国产蜜桃级精品一区二区三区| 午夜精品国产一区二区电影| 久久久久国产精品人妻aⅴ院| 人人澡人人妻人| 首页视频小说图片口味搜索| 国产精品久久视频播放| 久久久精品欧美日韩精品| 亚洲第一av免费看| 麻豆久久精品国产亚洲av| 欧美国产精品va在线观看不卡| 日韩大尺度精品在线看网址 | 欧美大码av| 国产区一区二久久| 午夜福利视频1000在线观看 | 一级毛片精品| 日本三级黄在线观看| 国产成人一区二区三区免费视频网站| 一个人观看的视频www高清免费观看 | 黄色视频,在线免费观看| 免费av毛片视频| 女人高潮潮喷娇喘18禁视频| 亚洲电影在线观看av| 欧美绝顶高潮抽搐喷水| 高潮久久久久久久久久久不卡| 色综合欧美亚洲国产小说| 亚洲成av人片免费观看| 久久精品国产亚洲av高清一级| 99在线人妻在线中文字幕| 在线观看免费视频网站a站| 波多野结衣高清无吗| 动漫黄色视频在线观看| 色老头精品视频在线观看| 亚洲午夜理论影院| 我的亚洲天堂| 国产精品 欧美亚洲| e午夜精品久久久久久久| 国产av又大| 免费搜索国产男女视频| 国产精品精品国产色婷婷| 国产精品一区二区三区四区久久 | 少妇熟女aⅴ在线视频| 国产精品野战在线观看| 中文字幕最新亚洲高清| 可以免费在线观看a视频的电影网站| av福利片在线| 久久久久九九精品影院| 日日干狠狠操夜夜爽| 91成年电影在线观看| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av香蕉五月| 日本五十路高清| 午夜视频精品福利| 又紧又爽又黄一区二区| 无限看片的www在线观看| 中文字幕av电影在线播放| 最新美女视频免费是黄的| 精品午夜福利视频在线观看一区| 国产成人av教育| 亚洲色图 男人天堂 中文字幕| 久久久久久久久久久久大奶| 日本免费a在线| 久久久久久久精品吃奶| 日韩精品免费视频一区二区三区| 国产男靠女视频免费网站| 国产高清视频在线播放一区| 成人特级黄色片久久久久久久| 国产精品国产高清国产av| 搡老熟女国产l中国老女人| 一级毛片精品| 亚洲情色 制服丝袜| www.精华液| 中出人妻视频一区二区| 老司机午夜十八禁免费视频| 久久久国产成人免费| 亚洲五月婷婷丁香| 18美女黄网站色大片免费观看| 两个人视频免费观看高清| 免费高清在线观看日韩| 在线观看免费视频网站a站| 国产精品亚洲一级av第二区| 亚洲国产精品久久男人天堂| 精品久久蜜臀av无| 亚洲免费av在线视频| 精品一区二区三区四区五区乱码| 操出白浆在线播放| 午夜久久久在线观看| 操美女的视频在线观看| 非洲黑人性xxxx精品又粗又长| tocl精华| 桃红色精品国产亚洲av| www.www免费av| 久久精品91无色码中文字幕| 啪啪无遮挡十八禁网站| 狠狠狠狠99中文字幕| 日本免费a在线| 欧美日韩乱码在线| 免费看美女性在线毛片视频| 亚洲av电影在线进入| 国产一区二区激情短视频| 变态另类丝袜制服| 亚洲熟妇中文字幕五十中出| 免费在线观看完整版高清| 国产精品,欧美在线| 久久天堂一区二区三区四区| 国产精品久久久久久精品电影 | 国产在线观看jvid| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 无遮挡黄片免费观看| 亚洲自拍偷在线| 成人三级黄色视频| 无遮挡黄片免费观看| 欧美av亚洲av综合av国产av| 成人三级黄色视频| 巨乳人妻的诱惑在线观看| 美女免费视频网站| 国产xxxxx性猛交| 国产不卡一卡二| av在线播放免费不卡| av在线播放免费不卡| 欧美黑人精品巨大| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲av香蕉五月| 国产免费av片在线观看野外av| 一区二区日韩欧美中文字幕| 久热这里只有精品99| 亚洲激情在线av| 精品乱码久久久久久99久播| 深夜精品福利| 亚洲熟妇熟女久久| 国产一区二区激情短视频| 91成年电影在线观看| 大陆偷拍与自拍| 一夜夜www| 国产精品久久久久久人妻精品电影| 免费人成视频x8x8入口观看| 国产精品久久视频播放| 午夜福利视频1000在线观看 | 国产精品免费视频内射| 欧美精品亚洲一区二区| 黑人巨大精品欧美一区二区mp4| 成人特级黄色片久久久久久久| 亚洲一区二区三区色噜噜| 久久久久久人人人人人| 亚洲伊人色综图| 成人三级黄色视频| 久久精品aⅴ一区二区三区四区| 国产精品久久久久久精品电影 | 免费在线观看完整版高清| 亚洲av成人av| 天天添夜夜摸| 高清黄色对白视频在线免费看| e午夜精品久久久久久久| 精品国产一区二区久久| 男女午夜视频在线观看| 中文亚洲av片在线观看爽| 国产又色又爽无遮挡免费看| 国产一区二区激情短视频| 9色porny在线观看| 变态另类丝袜制服| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲熟女毛片儿| 亚洲精品中文字幕在线视频| 伊人久久大香线蕉亚洲五| 亚洲成人精品中文字幕电影| 精品国产一区二区三区四区第35| 一区二区日韩欧美中文字幕| 99热只有精品国产| 国产精品日韩av在线免费观看 | 久久 成人 亚洲| 一本大道久久a久久精品| 亚洲色图av天堂| 妹子高潮喷水视频| www.自偷自拍.com| 精品国产一区二区三区四区第35| 久久天堂一区二区三区四区| 国产黄a三级三级三级人| av在线天堂中文字幕| 久久久久久久精品吃奶| 国产精华一区二区三区| e午夜精品久久久久久久| 99国产精品99久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷精品国产亚洲av在线| 日本欧美视频一区| 久久精品国产亚洲av香蕉五月| 亚洲av成人av| 免费观看人在逋| 在线观看午夜福利视频| 国产欧美日韩综合在线一区二区| 少妇的丰满在线观看| 级片在线观看| 亚洲欧美精品综合一区二区三区| 国产av一区二区精品久久| 男女之事视频高清在线观看| 在线观看免费日韩欧美大片| 国产精品秋霞免费鲁丝片| 欧美另类亚洲清纯唯美| 夜夜躁狠狠躁天天躁| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 嫩草影视91久久| 欧美黑人精品巨大| 黄色视频不卡| 精品免费久久久久久久清纯| 国产亚洲av嫩草精品影院| 免费不卡黄色视频| 亚洲精品国产色婷婷电影| 国产1区2区3区精品| 亚洲一区中文字幕在线| 亚洲成人久久性| 精品国产一区二区三区四区第35| 国产精品二区激情视频| 免费观看人在逋| 香蕉国产在线看| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产色婷婷电影| 丝袜美足系列| 国产精品一区二区精品视频观看| 日本免费一区二区三区高清不卡 | 桃色一区二区三区在线观看| 伦理电影免费视频| 精品国产国语对白av| 欧美成人午夜精品| 亚洲精品在线观看二区| 国产蜜桃级精品一区二区三区| 色综合站精品国产| av超薄肉色丝袜交足视频| 人人妻人人澡人人看| 日本在线视频免费播放| 一区二区三区国产精品乱码| 97人妻天天添夜夜摸| 嫩草影视91久久| 亚洲激情在线av| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利视频1000在线观看 | 日韩欧美国产一区二区入口| 精品人妻在线不人妻| 一个人免费在线观看的高清视频| 亚洲精品久久国产高清桃花| 99久久精品国产亚洲精品| 正在播放国产对白刺激| 一本综合久久免费| 黄色 视频免费看| 日韩精品免费视频一区二区三区| 色综合站精品国产| 一边摸一边抽搐一进一小说| 97超级碰碰碰精品色视频在线观看| 正在播放国产对白刺激| 欧美乱色亚洲激情| 少妇粗大呻吟视频| 国产av一区二区精品久久| 黄色视频,在线免费观看| 亚洲成av人片免费观看| 欧美日韩亚洲国产一区二区在线观看| 真人做人爱边吃奶动态| 精品少妇一区二区三区视频日本电影| 国产野战对白在线观看| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 老司机午夜十八禁免费视频| 欧美久久黑人一区二区| 国产精品乱码一区二三区的特点 | 久久午夜亚洲精品久久| 国产精品久久电影中文字幕| 多毛熟女@视频| 亚洲国产日韩欧美精品在线观看 | 国产国语露脸激情在线看| 色尼玛亚洲综合影院| av电影中文网址| 国产欧美日韩一区二区三区在线| 午夜免费观看网址| 男女下面插进去视频免费观看| 黄色片一级片一级黄色片| 成人18禁高潮啪啪吃奶动态图| 欧美日韩瑟瑟在线播放| www.自偷自拍.com| 美女高潮喷水抽搐中文字幕| 电影成人av| 久久草成人影院| 9191精品国产免费久久| 一区二区三区高清视频在线| 欧美午夜高清在线| 69av精品久久久久久| 欧美黄色淫秽网站| 丝袜美足系列| 少妇粗大呻吟视频| 99精品欧美一区二区三区四区| 亚洲国产欧美一区二区综合| 成人国语在线视频| 热re99久久国产66热| 国产又爽黄色视频| 男女下面插进去视频免费观看| 热99re8久久精品国产| 免费观看精品视频网站| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 成人欧美大片| 老汉色∧v一级毛片| 黄片小视频在线播放| 亚洲精华国产精华精| 大码成人一级视频| 久久精品亚洲精品国产色婷小说| 日韩欧美国产一区二区入口| av有码第一页| 久久久国产成人免费| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 亚洲激情在线av| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 日韩国内少妇激情av| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女| 操出白浆在线播放| 可以在线观看毛片的网站| 亚洲成人久久性| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 午夜免费鲁丝| 国产99白浆流出| 国产成年人精品一区二区| 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 国产高清videossex| 一二三四在线观看免费中文在| 久久亚洲精品不卡| av超薄肉色丝袜交足视频| 精品久久久久久成人av| 欧美日韩瑟瑟在线播放| 中文字幕人成人乱码亚洲影| 欧美成人性av电影在线观看| 精品日产1卡2卡| 色老头精品视频在线观看| 国产又色又爽无遮挡免费看| 国产成人精品无人区| 精品欧美一区二区三区在线| 国产99白浆流出| 欧美成人性av电影在线观看| 成人18禁在线播放| 在线观看免费视频日本深夜| 欧美老熟妇乱子伦牲交| 黄片大片在线免费观看| 91老司机精品| 一区二区三区高清视频在线| 亚洲精品国产精品久久久不卡| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 嫩草影视91久久| 99国产综合亚洲精品| 久久草成人影院| 欧美激情久久久久久爽电影 | 久久精品国产99精品国产亚洲性色 | 亚洲精品av麻豆狂野| 午夜精品国产一区二区电影| 91成年电影在线观看| 女人精品久久久久毛片| 欧美性长视频在线观看| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 两个人看的免费小视频| 12—13女人毛片做爰片一| 久久久久久久午夜电影| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 午夜福利欧美成人| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 久久精品国产99精品国产亚洲性色 | 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 国产一区二区三区视频了| 久久久久久久午夜电影| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影 | 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| 免费高清视频大片| 亚洲人成伊人成综合网2020| 欧美性长视频在线观看| 色综合亚洲欧美另类图片| tocl精华| 咕卡用的链子| 在线观看免费日韩欧美大片| 在线播放国产精品三级| 国产成人欧美| 极品教师在线免费播放| 亚洲精品国产一区二区精华液| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 国产精品一区二区三区四区久久 | 久久精品人人爽人人爽视色| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 啦啦啦 在线观看视频| 十分钟在线观看高清视频www| 97人妻天天添夜夜摸| 老汉色av国产亚洲站长工具| av片东京热男人的天堂| 国产乱人伦免费视频| 91精品三级在线观看| 国产av精品麻豆| 天堂√8在线中文| 国产亚洲欧美98| 777久久人妻少妇嫩草av网站| 亚洲激情在线av| 国产麻豆成人av免费视频| 欧美日韩瑟瑟在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影 | 日本在线视频免费播放| 国产高清视频在线播放一区| 黄频高清免费视频| 久久国产精品人妻蜜桃| 国产av在哪里看| 1024视频免费在线观看| 波多野结衣巨乳人妻| 在线观看一区二区三区| 久9热在线精品视频| 久久精品亚洲熟妇少妇任你| 深夜精品福利| 亚洲免费av在线视频| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站 | 夜夜爽天天搞| 国产精品野战在线观看| 久久狼人影院| 欧美日韩一级在线毛片| 色老头精品视频在线观看| 日韩三级视频一区二区三区| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 51午夜福利影视在线观看| 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密| 看免费av毛片| 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 在线观看一区二区三区| 精品久久久久久成人av| 日本 av在线| 亚洲avbb在线观看| av欧美777| 午夜久久久在线观看| 美女午夜性视频免费| 免费在线观看黄色视频的| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 伦理电影免费视频| 最好的美女福利视频网| 久久性视频一级片| 亚洲专区字幕在线| 99国产精品免费福利视频| 欧美成人免费av一区二区三区| 午夜视频精品福利| 日本 欧美在线| 91九色精品人成在线观看| 人人妻人人爽人人添夜夜欢视频| 可以免费在线观看a视频的电影网站| 亚洲一区二区三区色噜噜| 久久久久久久精品吃奶| 男男h啪啪无遮挡| 宅男免费午夜| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 视频在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲成av片中文字幕在线观看| 亚洲欧美精品综合久久99| 午夜福利高清视频| www.www免费av| 亚洲最大成人中文| 国产亚洲欧美在线一区二区| 日韩欧美国产在线观看| 丁香欧美五月| x7x7x7水蜜桃| 身体一侧抽搐| 麻豆av在线久日| 日韩国内少妇激情av| 久久久久久国产a免费观看| 制服人妻中文乱码| 中文字幕人成人乱码亚洲影| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 国产精品久久视频播放| 日韩国内少妇激情av| 露出奶头的视频| 久久青草综合色| 亚洲成人国产一区在线观看| 午夜福利成人在线免费观看| 国产男靠女视频免费网站| 中文字幕人妻熟女乱码| 欧美成人午夜精品| av网站免费在线观看视频| 国产精品亚洲美女久久久| 久久香蕉国产精品| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 老司机午夜福利在线观看视频| 乱人伦中国视频| 久久久国产成人免费| 亚洲三区欧美一区| 中亚洲国语对白在线视频| 老司机深夜福利视频在线观看| or卡值多少钱| 黄色毛片三级朝国网站| 淫秽高清视频在线观看| 色播在线永久视频| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 精品一品国产午夜福利视频| 欧美中文日本在线观看视频| 久久久久亚洲av毛片大全| 日韩有码中文字幕| 老汉色∧v一级毛片| 午夜福利视频1000在线观看 | 搡老妇女老女人老熟妇| 欧美日本视频| 亚洲av电影在线进入| 精品久久久久久久人妻蜜臀av | 成人手机av| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 看黄色毛片网站| 欧美激情极品国产一区二区三区| 91老司机精品| 免费在线观看完整版高清| 欧美大码av| 午夜免费观看网址| 亚洲精品国产色婷婷电影| 男女做爰动态图高潮gif福利片 | 女同久久另类99精品国产91| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 中亚洲国语对白在线视频| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看 | 亚洲精品中文字幕一二三四区| 亚洲专区字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 欧美乱色亚洲激情| 91av网站免费观看| 咕卡用的链子| 天天添夜夜摸| 美国免费a级毛片| 国产亚洲精品久久久久5区| 国产伦一二天堂av在线观看| 免费看美女性在线毛片视频| 国产成+人综合+亚洲专区| 制服丝袜大香蕉在线| 欧美 亚洲 国产 日韩一| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 亚洲一码二码三码区别大吗| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 精品福利观看| 麻豆av在线久日| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 国产色视频综合| 12—13女人毛片做爰片一| 女警被强在线播放| 亚洲伊人色综图| 十分钟在线观看高清视频www| 亚洲国产精品sss在线观看| 精品日产1卡2卡| av视频免费观看在线观看| 伦理电影免费视频| 日韩欧美三级三区| 免费在线观看日本一区| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 欧美激情高清一区二区三区| 757午夜福利合集在线观看| 一个人观看的视频www高清免费观看 | 麻豆av在线久日| 久久精品91蜜桃| av福利片在线|