• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using Imbalanced Triangle Synthetic Data for Machine Learning Anomaly Detection

    2019-02-22 07:32:36MenghuaLuoKeWangZhipingCaiAnfengLiuYangyangLiandChakFongCheang
    Computers Materials&Continua 2019年1期

    Menghua Luo , Ke Wang Zhiping Cai , Anfeng Liu, Yangyang Li and Chak Fong Cheang

    Abstract: The extreme imbalanced data problem is the core issue in anomaly detection.The amount of abnormal data is so small that we cannot get adequate information to analyze it. The mainstream methods focus on taking fully advantages of the normal data,of which the discrimination method is that the data not belonging to normal data distribution is the anomaly. From the view of data science, we concentrate on the abnormal data and generate artificial abnormal samples by machine learning method. In this kind of technologies, Synthetic Minority Over-sampling Technique and its improved algorithms are representative milestones, which generate synthetic examples randomly in selected line segments. In our work, we break the limitation of line segment and propose an Imbalanced Triangle Synthetic Data method. In theory, our method covers a wider range. In experiment with real world data, our method performs better than the SMOTE and its meliorations.

    Keywords: Anomaly detection, imbalanced data, synthetic data, machine learning.

    1 Introduction

    Anomaly detection is to discover the abnormal data patterns not following the normal data behavior, in which the abnormal data is also called outlier, stain, inconsistent point or novelty depending on the application field. In our paper, we do not make a distinction between them. Anomaly detection is widely used in many fields, such as fraud detection[Zhang and He (2017); Anderka, Priesterjahn and Priesterjahn (2014)], disease detection[Pham, Nguyen, Dutkiewicz et al. (2017); Jansson, Medvedev, Axelson et al. (2015)],intrusion detection [Jabez and Axelson (2015); Kim, Lee and Kim (2014)], identification system [Huang, Zhu ,Wu et al. (2016); Ibidunmoye and Elmroth (2015)] and fault diagnosis [Dong, Liu and Zhang (2017); Purarjomandlangrudi, Ghapanchi and Esmalifalak (2014)]. In all these application fields, the abnormal data contains very important information. For instance, the fraud behavior of credit card always leads to economic loss. The abnormal data from the Internet in the intrusion detection may imply the sensitive information leakage from the attacked host. Hence, it is of great significance to improve the effect of anomaly detection.

    There are mainly three kinds of approaches to solve the anomaly detection problems. The first one is the statistical model [Kourtis, Xilouris, Gardikis et al. (2017); Harada,Yamagata, Mizuno et al. (2017); Han, Jin, Kang et al. (2015)]. This kind of model needs to select the measure set describing the subject behaviors. Then build the detecting model based on the normal data. Next, choose an evaluation algorithm to calculate the distance between the current subject behavior and the detection model. At last, decide whether the behavior is an anomaly by some kind of decision-making strategy. This method can learn subject behavior adaptively. But if the adaptivity is exploited by the intruders, the anomaly may be treated as normal behaviors by the detecting model. The measure set is always assumed to be conformed to the Normal Distribution or Poisson Distribution,which is not in conformity with the real situation. The second method is the prediction model [Pang, Liu, Liao et al. (2015); Andrysiak, Ukasz, Chora et al. (2014); Pallotta,Vespe and Bryan (2013)]. In this method, the detected object is usually the time series of the events. If there is a big difference between the actual events and the prediction results,it shows that there is an anomaly. The low quality time series patterns are gradually excluded and the high quality ones are left through layers of screening. It is adaptable to the changes in the detected behavior and detects the anomaly that cannot be detected by the statistical model. The third approach is the detecting model based on machine learning [Kulkarni, Pino, French et al. (2016); Bosman, Liotta, Iacca et al. (2014)]. In recent years, these methods become more and more popular. The most significant character is to detect the anomaly by the normal data. Without too much hypothesis, the methods are widely applied in various areas. In all these approaches, the deep learning[Erfani, Rajasegarar, Karunasekera et al. (2016); Li, Wu and Du (2017)] method attracts much attention due to its powerful fitting ability. However, the number selection of the layers and units is mainly dependent on engineering experience and lack of theoretical guidance, which leads to its poor interpretability. The parameters calculation and adjustment need amounts of computing resources to support, which limits its universal extension.

    For all the methods mentioned above, the relative large number of normal data plays a leading role. To get higher anomaly detection rate, complex similarity measure, lots of priori knowledge or artificially set thresholds are introduced, by which the false positive rate has been raised as well. In our work, we jump out of this way of thinking and turn to utilize the limited number of abnormal data. In the angle of data science, anomaly detection belongs to the imbalanced data problems. In the imbalanced data problems, the technique focusing on minority samples is called over-sampling, in which the Synthetic Minority Over-sampling Technique (SMOTE) and its improved algorithms have become the present standard. The artificial examples are generated randomly in the selected line segment in SMOTE and its meliorations. In this paper, we propose a new generating technology, the Imbalanced Triangle Synthetic Data (ITSD) method, breaks through the limitation range of the line segment. In our work, the SMOTE and its mainly improvements are treated as the baselines. With real world data of different domains, our ITSD method performs better than the baselines in both precision and recall. And there is a relatively balanced effect on normal data and abnormal data.

    This paper is organized as follows. Section 2 briefly reviews the related works.Imbalanced Triangle Synthetic Data method is specified in Section 3. In Section 4, we describe experimental results and analysis in detail. Finally, we make a conclusion in Section 5.

    2 Related work

    From the view of imbalanced data problems, the normal data of anomaly detection is called the majority samples while the anomaly is the minority sample. In order to balance the imbalanced data, there are two basic ideas: one is reducing the number of the majority samples; the other is increasing the minority samples. We summarize the relevant works from these two aspects.

    From the perspective of majority samples, the extraction of representative samples is the main work, called under-sampling [Lu, Li and Chu (2017)]. Two common specific methods are Ensemble method [Ren, Cao, Li et al. (2017)] and Cascade method[Kotsiantis (2011)]. The former trains N classifiers parallelly to vote the final result. The latter one is a serial method, which keeps the incorrectly classified majority samples and puts them into the next classifier training. These methods work on the balance of the data,but the extraction makes information missing more or less.

    To the minority samples, the expansion of minority samples is the core target, named over-sampling. The duplicated samples method is simple, also called the randomly oversampling, with which a preliminary attempt still has a certain effect on some data sets.The Synthetic Minority Over-sampling Technique (SMOTE) [Chawla, Bowyer, Hall et al.(2002); Gutié rrez, Lastra, Bení tez et al. (2017)] is a standard of the existing methods,which randomly generates artificial examples on a selected line segment. Due to its influence, kinds of improvement algorithms emerged in the past years. SMOTE Boost[Chawla, Lazarevic, Hall et al. (2003)] integrates SMOTE and boosting together.Borderline-SMOTE [Han, Wang and Mao (2005)] divides the minority samples into three groups, DANGER, SAFE and NOISE, where different groups have their own generating ways. ADASYN [He, Bai, Garcia et al. (2008)] is an important improvement of SMOTE,which generates the synthetic examples by the proportion of the majority ratio. SVMSMOTE [Nguyen, Cooper and Kamei (2011); Wang, Luo, Huang et al. (2017)] generates artificial support vectors by SMOTE and gets good experimental results. Although these algorithms have different generating tricks, the core generating method is still the selected line segment way. To break through this generating method is our key task.

    Besides, there are some methods focusing on adjusting themselves to adapt the specific application requirement. Cost sensitive method [Krawczyk and Skryjomski (2017); Roy and Rossi (2017); Li, Zhang, Zhang et al. (2018)] introduces a cost matrix with domain knowledge to adjust the imbalanced data weights. In some applications, feature selection[Moayedikia, Ong, Boo et al. (2017); Bektas, Ibrikci and ?zcan (2017)] helps to improve the recognition rate of the minority. One-class classification method [Krawczyk, Woniak and Herrera (2015)] tries its best to shrink the boundary of the majority examples without considering the minority samples distribution. To a certain type of applications, it may be an effective way. But the promotion effects particularly depend on the characteristics of the dataset or domain knowledge.

    In our research, we aim to maximize the use of the existing data, both the majority and the minority. We propose an Imbalanced Triangle Synthetic Data method to go beyond the existing artificial examples generating method, which has a good universality.

    3 Imbalanced triangle synthetic data method

    In this section, we first introduce the Imbalanced Triangle. Then, on this basis, we describe our generating method in detail. The whole process makes the Imbalanced Triangle Synthetic Data Method (ITSD).

    3.1 Imbalanced triangle

    In the data space, the majority samples and the minority samples are separated by the hyperplane which is called the classification hyperplane in machine learning, as shown in Fig. 1(a). From both sides of the hyperplane, we take three data points to form a triangle which we name it the Imbalanced Triangle, as shown in Fig. 1(b).

    Figure 1: The imbalanced triangle passing through the hyperplane

    We assume that there are n points on one side of the hyperplane and m points on the other side. There areImbalanced Triangles in all. The abundance of quantity brings theoretical advantages to our generating method. The process of proof is as follows.

    Proof.Imbalanced Trianglevs.SMOTE line segment in amount

    m+n≥3 To make sure the existence of the triangle.

    n≥1 are the number of minority samples.

    m>n are the number of majority samples.

    Ntriis the number of Imbalanced Triangles:

    Nlineis the number of line segments in SMOTE:

    Ntri-Nline=

    There is an important character of the Imbalanced Triangle: The Imbalanced Triangle must be intersected with the hyperplane and the intersection line is a classification line. In another simple word, there must be a classification line in the Imbalanced Triangle. This character inspires our generating method: If the synthetic examples are generated in the Imbalanced Triangle, we can make all these artificial samples as the minority by controlling the classification line.

    In anomaly detection, the data distribution is usually extremely imbalanced (m>>n).This problem, in our Imbalanced Triangle, is just an advantage. In Imbalanced Triangle,the vertexes are the given original data points, the edges are from the SMOTE line segments and the whole area corresponds to the space between the majority and the minority. The generating method of SMOTE based algorithms selecting only edges means to neglect the most space. To maximum the minority data information, we select the whole area as the generating space of the synthetic minority examples. From Eq. (1),we can infer that if we reduce m in a reasonable range, our Imbalanced Triangle still has more numbers than the SMOTE line segments in theory.

    3.2 The ITSD generating method

    The generating method is the core of the over-sampling synthetic technology. We compare the present methods and adjust them as the basis of our method.

    In SMOTE and its improved algorithm, the generation process almost uses Eq. (2). It randomly picks up xj, one of the k nearest neighbors of the selected minority sample xi,and then generate artificial sample xgwith Eq. (2), where λ∈(0,1). In simple words, xgis selected randomly on the line segment (xi,xj). In SMOTE-borderline2, the parameter λ is adjusted (λ∈ (0,0.5)) to make the generated examples close to the minority sample xi.

    In data explanation, we interpret Eq. (2) as adding disturbances or noises, as Eq. (3).Obviously, thehere is the key point of the algorithm design. In other words, Eq.(2) is a specific form of Eq. (3).

    In our generating method, to break through the limitation of Eq. (2) and Eq. (3), we propose our Imbalanced Triangle formula in Eq. [eq:tri]. First we find the top k nearest neighbors of each example in minority class. Then synthetic samples are generated by the formula in Eq. (4), where random numbers α, β, τ and ? ∈ (0,1), instead of the SMOTE generating method in Eq. (2). Hereis the generated example, andare three points in the k nearest neighbors. Especially,is the selected minority example itself, andhas to be the first majority example in the k neighbors, whereis another point in the top k. This method generating the synthetic samples in a triangle range determined byis a fixed vertex and the other two vertexes are random points in line segmentsIn simple words, there are two steps in our generating method: The first one is to select a sub triangle of the Imbalanced Triangle; the second step is to generate a random point in the triangle of the first step. To simplify the problem, we may set α =1 and β =1, which means the range is the whole Imbalanced Triangle

    Proof.Derivation Process of Eq. (4)

    Comparing the classic generative method in SMOTE and its improved algorithms, our generative approach is more efficient. All the Imbalanced Triangles cover more areas where the minority samples may appear than the line segments in old methods, which reflects the characteristics of the minority data distribution better. What is more, the fixed minority example vertex and its nearest majority point make a bigger probability of the artificial example generating between the hyperplane and the minority samples than the pure random way. After obtaining the synthetic samples closing to the data distribution,we mix the synthetic examples and the minority samples together as the extended abnormal data. According to the specific anomaly detection application requirement, we can transform the extremely imbalanced data problems to common imbalanced problems or relative balance supervised learning. After this transformation, the anomaly detection problem is easy to deal with by a machine learning classification method. In this section,we clarify the Imbalanced Triangle Synthetic Data method and analyze its theoretical advantages comparing to the existing approaches. Its good performances dealing with real world data are shown in the next section.

    4 Experiment and result

    In this section, the empirical analysis of our method is stated. We make comparisons with seven baseline approaches, using five real world data sets of different anomaly detection fields.

    4.1 Data sets

    We use five datasets from the UCI open data2http://archive.ics.uci.edu/ml/index.phpto examine our ideas. German Credit (GM)dataset3http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29is from the fraud detection, which has 1,000 instances and 20 attributes. The original data has 700 majority samples and 300 minority samples. We adjust the imbalanced rate to 450:50 in the training set.

    Haberman’s Survival (HM) dataset4http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survivalis from the disease detection, which contains 306 instances and 3 attributes. The original data has 225 majority samples and 81 minority samples. We adjust the imbalanced rate to 170:25 in the training set.

    Breast Cancer Wisconsin Original (BCW) dataset5http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29is also from the disease detection,which records 699 instances and 10 attributes. With the missing values removed, the original data has 444 majority samples and 239 minority samples. We adjust the imbalanced rate to 220:15 in the training set.

    The Pima Indians Diabetes (PID)6http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetesis another dataset from the disease detection, which has 768 instances and 8 attributes. The original data has 500 majority samples and 268 minority samples. We adjust the imbalanced rate to 250:20 in the training set.

    Spambase (SB) dataset7http://archive.ics.uci.edu/ml/datasets/Spambaseis from the identification system, which collects 4,601 instances and 57 attributes. The original data has 2,788 majority samples and 1,813 minority samples. We adjust the imbalanced rate to 1000:25 in the training set.

    4.2 Experimental settings

    We choose seven approaches in our experiment as the baselines: the original imbalanced data without preprocessing, random over-sampling (ROS), SMOTE, SMOTE-SVM,SMOTE-borderline 1, SMOTE-borderline 2 and ADASYN.

    In anomaly detection evaluation, the anomalies and the normal data should be separated.We calculate the f1-scores of the majority and the minority respectively, in order to compare the balanced effects of the algorithms for imbalanced data.

    To verify the universality of the algorithms, we select four commonly used classifiers with different principles: Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM) and Naive Bayes (NB).

    Figure 2: The experiment results

    4.3 Experimental results and discussions

    In order to adapt to the requirements of abnormal detection, we set the training set as extremely imbalanced as possible. Using ITSD and the seven baseline methods, we respectively evaluate the F1-Scores of the minority examples (anomalies) and the majority samples (normal data) with the four classifiers mentioned above. The experiment results are shown in Fig. 2. In all the five datasets, our ITSD method and the other seven approaches have steady performances in DT and LR. In NB, there is a little reasonable fluctuation. But in SVM, the results are unstable and volatile. The performances of the majority are a little better than the minority. Due to the contribution of the synthetic data, the gaps are not so large as in the original extremely imbalanced data.

    Figure 3: Ranking of all the methods

    We sort all the rankings of the methods and the final ranking is shown as Fig. 3. From the figure, it can be seen that our ITSD method performs the best in all these approaches. In all the five anomaly detection datasets of different domains, the ITSD method achieves the best F1-score than the seven baselines. To the four classifiers of different theoretical basis, our approach gives the most stable performance.

    5 Conclusion and future work

    In this paper, we propose an Imbalanced Triangle Synthetic Data (ITSD) method to deal with the anomaly detection problems and to break through the limitation of the existing line segments generating method. We analyze its theoretical advantages in a mathematical way and use the experimental results of real world data to verify its empirical effect.Experimental results demonstrate that the ITSD method can be applied in multiple anomaly detection fields and performs relatively steadily under different classifiers. In following work, we aim to study the correlations between the abnormal data and the normal samples in the extremely imbalanced anomaly detection problems.

    Acknowledgement:This research was financially supported by the National Natural Science Foundation of China (Grant No. 61379145) and the Joint Funds of CETC (GrantNo. 20166141B020101).

    美女视频免费永久观看网站| 亚洲人成电影观看| 久久久久久亚洲精品国产蜜桃av| 热re99久久国产66热| 亚洲熟女毛片儿| 久久国产精品男人的天堂亚洲| 午夜福利免费观看在线| 99精品久久久久人妻精品| 高清在线国产一区| 在线观看66精品国产| 丝袜喷水一区| 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 久久精品aⅴ一区二区三区四区| 性色av乱码一区二区三区2| 亚洲人成伊人成综合网2020| 啦啦啦在线免费观看视频4| 另类精品久久| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 两个人看的免费小视频| 午夜福利,免费看| 中国美女看黄片| 国产亚洲欧美精品永久| 99国产精品一区二区三区| 午夜福利在线观看吧| 十分钟在线观看高清视频www| 精品亚洲成国产av| 1024香蕉在线观看| 一夜夜www| 久久精品成人免费网站| av又黄又爽大尺度在线免费看| 最新美女视频免费是黄的| 男男h啪啪无遮挡| 亚洲成人免费电影在线观看| 国产不卡一卡二| 90打野战视频偷拍视频| 欧美日韩视频精品一区| 免费看十八禁软件| 亚洲精品中文字幕在线视频| 国产av一区二区精品久久| 一本综合久久免费| 91大片在线观看| aaaaa片日本免费| 午夜福利,免费看| 女人高潮潮喷娇喘18禁视频| 亚洲成人手机| 色综合欧美亚洲国产小说| 国产黄色免费在线视频| 亚洲国产看品久久| 欧美中文综合在线视频| 色综合欧美亚洲国产小说| 亚洲欧美一区二区三区黑人| 亚洲熟妇熟女久久| 国产一区有黄有色的免费视频| 操出白浆在线播放| 如日韩欧美国产精品一区二区三区| 亚洲一区二区三区欧美精品| 亚洲男人天堂网一区| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 99久久人妻综合| 国产不卡一卡二| 欧美日韩亚洲综合一区二区三区_| 在线十欧美十亚洲十日本专区| 久9热在线精品视频| 亚洲国产看品久久| av电影中文网址| 国产精品av久久久久免费| 日本黄色视频三级网站网址 | 黄网站色视频无遮挡免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁| 色婷婷av一区二区三区视频| 亚洲精品自拍成人| 亚洲九九香蕉| 亚洲avbb在线观看| 90打野战视频偷拍视频| 一本久久精品| 在线观看免费日韩欧美大片| 亚洲 国产 在线| 国产高清videossex| 国产有黄有色有爽视频| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 日韩免费高清中文字幕av| 久久久国产成人免费| 在线观看免费视频网站a站| 男人操女人黄网站| 激情视频va一区二区三区| 久久免费观看电影| 12—13女人毛片做爰片一| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲| 亚洲男人天堂网一区| 色综合欧美亚洲国产小说| 12—13女人毛片做爰片一| 电影成人av| 啦啦啦视频在线资源免费观看| 91精品国产国语对白视频| 脱女人内裤的视频| 久久 成人 亚洲| 国产免费视频播放在线视频| 国产免费视频播放在线视频| 午夜福利视频精品| 咕卡用的链子| 久久久久网色| 亚洲成人免费av在线播放| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 欧美亚洲日本最大视频资源| 一个人免费看片子| 午夜福利,免费看| 狠狠狠狠99中文字幕| 69精品国产乱码久久久| 桃花免费在线播放| 波多野结衣一区麻豆| 老司机福利观看| 一区二区三区国产精品乱码| 国产亚洲av高清不卡| 91成人精品电影| 日本黄色日本黄色录像| 久久亚洲真实| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看 | 丝袜在线中文字幕| 久久亚洲精品不卡| 久久国产精品大桥未久av| 国产精品成人在线| www.精华液| 黑人操中国人逼视频| 999久久久精品免费观看国产| 色在线成人网| av有码第一页| 丝袜人妻中文字幕| 欧美成人免费av一区二区三区 | 国产高清videossex| 国产精品久久久久成人av| 老熟妇仑乱视频hdxx| 考比视频在线观看| 满18在线观看网站| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 97在线人人人人妻| 18禁国产床啪视频网站| 国产伦人伦偷精品视频| 99热国产这里只有精品6| 黄色丝袜av网址大全| 午夜91福利影院| 另类精品久久| 久久精品熟女亚洲av麻豆精品| 露出奶头的视频| 视频在线观看一区二区三区| 夜夜夜夜夜久久久久| 午夜免费鲁丝| 下体分泌物呈黄色| 亚洲成人免费av在线播放| 久久av网站| 亚洲九九香蕉| 日本一区二区免费在线视频| 久久久精品94久久精品| 夜夜骑夜夜射夜夜干| 成人av一区二区三区在线看| 人妻 亚洲 视频| 亚洲av电影在线进入| 欧美乱妇无乱码| 高清在线国产一区| 我要看黄色一级片免费的| 国产一区二区三区视频了| 亚洲第一av免费看| 国产一区二区三区综合在线观看| 亚洲国产欧美一区二区综合| 无人区码免费观看不卡 | 大型黄色视频在线免费观看| 在线永久观看黄色视频| 精品国产一区二区三区久久久樱花| 久久精品亚洲av国产电影网| 亚洲国产中文字幕在线视频| 亚洲欧美一区二区三区久久| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 天堂中文最新版在线下载| 男人操女人黄网站| 成人18禁在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 天天躁日日躁夜夜躁夜夜| 婷婷成人精品国产| 欧美激情 高清一区二区三区| 亚洲av第一区精品v没综合| aaaaa片日本免费| 91精品国产国语对白视频| 国产成人欧美| 宅男免费午夜| 亚洲精华国产精华精| 人妻久久中文字幕网| 女人爽到高潮嗷嗷叫在线视频| 999精品在线视频| 久久天堂一区二区三区四区| 在线看a的网站| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频| 日韩免费av在线播放| 18禁国产床啪视频网站| 电影成人av| 亚洲欧洲日产国产| 久久精品亚洲熟妇少妇任你| 国产高清视频在线播放一区| 1024香蕉在线观看| av超薄肉色丝袜交足视频| 一级片'在线观看视频| 亚洲专区字幕在线| 一级a爱视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 在线观看一区二区三区激情| 80岁老熟妇乱子伦牲交| 久久久久久久精品吃奶| 久久久久视频综合| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 大陆偷拍与自拍| 国产成人免费观看mmmm| 少妇猛男粗大的猛烈进出视频| 美女视频免费永久观看网站| 宅男免费午夜| 成人手机av| 一级毛片女人18水好多| 欧美日韩黄片免| 一本一本久久a久久精品综合妖精| 欧美+亚洲+日韩+国产| 搡老岳熟女国产| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 老司机在亚洲福利影院| 日韩欧美一区视频在线观看| 69av精品久久久久久 | 久久狼人影院| 亚洲黑人精品在线| 欧美国产精品一级二级三级| 黄色视频在线播放观看不卡| 一区福利在线观看| 国产精品 国内视频| 黄色丝袜av网址大全| 麻豆成人av在线观看| 日韩视频在线欧美| 大陆偷拍与自拍| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 在线观看www视频免费| 欧美黑人欧美精品刺激| 成人黄色视频免费在线看| 窝窝影院91人妻| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 亚洲国产av影院在线观看| 一本大道久久a久久精品| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| 多毛熟女@视频| 国产日韩欧美视频二区| 十八禁网站网址无遮挡| 热99re8久久精品国产| 9191精品国产免费久久| videos熟女内射| 亚洲av第一区精品v没综合| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 欧美日本中文国产一区发布| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 少妇精品久久久久久久| 国产精品久久久久久人妻精品电影 | 手机成人av网站| 国产精品国产av在线观看| 久久精品亚洲av国产电影网| 大片免费播放器 马上看| h视频一区二区三区| 最新的欧美精品一区二区| 国产精品久久电影中文字幕 | netflix在线观看网站| 亚洲国产毛片av蜜桃av| 精品免费久久久久久久清纯 | 国产精品电影一区二区三区 | 精品亚洲成a人片在线观看| 国产精品自产拍在线观看55亚洲 | 午夜久久久在线观看| 一区二区三区激情视频| 亚洲中文av在线| 亚洲成a人片在线一区二区| 超碰成人久久| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 真人做人爱边吃奶动态| 免费少妇av软件| 99香蕉大伊视频| 午夜成年电影在线免费观看| 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| 两人在一起打扑克的视频| 手机成人av网站| 亚洲成av片中文字幕在线观看| 日本wwww免费看| 激情在线观看视频在线高清 | 亚洲av电影在线进入| 欧美一级毛片孕妇| 一级a爱视频在线免费观看| 亚洲精品美女久久av网站| 操出白浆在线播放| 国产精品熟女久久久久浪| 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区久久| h视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 国产精品久久久av美女十八| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清 | 久久久精品94久久精品| 动漫黄色视频在线观看| 女性生殖器流出的白浆| 精品久久蜜臀av无| 亚洲专区国产一区二区| 亚洲成人国产一区在线观看| 18在线观看网站| 久久热在线av| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久久5区| 大码成人一级视频| 亚洲欧美一区二区三区久久| 国产在视频线精品| 国产欧美日韩一区二区三区在线| 女性生殖器流出的白浆| 一进一出抽搐动态| 亚洲欧洲日产国产| 另类精品久久| 人妻一区二区av| 国产精品 国内视频| 亚洲欧美日韩高清在线视频 | 国产av又大| netflix在线观看网站| 考比视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 老司机亚洲免费影院| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区mp4| 欧美精品一区二区免费开放| 黄色a级毛片大全视频| 在线观看人妻少妇| 国产成人影院久久av| 99九九在线精品视频| 他把我摸到了高潮在线观看 | 日韩免费av在线播放| 人成视频在线观看免费观看| 国精品久久久久久国模美| 搡老岳熟女国产| 麻豆国产av国片精品| 老司机亚洲免费影院| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 久久久精品区二区三区| 国产精品av久久久久免费| 久久人妻av系列| 欧美av亚洲av综合av国产av| 国产av又大| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 亚洲七黄色美女视频| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 国产成人欧美在线观看 | 十八禁高潮呻吟视频| 91国产中文字幕| 美女国产高潮福利片在线看| 国产一区二区三区在线臀色熟女 | 肉色欧美久久久久久久蜜桃| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 男人操女人黄网站| 国产精品久久久久久精品电影小说| 在线天堂中文资源库| 多毛熟女@视频| 十八禁高潮呻吟视频| 欧美乱妇无乱码| 激情在线观看视频在线高清 | 久久99一区二区三区| 怎么达到女性高潮| 午夜福利乱码中文字幕| 亚洲人成伊人成综合网2020| 侵犯人妻中文字幕一二三四区| 成在线人永久免费视频| 国产成人av激情在线播放| 欧美 日韩 精品 国产| 国产一区二区激情短视频| 色尼玛亚洲综合影院| 自线自在国产av| 在线观看免费日韩欧美大片| 女性被躁到高潮视频| 国产精品一区二区在线观看99| av天堂久久9| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 建设人人有责人人尽责人人享有的| 亚洲精品中文字幕一二三四区 | 91成年电影在线观看| 欧美大码av| 国产真人三级小视频在线观看| 无人区码免费观看不卡 | 久久午夜亚洲精品久久| 五月天丁香电影| 久久国产精品大桥未久av| 怎么达到女性高潮| 一进一出好大好爽视频| 亚洲综合色网址| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 国产精品99久久99久久久不卡| 91av网站免费观看| 美女福利国产在线| 亚洲,欧美精品.| 久久久国产一区二区| videos熟女内射| 国产欧美日韩综合在线一区二区| 久久国产精品影院| 高清黄色对白视频在线免费看| 久久精品国产综合久久久| 在线天堂中文资源库| 精品第一国产精品| 免费高清在线观看日韩| 99久久精品国产亚洲精品| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 久久亚洲精品不卡| 老司机午夜福利在线观看视频 | 中文字幕另类日韩欧美亚洲嫩草| 国精品久久久久久国模美| 免费在线观看完整版高清| 多毛熟女@视频| 丝袜喷水一区| 国产成人av教育| 久久久久久久久免费视频了| 91成人精品电影| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 黄片大片在线免费观看| 黄色成人免费大全| 亚洲七黄色美女视频| 午夜福利影视在线免费观看| 精品久久久久久久毛片微露脸| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 国产麻豆69| 丝瓜视频免费看黄片| 国产成人av教育| 少妇粗大呻吟视频| 狠狠婷婷综合久久久久久88av| 午夜91福利影院| 国产亚洲精品久久久久5区| 一本久久精品| 久久人妻福利社区极品人妻图片| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 蜜桃在线观看..| 色综合欧美亚洲国产小说| 国产日韩欧美亚洲二区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 国产精品av久久久久免费| 日日爽夜夜爽网站| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 考比视频在线观看| 一级毛片电影观看| 日韩欧美一区二区三区在线观看 | 波多野结衣一区麻豆| 超碰97精品在线观看| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 蜜桃国产av成人99| 一区在线观看完整版| 每晚都被弄得嗷嗷叫到高潮| 69精品国产乱码久久久| 黄色 视频免费看| 久久午夜亚洲精品久久| 悠悠久久av| 国产熟女午夜一区二区三区| 蜜桃国产av成人99| 久久香蕉激情| 成人国产一区最新在线观看| 18禁黄网站禁片午夜丰满| 美女视频免费永久观看网站| 中文字幕人妻熟女乱码| 老汉色∧v一级毛片| 最黄视频免费看| 丝瓜视频免费看黄片| 免费不卡黄色视频| 精品亚洲成国产av| 久久精品国产99精品国产亚洲性色 | 一本综合久久免费| 51午夜福利影视在线观看| www日本在线高清视频| 99国产精品一区二区蜜桃av | 欧美日韩黄片免| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| 日韩有码中文字幕| 自线自在国产av| 在线av久久热| 国产xxxxx性猛交| 黄色丝袜av网址大全| 午夜福利在线免费观看网站| 女同久久另类99精品国产91| 操美女的视频在线观看| 18禁国产床啪视频网站| 夜夜骑夜夜射夜夜干| 欧美精品一区二区免费开放| 天天影视国产精品| 精品国内亚洲2022精品成人 | 极品教师在线免费播放| 在线十欧美十亚洲十日本专区| 高清毛片免费观看视频网站 | 一本大道久久a久久精品| 欧美精品一区二区免费开放| 国产又爽黄色视频| 啦啦啦视频在线资源免费观看| 老鸭窝网址在线观看| 老熟女久久久| 国产高清videossex| 亚洲九九香蕉| 欧美日韩黄片免| 大片电影免费在线观看免费| 日韩三级视频一区二区三区| 水蜜桃什么品种好| 99久久精品国产亚洲精品| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 久久精品亚洲av国产电影网| 亚洲第一av免费看| 免费一级毛片在线播放高清视频 | 久久人人97超碰香蕉20202| 午夜成年电影在线免费观看| 成在线人永久免费视频| 超碰97精品在线观看| 色综合欧美亚洲国产小说| 亚洲中文av在线| 亚洲精品成人av观看孕妇| 日本撒尿小便嘘嘘汇集6| 18禁国产床啪视频网站| 不卡av一区二区三区| 日韩有码中文字幕| 久久天堂一区二区三区四区| 我要看黄色一级片免费的| 最黄视频免费看| 久久毛片免费看一区二区三区| 一本综合久久免费| 别揉我奶头~嗯~啊~动态视频| 两个人免费观看高清视频| 天天躁日日躁夜夜躁夜夜| 后天国语完整版免费观看| 久久精品aⅴ一区二区三区四区| 美女福利国产在线| 久久性视频一级片| 国产不卡一卡二| 9191精品国产免费久久| 制服诱惑二区| 久热这里只有精品99| 国产亚洲精品一区二区www | 真人做人爱边吃奶动态| a在线观看视频网站| 巨乳人妻的诱惑在线观看| 一级毛片女人18水好多| 免费观看人在逋| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 一区福利在线观看| 国产高清videossex| 亚洲精品粉嫩美女一区| 午夜福利影视在线免费观看| 亚洲精华国产精华精| 久久久久久人人人人人| 亚洲成国产人片在线观看|