• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Capacity Data Hiding in Encrypted Image Based on Compressive Sensing for Nonequivalent Resources

    2019-02-22 07:32:34DiXiaoJiaLiangQingqingMaYanpingXiangandYushuZhang
    Computers Materials&Continua 2019年1期

    Di Xiao , Jia Liang Qingqing Ma Yanping Xiang and Yushu Zhang

    Abstract: To fulfill the requirements of data security in environments with nonequivalent resources, a high capacity data hiding scheme in encrypted image based on compressive sensing (CS) is proposed by fully utilizing the adaptability of CS to nonequivalent resources. The original image is divided into two parts: one part is encrypted with traditional stream cipher; the other part is turned to the prediction error and then encrypted based on CS to vacate room simultaneously. The collected non-image data is firstly encrypted with simple stream cipher. For data security management, the encrypted non-image data is then embedded into the encrypted image, and the scrambling operation is used to further improve security. Finally, the original image and non-image data can be separably recovered and extracted according to the request from the valid users with different access rights. Experimental results demonstrate that the proposed scheme outperforms other data hiding methods based on CS, and is more suitable for nonequivalent resources.

    Keywords: Compressive sensing, encrypted image, data hiding, prediction error,nonequivalent resources.

    1 Introduction

    There are many application scenarios in Internet of Things or Cloud Computing where different entities possess nonequivalent resources. For example, in wireless multimedia sensor networks (WMSNs), various nodes, such as common scalar sensors, multimedia sensors, multimedia processing hubs and sink, have different requirement about resources.Especially general sensors are typically resource- constrained devices which cannot afford a huge number of computation, while multimedia processing hubs and sink will have comparatively large computational resources [Akyildiz, Melodia and Chowdury(2007)]. Due to the resource limitation, there are lots of challenges in its corresponding security application [Li, Zhang, Chen et al. (2018)]. Fortunately, the emergence of compressive sensing (CS) opens up a new vision for multimedia data security with nonequivalent resource limitation.

    CS has gained wide attention since it was introduced. CS can achieve compression and encryption together through matrix multiplication [Rachlin and Baron (2008)]. Compared with the stream cipher encryption, the encrypted data based on CS can reduce bandwidth resources effectively. Due to this feature of CS, research results based on CS often serve multimedia data compression and representation [Wu, Yu, Yuan et al. (2016)].Meanwhile, CS has a low computation cost in the sensing part while the computation of recovery is rather complex at the receiving end.

    Information hiding plays an important role in protecting various information from being destroyed [Cao, Zhou, Sun et al. (2018)]. Within the current application of CS in reversible data hiding, there are two main types: the first one usually embeds data in the samples of DCT/DWT and then uses CS to compress [Xiao and Chen (2014)]. The other one embeds data in the measured value [Cao, Du, Wei et al. (2016); Li, Xiao and Zhang(2016); Pan, Li, Yang et al. (2015)]. However, both of the two schemes have some defects. The first one is more suitable for digital watermarking rather than data hiding,which focuses on the protection of the copyright about the carrier and the robustness of the watermark. But, data hiding puts more emphasis on the capacity and security of the embedded information itself. The scheme proposed by Pan et al. [Pan, Li, Yang et al.(2015)] is a watermarking scheme for plain image only which does not provide security for the cover. The scheme proposed by Cao et al. [Cao, Du, Wei et al. (2016)] is not suitable for nonequivalent resources, although this scheme has a brilliant performance on recovery. The reason is that sparse representation to vacate room for data embedding in the preprocessing operation is very complicated. The scheme proposed by Li et al. [Li,Xiao and Zhang (2016)] is a smart data hiding scheme based on block compressive sensing, but its capacity is limited by block size. To design a qualified hiding scheme in encrypted image based on CS for nonequivalent resources, the computational complexity in the sensing part should be focused on.

    In this paper, we propose a high capacity data hiding scheme in encrypted image based on CS for nonequivalent resources. Multimedia sensor nodes take pretreatment on covers to vacate room and encrypt them by CS. General sensor nodes get non-image data, then encrypt them. Multimedia processing hubs gather data from sensor nodes and embed the encrypted scalar data into the processed image. Sink node is in charge of managing and processing data from hubs, and will extract the embedded data and recover image for the valid user with different access rights. Due to the properties of CS, the processes of encryption and embedding are simple and suitable for resources constrained device. This feature falls in with nonequivalent resources on this point while the process of embedding secret data into encrypted image can reduce the data transmission. The main advantages of our scheme include the adaptability to nonequivalent resources, the separable processing according to different access rights, the improvement of the embedding rate and the quality of recovery image.

    The rest of this paper is organized as follows. Section 2 introduces the theory of CS.Section 3 provides detailed description of the proposed scheme. The experimental results and analysis are shown in Section 4. Finally, this paper is concluded in Section 5.

    2 Compressed sensing

    Then the matrix Φ satisfies the k-th order restricted isometry property (RIP). The matrix approximately preserves the distance between k vectors, and the sparse coefficients can be accurately reconstructed from the measurements. In the sampling process, one fact is that real world datamay not be always sparse. But as long as it can be represented as asparse vector α under some properly chosen sparse basiscan still use CS theory and have. Here, let, If matrixsatisfies RIP, then the sparsecould be recovered with high probability fromby solving an-minimization problem.

    Rachlin et al. [Rachlin and Baron (2008)] pointed out that compressed sensing is computationally secure, although CS does not reach the perfect security definition of Shannon. So, CS can compress and encrypt when sampling. The standard CS can be interpreted as a symmetric encryption system where the original signalXis a plaintext,the measurementsYis a ciphertext, and the encryption algorithm is a linear transformation operated by a key which is a measurement matrix.

    3 Proposed scheme

    In this section, we present the detailed procedures of our scheme. As illustrated in Fig. 1,it involves five entities: multimedia sensor nodes, general nodes, multimedia processing hubs, sink nodes and valid users.

    3.1 Image pretreatment and encryption

    For an 8-bit grayscale image, let the pixel value at the position. As shown in Fig. 1, at the multimedia sensor nodes, the original image is first divided into two parts according to a checkerboard style. If the indicessatisfyis classified intopart. And the rest pixels infall intopart.

    Figure 1: The flow chart of the proposed scheme

    Next, pseudo-random bits are padded in front ofhave the same size withand the number of padded bits is the embedding capacity which is determined by the compression ratio. The last step is to embed the embedding capacity in the first three positions of, as the front ofis vacated for data embedding.

    Finally, the encrypted image with vacated room,, is generated by restoring the corresponding position ofin the checkerboard, wherecan be considered as the encryption key.

    3.2 Message encryption

    General sensor nodes gain other types of datasuch as temperature, humidity and position. For security, these data need to be encrypted as well. Here, a standard stream cipher is used to encrypt the data intoby bitwise exclusive-or operation with a pseudo-random bit sequence generated by the key. This process is similar to Eq. (5).

    3.3 Data hiding in the encrypted images

    At the multimedia processing hubs, the encrypted image should be partitioned intoandat first, and the embedding capacity is extracted from the first three positions inThen, the encrypted datais embedded intoby replacing the former padded pseudo-random bits. As the data is embedded in the front ofif image is directly restored according to the corresponding location, the embedded data will be in dangerous.In order to improve the security, the block with embedded data,, will be lightly encrypted intoby digitized Arnold transform:

    3.4 Data extraction and image recovery

    Sink node will extract data and restore image accordingto the request from valid users with different access rights.

    If valid user can access comprehensive data including image and embedded data, sink node will recover image, extract embedded data and send them to user by both data hiding key and encryption key. The processes in the extracting and recovering are the inverse of data embedding and image encryption, so they are not elaborated here. CS reconstruction is a solution of the minimalnorm [Donoho (2006)].

    In the second case, if the valid user can only access embedded data, sink node will extract data by the hiding key and deliver it to user.

    In the third case, if the valid user can only access approximate image, sink node will decrypt thepart inby the encryption key and then provide an approximately recovered image without embedded data through interpolation.

    For the latter two cases, the resource consumption can be effectively reduced because CS reconstruction is not in need.

    4 Experimental results and analysis

    In this section, eight 512×512 standard images, including Lena, Cameraman, Baboon,Barbara, Boat, Plane, Peppers and Mondrian, are used in the experiment. Besides, another test image set containing 100 images is formed by randomly selecting from Corel database which is available from CorelDraw version 10.0 software. And the selected image is cropped to 512×512 pixels and turned into grayscale. The prediction error is calculated by interpolation technique. The sampling operator is scrambled dense FFT[Candes and Romberg (2006)]. The sparsifying transform is the 9-7 wavelet transform used in the JPEG 2000 standard and the optimizer is based on the GPSR program[Figueiredo, Nowak and Wright (2008)].

    4.1 Evaluation of the proposed scheme

    In our scheme, the vacated room for embedding data is obtained by CS. Therefore, the embedding rate is directly related to the compression rate of CS onpart in Fig. 1. Since only half of each image is processed by CS, for an 8-bit gray image, the relation is

    Table 1: The relation between embedding rate and compression rate

    Table 2: PSNR(dB) with different embedding rates for different test images

    Figure 2: Relationship between compression ratio and PSNR

    In the schemes of data hiding in CS domain, both the cover data (sparse samples) and the embedded data are exactly recovered under certain noise, payload and sparsity conditions,so these methods can be qualified as conditionally reversible data hiding [Yama?, Dikici and Sankur (2016)]. In our scheme, CS is the only part of the whole process that will bring the loss, and the sensing object of CS is the prediction error. The accuracy of part,the first half of the original image, is ensured; while the other half of the original image,part, can be recovered based on both the interpolation technique and the prediction error reconstructed by CS. As a result, the proposed scheme has a good recovery performance.This can be seen in Fig. 2, Fig. 3 and Tab. 2. When the compression rate is significantly low, the quality of the full recovery image is close to the one using interpolation technique only. Of course, the higher the compression rate is, the smaller the error of CS reconstruction is, and the quality of recovery image will be higher. When the compression rate approaches 0.95, the PSNR values of the full recovery image are greater than 43, and may even be close to 55.

    Figure 3: The PSNR under different ER values

    It should be noted that the computation in the encryption and embedding processes of the proposed scheme is relatively low because there are only arithmetic and matrix multiplication. And in the process of image recoveryoptimization problem is a relatively complex operation. Meanwhile, since this is a high capacity scheme, other types of non-image data and part of image data can be embedded into the cover image to reduce the transmission consumption. The comprehensive data collected in the same area can be considered as the properties of the region and has its special usage. In our scheme,the obtained comprehensive data, including the encrypted non-image data and image in the same area, can not only ensure the data security, but also be convenient for data management.

    Therefore, the scheme is suitable for the applications with nonequivalent resources.

    4.2 Performance comparison

    When compared with other schemes based on CS, it can be seen from Fig. 4 that the proposed scheme has a better recovered image performance when using the same compression ratio for the whole image. In Fig. 4, the abscissa indicates the compression ratio, and the ordinate indicates the PSNR value of the recovered image. The reason is that only half of the data in the original image is processed and compressed by CS, and the other half is processed by the conventional stream cipher. Therefore, the quality of the restored image is ensured to be significantly better than other schemes based on CS.

    Figure 4: Comparison results of the same compression ratio

    Moreover, we make a comprehensive comparison among our scheme and some typical data hiding schemes based on CS in Tab. 3. According to Eq. (9), the maximal theoretical embedding rate of the proposed scheme is 4 bpp, and we calculate the average PSNR values of the recovered Lena under different embedding ratios for different schemes. It should be noted that although the title of the scheme proposed by Li et al. [Li, Xiao and Zhang (2016)] contains “reversible data hiding”, it is not a lossless scheme, so its PSNR is not infinite. Based on Tab. 3, the proposed scheme has the largest theoretical capacity so that the embedding rate can be adaptively adjusted according to different requirements.

    At the same time, the quality of recovered image is only worse than he scheme proposed in Cao et al. [Cao, Du, Wei et al. (2016)]. However, since the background of our scheme is resource deficient device, we need to focus on the computational complexity about image pretreatment and encryption (as the embedding operation is relatively simple, and the data extraction side has more resources for complex calculation). According to the scheme proposed in Cao et al. [Cao, Du, Wei et al. (2016)], its computational complexityis the image size,is the number of dictionary atomsis the nonzero element number in each coefficient vector,andis the embedding round number. Meanwhile, the computational complexity of our scheme iscorresponding to the three main processes: stream encryption, prediction error estimation and CS, whereis the image size, andis the row number in measurement matrix. In this aspect, our scheme is more suitable for nonequivalent resources than the scheme proposed by Cao et al [Cao, Du, Wei et al.(2016)].

    All in all, the proposed scheme is a high capacity data hiding scheme which is more suitable for resource-constrained devices and has a better performance while comparing with other existing schemes.

    Table 3: Performance comparison

    4.3 Security of encrypted image

    In this section, we will discuss the security of the encrypted image in the proposed method.

    The natural images pixels are highly correlated. A qualified encryption algorithm must break the correlation between adjacent pixels to resist statistical attack. A correlation coefficient value “one” represents a highly correlated image which is susceptible to statistical attacks. Correlation Coefficient (CC) is given by

    Table 4: Correlation Coefficient (CC) and SSIM

    The randomness of the image is measured by Entropy as

    For an image with 256 grey levels the absolute maximum of entropy is 8 bits per pixel.The maximum entropy is obtained when the gray levels have equal probability of occurrence. Hence for a cipher image, the entropy value should be close to 8. From Tab.5, we can infer that the lower the compressionofDpart, the greater the entropy.The encrypted image has high randomness as the entropy of cipher is close to the theoretical value of 8.

    Table 5: Entropy of encrypted image

    5 Conclusion

    In this paper, a high capacity data hiding scheme in encrypted image based on CS is proposed. In this scheme, image decryption and data extraction are separable to match the requests of the users with different access rights. The experimental results have demonstrated that it performs well in the tradeoff between the embedding rate and the recovered image quality. Compared with other data hiding schemes based on CS, the proposed one is much more suitable for nonequivalent resources. In our future study, a part of image may be embedded into other image data to further reduce the transmission consumption.

    Acknowledgement:The work was funded by the National Natural Science Foundation of China (Grant Nos. 61572089, 61502399, 61633005), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjBX0008),the Project Supported by Graduate Student Research and Innovation Foundation of Chongqing (Grant No. CYB17026), the Chongqing Postgraduate Education Reform Project (Grant No. yjg183018), the Chongqing University Postgraduate Education Reform Project (Grant No. cquyjg18219) and the Fundamental Research Funds for the Central Universities (Grant Nos. 106112017CDJQJ188830, 106112017CDJXY180005).

    日本欧美视频一区| 日韩av免费高清视频| 精品久久久精品久久久| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 亚洲欧美成人综合另类久久久| 欧美亚洲 丝袜 人妻 在线| 少妇裸体淫交视频免费看高清 | 国产日韩一区二区三区精品不卡| 成人国产av品久久久| 久久午夜综合久久蜜桃| www.精华液| 成年女人毛片免费观看观看9 | 免费女性裸体啪啪无遮挡网站| 久久久国产精品麻豆| 国产精品二区激情视频| 蜜桃在线观看..| kizo精华| 久久久欧美国产精品| 国产xxxxx性猛交| 97在线人人人人妻| 精品亚洲乱码少妇综合久久| 国产成人欧美| 日韩一区二区三区影片| 下体分泌物呈黄色| 不卡av一区二区三区| 一区二区三区乱码不卡18| 欧美人与性动交α欧美软件| 亚洲国产最新在线播放| 久久 成人 亚洲| 亚洲欧美日韩高清在线视频 | 亚洲精品一二三| 捣出白浆h1v1| 天天躁夜夜躁狠狠躁躁| 韩国高清视频一区二区三区| 欧美精品啪啪一区二区三区 | 免费不卡黄色视频| 久久久精品国产亚洲av高清涩受| 欧美成狂野欧美在线观看| 亚洲天堂av无毛| 日本色播在线视频| 久久性视频一级片| 这个男人来自地球电影免费观看| 日韩一本色道免费dvd| 久久久亚洲精品成人影院| 国产精品偷伦视频观看了| a级毛片在线看网站| 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 精品福利观看| 最近手机中文字幕大全| 无限看片的www在线观看| 无限看片的www在线观看| 国语对白做爰xxxⅹ性视频网站| 啦啦啦视频在线资源免费观看| 亚洲av成人精品一二三区| 女警被强在线播放| 在线av久久热| 满18在线观看网站| 肉色欧美久久久久久久蜜桃| 国产免费又黄又爽又色| 亚洲精品久久成人aⅴ小说| 黑人巨大精品欧美一区二区蜜桃| 蜜桃国产av成人99| 好男人电影高清在线观看| 老熟女久久久| 日韩制服丝袜自拍偷拍| 国产高清视频在线播放一区 | 国产精品熟女久久久久浪| 老司机影院成人| www日本在线高清视频| 女性被躁到高潮视频| 一本久久精品| 99国产精品99久久久久| 国产精品久久久久成人av| 好男人视频免费观看在线| 欧美精品啪啪一区二区三区 | 亚洲国产av新网站| 日韩大片免费观看网站| 七月丁香在线播放| 精品久久蜜臀av无| 啦啦啦在线观看免费高清www| 成人三级做爰电影| 夫妻午夜视频| 夫妻午夜视频| 国产av国产精品国产| 国精品久久久久久国模美| 国产免费视频播放在线视频| 啦啦啦视频在线资源免费观看| 国产成人a∨麻豆精品| 久久久久网色| 亚洲精品第二区| 精品亚洲乱码少妇综合久久| 精品视频人人做人人爽| 久久精品aⅴ一区二区三区四区| 精品人妻在线不人妻| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩熟女老妇一区二区性免费视频| 午夜福利在线免费观看网站| 国产av精品麻豆| 国产成人精品久久久久久| 男女之事视频高清在线观看 | 亚洲一区二区三区欧美精品| 十八禁人妻一区二区| 麻豆国产av国片精品| 精品一区二区三区四区五区乱码 | 久久午夜综合久久蜜桃| 日日爽夜夜爽网站| 精品久久蜜臀av无| 欧美xxⅹ黑人| 91麻豆精品激情在线观看国产 | 国产精品国产三级专区第一集| 午夜免费成人在线视频| xxxhd国产人妻xxx| 国产精品 国内视频| 亚洲男人天堂网一区| 国产一级毛片在线| 美国免费a级毛片| 国产精品欧美亚洲77777| 精品人妻在线不人妻| 在线 av 中文字幕| av又黄又爽大尺度在线免费看| 伊人亚洲综合成人网| 亚洲精品美女久久久久99蜜臀 | 成人亚洲欧美一区二区av| 亚洲人成77777在线视频| 国产精品av久久久久免费| 肉色欧美久久久久久久蜜桃| 久久九九热精品免费| 日韩伦理黄色片| 大片电影免费在线观看免费| 免费在线观看日本一区| 国产1区2区3区精品| 国产成人精品久久二区二区免费| 一本大道久久a久久精品| 水蜜桃什么品种好| 水蜜桃什么品种好| 亚洲欧美中文字幕日韩二区| 2021少妇久久久久久久久久久| 777久久人妻少妇嫩草av网站| 亚洲欧美激情在线| 另类精品久久| 另类精品久久| 人人妻,人人澡人人爽秒播 | 黄色一级大片看看| 国产精品av久久久久免费| 精品久久久久久久毛片微露脸 | 天天躁夜夜躁狠狠躁躁| av在线app专区| 亚洲国产毛片av蜜桃av| 久久亚洲国产成人精品v| 中文字幕人妻丝袜一区二区| 午夜福利在线免费观看网站| 色94色欧美一区二区| 欧美精品人与动牲交sv欧美| 中文字幕人妻熟女乱码| 国产成人免费观看mmmm| 黄色a级毛片大全视频| 亚洲精品国产av成人精品| 狠狠精品人妻久久久久久综合| 亚洲成人免费av在线播放| 男女午夜视频在线观看| 天天影视国产精品| 国产免费又黄又爽又色| 熟女av电影| 色94色欧美一区二区| 欧美xxⅹ黑人| 只有这里有精品99| 人人妻人人澡人人看| 国产男女内射视频| 精品一区二区三区av网在线观看 | 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 国产黄色视频一区二区在线观看| 啦啦啦中文免费视频观看日本| 精品欧美一区二区三区在线| 1024视频免费在线观看| 岛国毛片在线播放| 男人添女人高潮全过程视频| 超碰97精品在线观看| 中文乱码字字幕精品一区二区三区| 夫妻午夜视频| 精品国产一区二区久久| 婷婷色麻豆天堂久久| 99精国产麻豆久久婷婷| 亚洲精品美女久久av网站| 巨乳人妻的诱惑在线观看| 激情视频va一区二区三区| 精品久久久精品久久久| 欧美精品av麻豆av| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区国产| 亚洲 国产 在线| av在线app专区| 国产精品久久久人人做人人爽| 亚洲av日韩精品久久久久久密 | 美女扒开内裤让男人捅视频| 黄色毛片三级朝国网站| 国产黄色视频一区二区在线观看| 日本五十路高清| 欧美激情 高清一区二区三区| 波野结衣二区三区在线| 久久性视频一级片| 成人国产av品久久久| 纯流量卡能插随身wifi吗| 亚洲国产看品久久| 国产成人一区二区在线| 欧美在线一区亚洲| 色婷婷av一区二区三区视频| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费高清a一片| 激情视频va一区二区三区| 一区福利在线观看| 蜜桃在线观看..| 午夜激情av网站| 亚洲五月婷婷丁香| 欧美精品一区二区大全| 女人被躁到高潮嗷嗷叫费观| 赤兔流量卡办理| 国产熟女欧美一区二区| 别揉我奶头~嗯~啊~动态视频 | videosex国产| 亚洲av国产av综合av卡| 首页视频小说图片口味搜索 | 国产伦理片在线播放av一区| 国产成人精品无人区| 99热网站在线观看| 校园人妻丝袜中文字幕| netflix在线观看网站| 免费在线观看影片大全网站 | 男女下面插进去视频免费观看| 视频区图区小说| 国产成人啪精品午夜网站| 亚洲中文日韩欧美视频| 黄色视频在线播放观看不卡| 日韩一区二区三区影片| av在线老鸭窝| www.av在线官网国产| 婷婷色麻豆天堂久久| 各种免费的搞黄视频| 亚洲 欧美一区二区三区| 欧美精品亚洲一区二区| 欧美精品高潮呻吟av久久| 国产精品.久久久| 男人操女人黄网站| 男女边吃奶边做爰视频| 欧美国产精品va在线观看不卡| 久久久久久久国产电影| 亚洲,欧美,日韩| 日韩大码丰满熟妇| 午夜久久久在线观看| 老司机亚洲免费影院| 男人舔女人的私密视频| 捣出白浆h1v1| 免费观看a级毛片全部| 天堂8中文在线网| 亚洲三区欧美一区| av视频免费观看在线观看| 国产免费福利视频在线观看| 国产97色在线日韩免费| 亚洲精品久久午夜乱码| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 一级片免费观看大全| av又黄又爽大尺度在线免费看| 欧美人与性动交α欧美软件| 久久久国产欧美日韩av| 免费高清在线观看日韩| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 飞空精品影院首页| 99国产精品免费福利视频| 18在线观看网站| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区| 国产一区二区 视频在线| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 永久免费av网站大全| 777米奇影视久久| 国产精品久久久久成人av| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 国产成人欧美在线观看 | 9热在线视频观看99| av天堂在线播放| 国产熟女欧美一区二区| 成人国产av品久久久| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| svipshipincom国产片| 精品少妇一区二区三区视频日本电影| 久久狼人影院| 日韩人妻精品一区2区三区| 欧美另类一区| 九色亚洲精品在线播放| 欧美变态另类bdsm刘玥| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 少妇粗大呻吟视频| 宅男免费午夜| 国产女主播在线喷水免费视频网站| 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 久久亚洲国产成人精品v| 日本av免费视频播放| 国精品久久久久久国模美| 18禁观看日本| 国产精品二区激情视频| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 亚洲精品国产区一区二| 精品人妻熟女毛片av久久网站| 国产色视频综合| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 精品少妇黑人巨大在线播放| 别揉我奶头~嗯~啊~动态视频 | 啦啦啦在线免费观看视频4| 婷婷色av中文字幕| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 国产av国产精品国产| 自线自在国产av| 国产在线视频一区二区| 男女之事视频高清在线观看 | 亚洲国产精品一区三区| 性色av一级| 日韩,欧美,国产一区二区三区| 亚洲欧洲国产日韩| 少妇猛男粗大的猛烈进出视频| 成人国产一区最新在线观看 | 精品高清国产在线一区| 黑人巨大精品欧美一区二区蜜桃| 亚洲九九香蕉| 啦啦啦在线观看免费高清www| 久久久久网色| 1024香蕉在线观看| 十八禁人妻一区二区| 久久久久久久精品精品| 中文字幕亚洲精品专区| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品自产自拍| 国产男女内射视频| 亚洲精品第二区| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 欧美乱码精品一区二区三区| 十八禁高潮呻吟视频| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 国产熟女午夜一区二区三区| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| av在线播放精品| 亚洲图色成人| 大话2 男鬼变身卡| www.精华液| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| a级毛片黄视频| 国产91精品成人一区二区三区 | 亚洲精品一区蜜桃| 国产伦人伦偷精品视频| 又粗又硬又长又爽又黄的视频| 一级黄色大片毛片| 美女高潮到喷水免费观看| 久久这里只有精品19| 欧美人与性动交α欧美软件| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 一级毛片女人18水好多 | 成年人黄色毛片网站| 亚洲国产欧美网| 久久国产精品男人的天堂亚洲| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 涩涩av久久男人的天堂| av网站免费在线观看视频| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 人人澡人人妻人| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 日日爽夜夜爽网站| 国产爽快片一区二区三区| 久热这里只有精品99| 青草久久国产| 亚洲av电影在线观看一区二区三区| 少妇粗大呻吟视频| 免费看不卡的av| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 99国产精品一区二区三区| 久久久精品免费免费高清| 亚洲天堂av无毛| 美国免费a级毛片| 99re6热这里在线精品视频| 最新在线观看一区二区三区 | 午夜精品国产一区二区电影| 满18在线观看网站| av国产精品久久久久影院| 国产真人三级小视频在线观看| 香蕉国产在线看| 在线 av 中文字幕| 免费在线观看完整版高清| 日韩大片免费观看网站| 国产视频一区二区在线看| 亚洲成色77777| 久久影院123| 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 中文欧美无线码| 无限看片的www在线观看| 十八禁网站网址无遮挡| 日韩大片免费观看网站| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 国产高清videossex| 久久久久久人人人人人| 男女下面插进去视频免费观看| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 久久性视频一级片| 50天的宝宝边吃奶边哭怎么回事| 少妇粗大呻吟视频| cao死你这个sao货| 99国产精品99久久久久| 午夜福利乱码中文字幕| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片 | 精品国产一区二区三区四区第35| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 欧美激情高清一区二区三区| 各种免费的搞黄视频| 在线观看www视频免费| 成年美女黄网站色视频大全免费| 欧美大码av| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 黄色视频在线播放观看不卡| 久久人妻福利社区极品人妻图片 | 1024香蕉在线观看| 国产97色在线日韩免费| 久久久久久久国产电影| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 免费在线观看完整版高清| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 亚洲av美国av| 搡老乐熟女国产| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 国产日韩欧美亚洲二区| 精品一区二区三区四区五区乱码 | 九草在线视频观看| 男女高潮啪啪啪动态图| 亚洲第一av免费看| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| 日韩av在线免费看完整版不卡| 老司机影院成人| 性高湖久久久久久久久免费观看| 精品第一国产精品| 国产免费又黄又爽又色| 亚洲国产av新网站| 蜜桃国产av成人99| 国产黄色免费在线视频| 在现免费观看毛片| 国产av精品麻豆| 国产1区2区3区精品| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 亚洲av综合色区一区| 久久天躁狠狠躁夜夜2o2o | 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看 | 中文字幕人妻熟女乱码| 丝袜脚勾引网站| 满18在线观看网站| 最近手机中文字幕大全| www.999成人在线观看| 精品一区在线观看国产| 午夜福利乱码中文字幕| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 在线观看免费午夜福利视频| 黄色 视频免费看| 国产成人影院久久av| 亚洲欧美一区二区三区国产| 精品福利永久在线观看| 一级毛片我不卡| 久久国产精品大桥未久av| 国产av国产精品国产| 亚洲av美国av| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 日本wwww免费看| 国产精品一二三区在线看| 国产免费福利视频在线观看| 又黄又粗又硬又大视频| 国产精品.久久久| 久久青草综合色| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 欧美97在线视频| 女人精品久久久久毛片| 精品人妻1区二区| 操出白浆在线播放| 婷婷色av中文字幕| 久久99精品国语久久久| 一二三四在线观看免费中文在| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 免费不卡黄色视频| videos熟女内射| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| 一边摸一边抽搐一进一出视频| 人体艺术视频欧美日本| 欧美日韩国产mv在线观看视频| 国产精品.久久久| 黄色怎么调成土黄色| 亚洲,欧美精品.| av一本久久久久| 亚洲人成网站在线观看播放| www.精华液| 国产av一区二区精品久久| 欧美另类一区| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 亚洲成国产人片在线观看| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 午夜影院在线不卡| 国产精品亚洲av一区麻豆| 久久人人97超碰香蕉20202| 18禁黄网站禁片午夜丰满| 国产一级毛片在线| 亚洲人成电影免费在线| 嫩草影视91久久| 性少妇av在线| 伊人久久大香线蕉亚洲五| 操美女的视频在线观看| 欧美精品高潮呻吟av久久| 成年女人毛片免费观看观看9 | 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 日本一区二区免费在线视频| 自线自在国产av| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 成人国语在线视频| 国产一区有黄有色的免费视频| 久久久久久亚洲精品国产蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 两人在一起打扑克的视频| 国产日韩欧美亚洲二区| 最新在线观看一区二区三区 | 少妇被粗大的猛进出69影院| 日韩中文字幕视频在线看片| 国产又爽黄色视频| 高清av免费在线| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 国产欧美日韩一区二区三 | 香蕉国产在线看| 欧美成人精品欧美一级黄| 国产极品粉嫩免费观看在线| 国产在线一区二区三区精| 成人国语在线视频| 在线观看免费视频网站a站| 国产视频首页在线观看| 久久天堂一区二区三区四区| 91老司机精品| 亚洲av日韩精品久久久久久密 | 欧美+亚洲+日韩+国产| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 成人国产av品久久久| 欧美精品一区二区免费开放| 亚洲专区中文字幕在线| 国产精品人妻久久久影院| 久久毛片免费看一区二区三区| 精品一区二区三区av网在线观看 | 国产成人免费观看mmmm|