周良富,金永奎,薛新宇
電磁閥開關(guān)模式下文丘里施肥器吸肥特性研究
周良富,金永奎※,薛新宇
(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,農(nóng)業(yè)農(nóng)村部現(xiàn)代農(nóng)業(yè)裝備重點(diǎn)開放實(shí)驗(yàn)室,南京 210014)
水肥一體化技術(shù)是提高化肥有效利用率的重要手段之一,而基于脈寬調(diào)制的電磁閥控制模式是調(diào)節(jié)吸肥量的主要技術(shù)手段,但關(guān)于電磁閥連續(xù)開關(guān)模式下的文丘里施肥特性缺乏詳細(xì)的闡述。該文在5通道的管道式在線混合的水肥一體化試驗(yàn)平臺上,采用霍爾流量傳感器測試了單一通道在0.3、0.5、1、2 s的開閥時(shí)間內(nèi)瞬時(shí)吸肥量變化、不同開關(guān)閥時(shí)間下單次開關(guān)的平均吸肥量變化、不同關(guān)閥時(shí)間下10次連續(xù)開關(guān)下的平均吸肥量變化,采用脈沖修正法計(jì)算吸肥流量。試驗(yàn)結(jié)果表明,在電磁閥連續(xù)開關(guān)模式下,基于脈沖修正法的測量精度比基于有效脈沖數(shù)法更高,在開閥持續(xù)時(shí)間為0.3~2 s時(shí)間內(nèi),其相對誤差均低于4%。在最大蓄能和放能時(shí)間內(nèi),文丘里施肥器的吸肥量隨開閥時(shí)間變長而減小,隨關(guān)閥時(shí)間的變長而增大。單次開關(guān)下的施肥器吸肥特性試驗(yàn)結(jié)果顯示,施肥器的最大蓄能時(shí)間(抽真空)為10 s,而最大放能時(shí)間(吸肥量穩(wěn)定的時(shí)間)為1 s。該研究可為智能變量水肥一體機(jī)設(shè)計(jì)及應(yīng)用提供技術(shù)支撐。
文丘里施肥器;肥料;試驗(yàn);電磁閥;水肥一體化
水肥一體化是發(fā)揮肥水耦合效應(yīng)的有效手段之一。目前的水肥一體化技術(shù)裝備包括壓差式施肥罐、文丘里施肥器和注入式施肥泵等[1],而隨著農(nóng)業(yè)灌溉及智動化水平的不斷提高,全自動的水肥一體機(jī)也逐步得到應(yīng)用,如開放桶式混肥全自動化灌溉施肥系統(tǒng)和管道混合式自動灌溉施肥系統(tǒng)[2],由于具有自動、智能、精準(zhǔn)等特點(diǎn),在花卉、蔬菜、果樹等經(jīng)濟(jì)作物及部分規(guī)?;筇镒魑锷系玫綇V泛應(yīng)用。
與開放桶式混肥全自動化灌溉施肥相比,管道混合式不會有空氣參與混肥,功耗大大降低,參數(shù)控制更加穩(wěn)定。文丘里施肥器與電磁閥的組合是管道混合式灌溉施肥機(jī)的關(guān)鍵部件,而電磁閥開關(guān)模式下文丘里管的吸肥特性是施肥機(jī)性能的重要基礎(chǔ)。目前國內(nèi)外學(xué)者的研究主要集中在以下3個(gè)方面:1)水肥耦合效應(yīng)試驗(yàn)。水肥一體化技術(shù)可以提高水利用率40%~60%,肥料利用率提高30%~50%[3],學(xué)者主要集中開展灌水量與土壤肥力間的耦合指數(shù)[4]和灌溉施肥規(guī)律對產(chǎn)量[5-6]及品質(zhì)的影響[7-8]規(guī)律等;2)文丘里結(jié)構(gòu)優(yōu)化與性能分析。金永奎等[9]根據(jù)不同的吸肥量要求,研制了系列化的文丘里施肥器。張建闊等[10]研制了雙吸肥口的低壓文丘里施肥器。還有大量文獻(xiàn)集中在文丘里施肥器的結(jié)構(gòu)優(yōu)化[11-12]、性能試驗(yàn)[13]、流場特性及空化特性分析[14-17];3)水肥一體機(jī)設(shè)計(jì)。關(guān)于水肥一體機(jī)設(shè)計(jì)的文獻(xiàn)較少,金永奎等[18]、王海濤等[19]對自動化水肥一體機(jī)的管路系統(tǒng)設(shè)計(jì)及裝備性能進(jìn)行了系統(tǒng)測試,而目前的大部分的研究主要集中在水肥一體機(jī)的控制算法及管路系統(tǒng)壓力流量特性上[20-22]。
關(guān)于PWM模式下管道混合式灌溉施肥機(jī)吸肥特性的研究鮮有文獻(xiàn)報(bào)道。僅有如李加念等[23]通過調(diào)節(jié)在文丘里施肥機(jī)吸入管端的電磁閥PWM信號,實(shí)現(xiàn)了施肥器的變量施肥,結(jié)合試驗(yàn)結(jié)果提出了電磁閥最佳頻率為6 Hz,施肥裝置最佳入口壓力范圍為0.15~0.25 MPa。吳爭光等[24]對水肥一體機(jī)的EC傳感器安裝特性進(jìn)行了系統(tǒng)試驗(yàn),該類研究為基于脈寬調(diào)制的文丘里變量施肥裝置設(shè)計(jì)與試驗(yàn)提供了技術(shù)支撐,但未對電磁閥開關(guān)模式文丘里施肥器吸肥的瞬時(shí)特性進(jìn)行分析。本文以灌溉施肥機(jī)中電磁閥和文丘里管組合為研究對象,以管道混合式灌溉施肥機(jī)為試驗(yàn)平臺,借鑒電磁閥與噴嘴組合結(jié)構(gòu)在變量噴霧上的應(yīng)用經(jīng)驗(yàn)[25-27],通過試驗(yàn)得出在不同電磁閥開關(guān)時(shí)間下的文丘里施肥器的吸肥特性,為管道混合式灌溉施肥機(jī)的設(shè)計(jì)和應(yīng)用提供技術(shù)參考。
試驗(yàn)主要在5通道管道混合式灌溉施肥試驗(yàn)平臺上進(jìn)行。試驗(yàn)平臺的結(jié)構(gòu)原理如圖1所示,主要包括80BZ50-65-15型自吸式灌溉泵(上海上民泵業(yè)有限公司,額定揚(yáng)程65 m,額定流量50 m3/h)、CL-DLF12-50型立式多級施肥泵(浙江建亞泵業(yè)有限公司,額定揚(yáng)程50 m,額定流量12 m3/h)、精密壓力表(上海自動化儀表股份有限公司,0.4級)、文丘里吸肥器(揭陽市綠美節(jié)水科技有限公司,接口尺寸1寸,吸肥量34~279 L/h)、壓力傳感器、流量計(jì)、霍爾流量計(jì)(廣東中江節(jié)能電子有限公司,DN25,流量2~120 L/min,60個(gè)脈沖/L)、ZCF-20型防腐蝕脈沖電磁閥(上海朝鋼閥門有限公司,壓力0.7 MPa)、電子秤(精度0.1 g)、變頻系統(tǒng)及顯示系統(tǒng)等。
1.水源 2.灌溉泵 3.主管流量計(jì) 4.壓力表及傳感器 5.主管 6.混合腔 7.主管調(diào)節(jié)閥 8.減壓電磁閥 9.EC/pH傳感器 10.施肥進(jìn)水管 11.文丘里吸肥器 12.施肥出水管 13.水箱 14.電子秤 15.肥液桶 16.肥液過濾器 17.浮子流量計(jì) 18.吸肥流量計(jì) 19.吸肥電磁閥 20.施肥泵 21.施肥單向閥 22.觸摸顯示屏 23.控制系統(tǒng)
由于本次研究主要關(guān)注電磁閥開關(guān)參數(shù)對文丘里施肥器的吸肥特性影響,同時(shí)研究霍爾流量計(jì)在施肥機(jī)中的應(yīng)用精度問題,因此本次試驗(yàn)主要采用了試驗(yàn)臺中的一個(gè)通道。
1.2.1 霍爾流量計(jì)
霍爾流量計(jì)主要由殼體、霍爾元件、采集電路、磁性材料、葉輪等組成,其結(jié)構(gòu)簡圖如圖2所示。水進(jìn)入流量計(jì)后,水流驅(qū)動葉輪旋轉(zhuǎn),進(jìn)而帶動磁性元件跟隨轉(zhuǎn)動?;魻栐袘?yīng)磁性元件的有無,產(chǎn)生高低脈沖電平,霍爾元件的輸出脈沖信號頻率與磁性元件轉(zhuǎn)速成正比,而轉(zhuǎn)速與流量成正比,霍爾流量計(jì)主要通過采集到的脈沖信號數(shù)量來計(jì)算流量值。在電磁閥開啟和關(guān)閉時(shí),受霍爾元件和磁性元件的相對位置差異,最大誤差為開啟時(shí)多一個(gè)脈沖而關(guān)閉時(shí)少一個(gè)脈沖,這種誤差在電磁閥頻繁開關(guān)模式的灌溉施肥機(jī)中是不可接受的。
1.殼體 2.霍爾元件 3.采集電路 4.磁性元件 5.葉輪
1.2.2 吸肥性能參數(shù)及定義
吸肥量、吸肥瞬時(shí)流量和吸肥平均流量分別為
式中為一時(shí)間段內(nèi)的總吸肥量,L;0為每個(gè)脈沖所代表的標(biāo)準(zhǔn)量,L,0=1/60 L;為脈沖數(shù)量;為按脈沖計(jì)的吸肥瞬時(shí)流量,L/min;t為第個(gè)脈沖所經(jīng)歷的時(shí)間,ms。`為一時(shí)間段內(nèi)的吸肥平均流量,L/min。為吸肥的時(shí)間,s。
1.2.3 脈沖修正的平均吸肥流量計(jì)算
由公式(1)~(3)可知,吸肥的瞬時(shí)流量只與時(shí)間有關(guān),而吸肥平均流量的誤差主要與脈沖數(shù)的計(jì)量精度有關(guān),特別是首末2個(gè)脈沖所代表的流量值誤差。因此,本文提出基于時(shí)間的脈沖修正法來計(jì)算吸肥平均流量,其核心思想是根據(jù)首個(gè)脈沖與第2個(gè)脈沖所經(jīng)歷的相對時(shí)長來修正第一個(gè)脈沖的吸肥量;根據(jù)最后一脈沖與前一個(gè)脈沖所經(jīng)歷的相對時(shí)長來修正最后一個(gè)脈沖的吸肥量。
首個(gè)脈沖的吸肥量按式(4)修正
最后一個(gè)脈沖的吸肥量按式(5)修正
式中1為第1個(gè)脈沖的吸肥量,L;1為第1個(gè)脈沖經(jīng)歷的時(shí)間,s;2為第2個(gè)脈沖經(jīng)歷的時(shí)間,s。t-1為第-1個(gè)脈沖經(jīng)歷的時(shí)間,s;t為第個(gè)脈沖經(jīng)歷的時(shí)間,s。V為第個(gè)脈沖的吸肥量,L;
因此,一個(gè)開閥持續(xù)時(shí)間內(nèi)的平均流量經(jīng)過修正后按式(6)計(jì)算
在試驗(yàn)平臺中,管路壓力、主管流量、流量計(jì)脈沖等參數(shù)由相應(yīng)的傳感器自動采集,主要數(shù)據(jù)可通過顯示系統(tǒng)顯示在屏幕上,所有數(shù)據(jù)(包括每個(gè)脈沖所經(jīng)歷的時(shí)間)均可在系統(tǒng)中保存并以EXCEL數(shù)據(jù)格式導(dǎo)出。
其中,總脈沖數(shù)是指在一持續(xù)時(shí)間內(nèi),系統(tǒng)所檢測并采集到的所有脈沖總和;有效脈沖是指在一持續(xù)時(shí)間內(nèi),只統(tǒng)計(jì)開閥時(shí)間內(nèi)的脈沖數(shù);無效脈沖是由于電磁閥開關(guān)引起的水錘效應(yīng)造成非測量脈沖誤差,其值為總脈沖與有效脈沖之差;脈沖經(jīng)歷時(shí)間是每2個(gè)脈沖之間的時(shí)間差。
數(shù)據(jù)采集系統(tǒng)采集每個(gè)脈沖的時(shí)間點(diǎn),其測量精度取決于相應(yīng)的傳感器精度。根據(jù)式(2)計(jì)算瞬時(shí)流量,脈沖修正法是根據(jù)式(6)計(jì)算吸肥平均流量,而總脈沖和有效脈沖法是根據(jù)式(1)和式(3)計(jì)算吸肥平均流量。
實(shí)測吸肥流量的測量:將施肥器吸入口放入電子秤上的容器中,開啟系統(tǒng)吸容器中的肥液,讀取電子秤上容器的重量變化,結(jié)合設(shè)置的吸肥時(shí)間,根據(jù)式(3)計(jì)算出實(shí)測吸肥平均流量。
試驗(yàn)數(shù)據(jù)均在系統(tǒng)運(yùn)行穩(wěn)定后采集,每個(gè)工況數(shù)據(jù)均是3次重復(fù)后的平均值。數(shù)據(jù)處理及圖表繪制均在excel 2010中完成。
根據(jù)文丘里施肥器工作原理可知,文丘里施肥器在穩(wěn)定工況下的吸肥流量與吸肥管喉部壓力、截面積和吸肥高度等有關(guān),在特定的橫截面積和吸肥高度條件下,吸肥流量只與喉部壓力有關(guān)[28-29]。喉部的壓力穩(wěn)定不變時(shí),吸肥流量也就穩(wěn)定不變。在連續(xù)吸肥情況下,文丘里吸肥器產(chǎn)生穩(wěn)定的負(fù)壓,吸肥流量基本恒定[30]。
在電磁閥頻繁開關(guān)模式下,文丘里施肥器喉部壓力是不斷變化的,其吸肥量是不均勻、不穩(wěn)定的。具體過程為:
電磁閥關(guān)閉時(shí),文丘里施肥器相當(dāng)于一個(gè)抽真空過程,其喉部壓力3按式(7)計(jì)算[31]
式中3為喉部絕對壓力,Pa;3為文丘里施肥器極限真空度,Pa;1為抽真空時(shí)間,s;1、2為與吸入管端容積相關(guān)的常數(shù)。其中抽極限真空所需的時(shí)間1是本文重點(diǎn)關(guān)注的參數(shù)之一。
電磁閥開啟時(shí),文丘里施肥器相當(dāng)于施肥泵,是一個(gè)抽吸肥液的過程,將喉部壓力轉(zhuǎn)化為吸肥流量,其能量轉(zhuǎn)化過程如式(8),喉部壓力隨著吸肥量的增加而降低,當(dāng)喉部壓力將至吸肥極限壓力時(shí),其吸肥量保存穩(wěn)定,因此從開閥至吸肥量穩(wěn)定的時(shí)間2是需要研究的性能參數(shù)。
式中Δ3為喉部壓力減少量,Pa;為肥液密度,kg/m3;為吸肥流速,m/s;為重力加速,=9.8 N/kg;為肥液桶與文丘里施肥器安裝高差,m;s為吸入端的沿程損失,Pa。
由以上理論可定性分析出文丘里施肥壓力流量特性隨每次電磁閥開關(guān)的周期性變化規(guī)律,如圖3所示??芍姶砰y關(guān)閉時(shí),施肥器相當(dāng)于一個(gè)蓄能過程,其喉部真空度逐漸增大,直至施肥器的極限真空度,而當(dāng)電磁閥開啟時(shí),喉部壓力逐漸轉(zhuǎn)化為肥液動能。
注:t1max為文丘里喉部壓力降低到極限真空所需的時(shí)間;t2max為瞬時(shí)吸肥量降低到穩(wěn)定時(shí)的時(shí)間。
為驗(yàn)證脈沖修正法的霍爾流量計(jì)檢測精度,在灌溉施肥機(jī)額定工況下,在相同關(guān)閥持續(xù)時(shí)間1 s時(shí),分別設(shè)置電磁閥的開閥持續(xù)時(shí)間為0.3、0.5、1和2 s。采集并記錄所有脈沖及每個(gè)脈沖所經(jīng)歷的時(shí)間,按總脈沖數(shù)、有效脈沖數(shù)和脈沖修正法分別計(jì)算流量,同時(shí)用電子秤測量出每次的吸肥量。根據(jù)式(1)和式(5)分別按總脈沖數(shù)、有效脈沖數(shù)和脈沖修正法計(jì)算出總流量,并與實(shí)測數(shù)據(jù)做比較,按式(9)計(jì)算出各自的相對誤差,其結(jié)果如表1所示。
式中RE為相對誤差,%;Q為計(jì)算流量值,L/min;Q為實(shí)測流量值,L/min。
表1 不同計(jì)算方法的相對誤差
由表1的結(jié)果可以看出,不同的計(jì)算方法其精度均隨開閥持續(xù)時(shí)間增長而變高。采用總脈沖數(shù)法計(jì)算流量的相對誤差遠(yuǎn)大于有效脈沖法和脈沖修正法,但其相對誤差隨著開閥持續(xù)時(shí)間的增加而降低,主要原因?yàn)槊看伍_關(guān)閥的無效脈沖數(shù)基本不變,而隨著開閥持續(xù)時(shí)間增加,總流量值的增加降低了相對誤差。但在開關(guān)時(shí)間2 s內(nèi),其相對誤差均大于25%,因此常規(guī)采用總脈沖數(shù)計(jì)算流量值是不能應(yīng)用于電磁閥開關(guān)模式下的施肥流量計(jì)量。
隨著開閥持續(xù)時(shí)間的增加,有效脈沖法的測量相對誤差由0.3 s開閥持續(xù)時(shí)間的4.8%降低為2 s開閥持續(xù)時(shí)間的2.3%,與總脈沖數(shù)法相比,其計(jì)量精度大大提高。不同的開閥持續(xù)時(shí)間內(nèi),脈沖修正法的相對誤差均低于4%,與有效脈沖數(shù)法相比較,其精度更高。開閥持續(xù)時(shí)間越短,脈沖修正法越具優(yōu)勢。
電磁閥開關(guān)模式下的吸肥特性是以每單次開關(guān)下的吸肥特性為周期變化的,因此單次開關(guān)下的吸肥特性是全周期的吸肥特性的基礎(chǔ)。在額定工況(灌溉主管壓力0.3 MPa、施肥壓力0.1 MPa),設(shè)置開閥持續(xù)時(shí)間分別為0.3、0.5、1、2 s,測每次開閥內(nèi)每個(gè)脈沖所經(jīng)歷的時(shí)間,然后根據(jù)式(2)計(jì)算出每個(gè)脈沖的瞬時(shí)流量,不同開閥持續(xù)時(shí)間的瞬時(shí)吸肥流量變化規(guī)律如圖4所示。
圖4 瞬時(shí)吸肥流量變化規(guī)律
由圖4可知,在電磁閥開啟時(shí),受閥門的機(jī)械反應(yīng)時(shí)間限制,肥液流動至驅(qū)動霍爾流量計(jì)葉輪具有一定的滯后性,因此第一個(gè)脈沖所經(jīng)歷的時(shí)間較長,流量較小。但電磁閥剛開啟時(shí)文丘里施肥器喉部的負(fù)壓較大,逐步將壓能轉(zhuǎn)化為肥液動能,吸肥流量迅速增至最大,但其吸肥流量迅速衰減直至平穩(wěn)。不同開閥持續(xù)時(shí)間內(nèi)的最大瞬時(shí)吸肥量約為47.65 L/min,無明顯差異,且瞬時(shí)吸肥流量變化規(guī)律是一致的,只是開閥持續(xù)時(shí)間決定了其工作的時(shí)間階段。圖4顯示,在0.3 s開閥持續(xù)時(shí)間時(shí),其瞬時(shí)吸肥流量才從最大吸肥量開始衰減,而當(dāng)開閥持續(xù)時(shí)間大于1 s時(shí),其吸肥已經(jīng)處于吸肥穩(wěn)定階段。由以上分析可知,單次開關(guān)下的吸肥規(guī)律是一致的,但電磁閥連續(xù)開關(guān)模式下,閥開關(guān)持續(xù)時(shí)間對瞬時(shí)吸肥特性有較大影響,因?yàn)槲那鹄锸┓势餍钅芎头拍芏际且粋€(gè)持續(xù)的過程。
為研究開閥時(shí)間對平均吸肥流量的影響,在灌溉施肥機(jī)額定工況下,設(shè)置相同關(guān)閥持續(xù)時(shí)間1 s,分別設(shè)置開閥持續(xù)時(shí)間為0.5、1、1.5、2、3、4、5、6、7和8 s,分別記錄每次開關(guān)時(shí)每個(gè)脈沖的持續(xù)時(shí)間、總脈沖數(shù)和有效脈沖數(shù)。根據(jù)(6)式計(jì)算出一個(gè)開閥持續(xù)時(shí)間內(nèi)的平均流量,圖5a為開閥時(shí)間與吸肥平均流量及無效脈沖數(shù)的關(guān)系,可知每個(gè)開閥持續(xù)時(shí)間內(nèi)的平均流量隨著開閥時(shí)間增長快速減少,當(dāng)開閥時(shí)間大于5 s時(shí),其吸肥平均流量趨于10 L/min穩(wěn)定不變,其無效脈沖數(shù)不隨開閥時(shí)間變化,均為6個(gè)。必須指出,文丘里施肥器的吸肥平均流量值及其穩(wěn)定的開閥時(shí)間與文丘里施肥器規(guī)格、施肥器進(jìn)出口壓差、電磁閥安裝位置等有關(guān),但其基本規(guī)律是相一致的。
同樣地,設(shè)置相同開閥持續(xù)時(shí)間1 s,分別設(shè)置不同關(guān)閥持續(xù)時(shí)間為1、2、3、4、5、10、11、12和20 s,分別記錄每次開關(guān)時(shí)每個(gè)脈沖的持續(xù)時(shí)間、總脈沖數(shù)和有效脈沖數(shù)。關(guān)閥時(shí)間與吸肥平均流量及總脈沖數(shù)的關(guān)系如圖5b所示。結(jié)果顯示,關(guān)閥時(shí)間越短,總脈沖數(shù)和平均流量越小,其主要原因是較小的關(guān)閥時(shí)間內(nèi),蓄能過程不充分,當(dāng)關(guān)閥時(shí)間大于10 s后,其總脈沖數(shù)和平均流量趨于不變,因?yàn)樵摃r(shí)間內(nèi)已完全蓄能,其喉部壓力達(dá)到極限真空度。
在智能水肥一體機(jī)中,通過調(diào)節(jié)電磁閥開關(guān)的PWM信號,控制電磁閥開關(guān)時(shí)間實(shí)現(xiàn)吸肥流量的調(diào)節(jié)。因此開展多次開關(guān)下的文丘里施肥器吸肥性能研究,為探究PWM方式下施肥機(jī)的吸肥特性提供基礎(chǔ)。在額定工況(灌溉主管壓力0.3 MPa、施肥壓力0.1 MPa),設(shè)置電磁閥的開閥時(shí)間為1s,在關(guān)閥時(shí)間分別為0.3、0.5、1、2和4 s下,分別記錄連續(xù)10個(gè)開關(guān)周期內(nèi)每個(gè)周期的脈沖數(shù),通過式(5)計(jì)算出每個(gè)開關(guān)周期內(nèi)的平均流量,如圖6所示。
圖6 多次連續(xù)開關(guān)下的平均流量
由圖6可知,多次連續(xù)開關(guān)下,第一個(gè)周期的平均流量較大,其余周期內(nèi)的流量不變。其主要原因是在開閥前系統(tǒng)停止時(shí)間長,文丘里管喉部積累了較多的能量,當(dāng)電磁閥開啟時(shí)其吸肥流量最大,在后續(xù)開關(guān)時(shí),其蓄能時(shí)間是相同的,因此其吸肥量不發(fā)生變化。而隨著關(guān)閥時(shí)間變長,其吸肥平均流量也增大,這與圖5b顯示的結(jié)果相一致。
文丘里施肥器的喉部壓力與其進(jìn)出口壓差有關(guān),從圖4的分析可知,喉部壓力是影響瞬時(shí)吸肥量的最重要參數(shù)。因此研究不同進(jìn)出口壓差下單次開關(guān)、連續(xù)開關(guān)的吸肥特性很有現(xiàn)實(shí)意義。
在灌溉主管壓力為0.43 MPa下,設(shè)置開閥時(shí)間為1 s,關(guān)閥時(shí)間為10 s,分別調(diào)節(jié)施肥器進(jìn)口壓力為0.1、0.2、0.3、0.4 MPa,采集單次開關(guān)時(shí)每個(gè)脈沖的持續(xù)時(shí)間,計(jì)算出單次開關(guān)時(shí)每個(gè)脈沖的瞬時(shí)流量,繪制曲線如圖7a所示。設(shè)置相同開閥持續(xù)時(shí)間1 s,分別調(diào)節(jié)施肥器進(jìn)口壓力為0.1、0.2、0.3、0.4 MPa,設(shè)置不同關(guān)閥持續(xù)時(shí)間為1、2、3、4、5、10、11、12和20 s,記錄每次開關(guān)時(shí)每個(gè)脈沖的持續(xù)時(shí)間,計(jì)算出開閥時(shí)間內(nèi)的平均流量,繪制關(guān)閥時(shí)間與吸肥平均流量的曲線如圖7b所示。
由圖7可知,不同施肥壓力下的瞬時(shí)吸肥流量和平均吸肥流量的變化規(guī)律是一致的,但隨著施肥壓力的增大,瞬時(shí)吸肥流量變小,但在放能結(jié)束后的瞬時(shí)吸肥量不隨施肥壓力變化。分析原因?yàn)椋涸谖那鹄?施肥泵的組合結(jié)構(gòu)中,吸肥量由文丘里施肥器喉部壓力決定,而其喉部負(fù)壓由文丘里進(jìn)出口壓差和施肥泵工況共同決定,難以從理論上分析出定量的規(guī)律。但從圖7的曲線分析,施肥壓力越大,流經(jīng)文丘里進(jìn)入施肥泵的流量越大,而施肥泵的出口壓力(灌溉主管壓力)也較大,導(dǎo)致施肥泵工作能力減低,致使吸肥流量隨施肥壓力升高而降低,但在13個(gè)脈沖后流量保持穩(wěn)定,而且其瞬時(shí)流量與施肥壓力無明顯關(guān)系。圖7b不同施肥壓力在不同的開閥時(shí)間下的平均流量變化曲線可知,平均流量會隨著施肥壓力增大而減小,但開閥時(shí)間大于10 s時(shí),其平均施肥量不隨關(guān)閥時(shí)間增長而變大。
圖7 施肥壓力對吸肥特性影響
本文主要采用霍爾流量計(jì)來測量文丘里施肥器的吸肥流量,研究在電磁閥開關(guān)模式下文丘里施肥器的吸肥特性,得出結(jié)論有:
1)在電磁閥連續(xù)開關(guān)模式下,傳統(tǒng)基于總脈沖數(shù)法的流量計(jì)的測量精度很低,不能滿足實(shí)際要求。而基于脈沖修正法的測量精度比基于有效脈沖數(shù)法更高,在開閥持續(xù)時(shí)間為0.3~2 s時(shí)間內(nèi),其相對誤差均低于4%。
2)在電磁閥連續(xù)開關(guān)模式下,施肥器相當(dāng)于一個(gè)不斷蓄能與放能的過程。單次開關(guān)下的施肥器吸肥特性試驗(yàn)結(jié)果顯示,施肥器的最大蓄能時(shí)間(抽真空)為10 s,而最大放能時(shí)間(吸肥量穩(wěn)定的時(shí)間)為1 s。
3)在文丘里+施肥泵的組合結(jié)構(gòu)中,施肥壓力越大,吸肥流量越小,但對文丘里施肥器的蓄能和放能過程無明顯影響。
4)在電磁閥連續(xù)開關(guān)模式下,在最大蓄能和放能時(shí)間內(nèi),文丘里施肥器的吸肥量隨開閥時(shí)間變長而減小,隨關(guān)閥時(shí)間的變長而增大。
本文在額定工況下研究了電磁閥開關(guān)模式下文丘里施肥器的瞬時(shí)吸肥量和平均吸肥量的變化規(guī)律,深入闡述了文丘里施肥器的宏觀與微觀吸肥特性,對電磁閥與文丘里施肥器的組合使用提供技術(shù)參考。文丘里施肥器與施肥泵組合使用中的吸肥特性相對復(fù)雜,特別是文丘里工作參數(shù)、施肥泵工作參數(shù)及管路內(nèi)的壓力流量特性都值得后續(xù)更多的關(guān)注,在多通道水肥一體機(jī)中,電磁閥在不同PWM信號下的吸肥特性,以及文丘里施肥器、施肥泵與電磁閥組合結(jié)構(gòu)中,管路壓力流量對組合結(jié)構(gòu)的吸肥特性影響等均需深入研究。
[1]韓啟彪,黃興法,范永申,等. 6種文丘里施肥器吸肥性能比較分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):113-117. Han Qibiao, Huang Xingfa, Fan Yongshen, et al. Comparative analysis on fertilization performance of six Venturi injectors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 113-117. (in Chinese with English abstract)
[2]金永奎,盛斌科. 一體化全自動灌溉施肥機(jī)設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)村水利水電,2019(8):63-68. Jin Yongkui, Sheng Binke. The design and test of automatic integrated tertigation machine[J]. China Rural Water and Hydropower, 2019(8): 63-68. (in Chinese with English abstract)
[3]李茂權(quán),朱幫忠,趙飛,等. 水肥一體化技術(shù)試驗(yàn)示范與應(yīng)用展望[J]. 安徽農(nóng)學(xué)通報(bào),2011,17(7):100-101.
[4]Xu Erqi, Wang Rui, Zhang Hongqi, et al. Coupling index of water consumption and soil fertility correlated with winter wheat production in North China Region[J]. Ecological Indicators, 2019, 102 (2): 154–165.
[5]Araya A, Prasad P, Gowda P, et al. Modeling irrigation and nitrogen management of wheat in northern Ethiopia[J]. Agricultural Water Management, 2019, 216 (2): 264–272.
[6]王振華,扁青永,李文昊,李朝陽. 南疆沙區(qū)成齡紅棗水肥一體化滴灌的水肥適宜用量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):96-104. Wang Zhenhua, Bian Qingyong, Li Wenhao, et al. Suitable water and fertilizer amount for mature jujube with drip-irrigation under fertigation in southern Xinjiang sandy area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 96-104. (in Chinese with English abstract)
[7]張計(jì)峰,耿慶龍,梁智,等. 根區(qū)孔下滴灌施肥對新疆紅棗產(chǎn)量品質(zhì)和氮磷鉀利用影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):65-71. Zhang Jifeng, Geng Qinglong, Ling Zhi, et al. Effects of drip fertigation around root zone on yield and quality of red jujube and utilization of nitrogen, phosphorus and potassium in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 65-71. (in Chinese with English abstract)
[8]Dai Zhangguang, Fei Liangjun, Huang Deliang, et al. Goupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region[J]. Agricultural Water Management, 2019, 20(3): 146-154.
[9]金永奎,夏春華,方部玲. 文丘里施肥器系列的研制[J]. 中國農(nóng)村水利水電,2006(5):14-17. Jin Yongkui, Xia Chunhua, Fang Buling. Research and development of venturi fertilizer applicator series[J]. China Rural Water and Hydropower, 2006(5): 14 – 17. (in Chinese with English abstract))
[10]張建闊,李加念,吳昊,等. 基于雙吸肥口的低壓文丘里施肥器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):115-121. Zhang Jiankuo, Li Jianian, Wu Hao, et al. Design and experiment of low pressure venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. (in Chinese with English abstract)
[11]張磊,張育斌,魏正英,等. 文丘里注肥器的參數(shù)化結(jié)構(gòu)設(shè)計(jì)[J]. 節(jié)水灌溉,2018(9):83-86. Zhang Lei,Zhang Yubing, Wei Zheng ying, et al. Parametric design on structure of venturi injector[J]. Water Saving Irrigation, 2018(9): 83-86. (in Chinese with English abstract)
[12]李家春,田莉,周茂茜,等. 水肥一體化施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)村水利水電,2018(10):148-152. Li Jiachun, Tian Li, Zhou Maoqian, et al. The design and test of key parts of water fertilizer integrated applicator[J]. China Rural Water and Hydropower, 2018(10): 148-152. (in Chinese with English abstract)
[13]孔令陽,范興科. 文丘里施肥器吸肥性能試驗(yàn)研究[J]. 節(jié)水灌溉,2013(7):4-6. Kong Lingyang, Fan Xingke. Experimental study on fertilizer suction performance of Venturi injector[J]. Water Saving Irrigation, 2013(7): 4-6. (in Chinese with English abstract)
[14]王秋良,王振華,吳文勇,等. ATP文丘里施肥器喉管結(jié)構(gòu)優(yōu)化與流場計(jì)算[J]. 排灌機(jī)械工程學(xué)報(bào),2018,36(9):830-835. Wang Qiuliang, Wang Zhenhua, Wu Wenyong, et al. Throat structure optimization and flow field analysis of ATP Venturi ferti-lizer applicators[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2018, 36(9): 830-835. (in Chinese with English abstract)
[15]Xu Yuncheng, Chen Yan, He Jianqiang, et al. Detection of cavitation in a Venturi injector with a combined method of strain gauges and numerical simulation[J]. Journal of Fluids Engineering Transactions of the ASME, 2014, 136(8): 130-137.
[16]李百軍,毛罕平,李凱. 并聯(lián)文丘里管吸肥裝置的研究及其參數(shù)選擇[J]. 排灌機(jī)械,2001,19(1):42-45. Li Baijun, Mao Hanping, Li Kai. A study on the parallel connection Venturi tube and its parameter selection[J]. Drainage and Irrigation Machinery, 2001, 19(1): 42-45. (in Chinese with English abstract)
[17]周良富,周立新,薛新宇,等. 射流式在線混藥裝置汽蝕特性數(shù)值分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):60-65. Zhou Liangfu, Zhou Lixin, Xue Xinyu, et al. Numerical analysis and test on cavitation of jet mixing apparatus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 60-65. (in Chinese with English abstract)
[18]金永奎,盛斌科,孫竹,等. 水肥一體化管控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)機(jī)化研究,2020(6):29-35. Jin Yongkui,Sheng Binke,Sun Zhu, et al. Design and implementation of integrated water and fertilizer management and control system[J]. Agricultural Mechanization Research, 2020(6): 29-35. (in Chinese with English abstract)
[19]王海濤,王建東,楊彬,等. 施肥機(jī)管路布置對文丘里施肥器吸肥性能的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2019,37(6):534-539. Wang Haitao, Wang Jiandong, Yang Bin, et al. Effect of pipeline layout of fertilizer applicator on performance of Venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering(JDIME), 2019, 37(6): 534-539. (in Chinese with English abstract)
[20]袁洪波,李莉,王俊衡,等. 溫室水肥一體化營養(yǎng)液調(diào)控裝備設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):27-32. Yuan Hongbo, Li Li, Wang Junheng, et al. Design and test of regulation and control equipment for nutrient solution of water and fertilizer integration in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 27-32. (in Chinese with English abstract)
[21]王海華,付強(qiáng),孟繁佳,等. 模糊與PI分段調(diào)控肥液EC的優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):110-116. Wang Haihua, Fu Qiang, Meng Fanjia, et al. Optimal design and experiment of fertilizer EC regulation based on subsection control algorithm of fuzzy and PI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 110-116. (in Chinese with English abstract)
[22]李加念,洪添勝,馮瑞玨,等. 柑橘園水肥一體化滴灌自動控制裝置的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(10):91-97. Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Development of automatic control device for integrated water and fertilization drip irrigation of citrus orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 91-97. (in Chinese with English abstract)
[23]李加念,洪添勝,馮瑞玨,等. 基于脈寬調(diào)制的文丘里變量施肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):105-110. Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Design and experiment of Venturi variable fertilizer apparatus based on pulse width modulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 105-110. (in Chinese with English abstract)
[24]吳爭光,楊琳. 水肥一體機(jī)EC傳感器安裝特性試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2019,38(S1):57-60. Wu Zhengguang, Yang Lin. Experimental study on installation characteristics of EC sensor for integrated water and fertilizer machine[J]. Journal of Irrigation and Drainage, 2019, 38(S1): 57-60. (in Chinese with English abstract)
[25]李龍龍,何雄奎,宋堅(jiān)利,等. 基于高頻電磁閥的脈寬調(diào)制變量噴頭噴霧特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):97-103. Li Longlong, He Xiongkui, Song Jianli, et al. Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 97-103. (in Chinese with English abstract)
[26]魏新華,于達(dá)志,白敬,等. 脈寬調(diào)制間歇噴霧變量噴施系統(tǒng)的靜態(tài)霧量分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):19-24. Wei Xinhua, Yu Dazhi, Bai Jing, et al. Static spray deposition distribution characteristics of PWM-based intermittently spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 19-24. (in Chinese with English abstract)
[27]Bora G C, Schrock M D, Oard D L, et al. Reliability tests of pulse width modulation(PWM) valves for flow rate control of anhydrous ammonia[J]. Applied Engineering in Agriculture, 2005, 21(6): 955-960.
[28]劉永華,沈明霞,蔣小平,等. 水肥一體化灌溉施肥機(jī)吸肥器結(jié)構(gòu)優(yōu)化與性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):76-83. Liu Yonghua, Shen Mingxia, Jiang Xiaoping, et al. Structure optimization of suction device and performance test of integrated water and fertilizer fertigation machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 76-83. (in Chinese with English abstract)
[29]韓啟彪,黃興法,范永申,等. 6種文丘里施肥器吸肥性能比較分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):113-117. Han Qibiao, Huang Xingfa, Fan Yongshen, et al. Comparative analysis on fertilization performance of six Venturi injectors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 113-117. (in Chinese with English abstract)
[30]邱振宇,鮑安紅. 施肥器結(jié)構(gòu)參數(shù)對施肥濃度影響的數(shù)值研究—基于并聯(lián)式文丘里施肥器[J]. 農(nóng)機(jī)化研究,2012,34(4):42-45. Qiu Zhenyu, Bao Anhong. Fertilization numerical studies on the impact of structure parameters on fertilizer concentration[J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 42-45. (in Chinese with English abstract)
[31]張遠(yuǎn)君,王慧玉,張振鵬. 兩項(xiàng)流體動力學(xué)基礎(chǔ)理論及工程應(yīng)用[M]. 北京:北京航空學(xué)院出版社,1987.
Suction characteristics of venturi injector in solenoid valve switch ON&OFF mode
Zhou Liangfu, Jin Yongkui※, Xue Xinyu
(210014,)
The integration of fertilizer and water technology is one of the important means to improve the effective utilization rate of chemical fertilizers. The solenoid valve control mode based on pulse width modulation is the main technical means to adjust the amount of suction flow. But at present, the researches of scholars at home and abroad mainly focus on these 3 aspects: Water-fertilizer coupling effect test, venturi structure optimization and performance analysis, water and fertilizer machine pipeline design. And the venturi suction characteristics in the solenoid valves switch on and off mode was little concerned. In this paper, on the 5-channel pipeline online mixed water and fertilizer integration test platform, the hall flow sensor was used to test the instantaneous flow of single channel in the valve opening time of 0.3, 0.5, 1 and 2 s. The average flow of single switch under different valve opening and closing time. The average flow under 10 consecutive switches was calculated by pulse correction method. All the pulses and the time elapsed for each pulse were collected and recorded, and the flow rate was calculated according to the pulse total number, effective pulse number and the pulse correction respectively. The actual flow was measured by the electronic scale and compare with the calculated values of the 3 methods respectively. The results showed the relative error of the flow rate calculated by the total pulse number method was much larger than the effective pulse method and the pulse correction method, but the relative error decreases with the increase of the valve opening time. Compared with the total pulse number method, the measurement accuracy of the effective pulse method was greatly improved. The accuracy of the pulse correction method was the highest, the relative error was less than 4% during the valve opening duration of 0.3-2 s, and the pulse correction method was more advantageous when the valve opening duration was shorter. The suction characteristics test results showed that in the continuous switch mode of the solenoid valve, the shorter the valve closing time, the smaller the total number of pulses and the average flow rate. The average flow rate of each valve decreased rapidly with the valve opening time increasing. when the valve opening time was longer than 5 s, the average flow rate of fertilizer absorption tended to be stable at 10 L/min. In the combined structure of venturi and fertilization pump, the greater the fertilization pressure, the smaller the suction flow, but no significant effect on the energy storage and discharge process of the venturi injector. During the maximum energy storage and discharge time, the amount of suction flow by the venturi injector decreased with the prolonging of the valve opening time, and increased with the prolonging of the valve closing time. The test results of the venturi injector under the single switch showed that the maximum energy storage time (vacuum) of the venturi injector was 10 s, and the maximum energy release time (the time when the suction flow was stable) was 1 s. This research can provide technical support for the design and application of intelligent variable water and fertilizer machine.
venturi injector; fertilizer; experiments; solenoid valve; integration of water and fertilizer
周良富,金永奎,薛新宇. 電磁閥開關(guān)模式下文丘里施肥器吸肥特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):277-284. doi:10.11975/j.issn.1002-6819.2019.22.033 http://www.tcsae.org
Zhou Liangfu, Jin Yongkui, Xue Xinyu. Suction characteristics of venturi injector in solenoid valve switch ON&OFF mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 277-284. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.033 http://www.tcsae.org
2019-03-22
2019-07-15
國家重點(diǎn)研發(fā)計(jì)劃(2018YFD0201401);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)項(xiàng)目(S201816);江西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20171BBF60018、20181ACF60027)
周良富,副研究員,博士,主要從事植保機(jī)械裝備技術(shù)研究。Email:326310253@qq.com
金永奎,研究員,主要從事節(jié)水灌溉工程技術(shù)研究。Email:120059323@qq.com
10.11975/j.issn.1002-6819.2019.22.033
S491
A
1002-6819(2019)-22-0277-08