王立舒,文競(jìng)晨,王錦鋒,劉 勃,喬帥翔,馬云飛
基于微熱管陣列的太陽(yáng)能溫差發(fā)電系統(tǒng)優(yōu)化
王立舒,文競(jìng)晨,王錦鋒,劉 勃,喬帥翔,馬云飛
(東北農(nóng)業(yè)大學(xué)電氣與信息學(xué)院,哈爾濱 150030)
溫差發(fā)電技術(shù)因?yàn)榫哂袩o(wú)噪音、無(wú)污染物排放、體積小、質(zhì)量輕等優(yōu)點(diǎn),是當(dāng)今社會(huì)能源利用的科學(xué)研究熱點(diǎn),但其輸出功率過(guò)低,傳熱效果較差仍是很大的問(wèn)題。該文將微熱管應(yīng)用于低溫下的太陽(yáng)能溫差發(fā)電中,對(duì)溫差發(fā)電的系統(tǒng)設(shè)計(jì)進(jìn)行優(yōu)化,對(duì)其光熱輸出功率、熱電輸出功率較低的問(wèn)題進(jìn)行改善,通過(guò)采用PLC的雙軸跟蹤和黑鉻鍍金膜,將太陽(yáng)能吸熱能力提高了5.32%,同時(shí)在傳熱與散熱過(guò)程中采用液態(tài)金屬填充硅脂,讓微熱管陣列在太陽(yáng)能溫差發(fā)電傳熱過(guò)程中減少熱損失,讓光熱平均的輸出功率提升2.21%,在熱電轉(zhuǎn)換過(guò)程中,通過(guò)采用變長(zhǎng)式電導(dǎo)增量法的MPPT,改善功率輸出不穩(wěn)定,精準(zhǔn)度不高的問(wèn)題,總體的光電輸出功率可達(dá)到28.32 W,較之前相比光電輸出功率提高了5.19%,通過(guò)對(duì)太陽(yáng)能溫差發(fā)電系統(tǒng)的追蹤優(yōu)化和傳熱結(jié)構(gòu)的改善,完善了光伏板在農(nóng)業(yè)上的應(yīng)用。
太陽(yáng)能;發(fā)電;光熱輸出功率;熱電輸出功率;液態(tài)金屬填充型硅脂;微熱管陣列;MPPT;PLC
太陽(yáng)能因具有經(jīng)濟(jì)型及清潔無(wú)污染性等優(yōu)點(diǎn),其開(kāi)發(fā)和利用是各個(gè)國(guó)家的研究熱點(diǎn)[1],比較成熟的太陽(yáng)能發(fā)電形式是光伏發(fā)電,利用硅光電池板的光生伏打效應(yīng)將太陽(yáng)能轉(zhuǎn)換為電能[2],已經(jīng)進(jìn)入商業(yè)化階段,但是近年來(lái)遇到發(fā)展難題,其電池成本較高,不能達(dá)到預(yù)期的效果,使人們把目標(biāo)逐漸轉(zhuǎn)向太陽(yáng)能溫差發(fā)電技術(shù)[3]。自1947年,世界上第一臺(tái)溫差發(fā)電機(jī)得以面世開(kāi)始,標(biāo)志著塞貝克效應(yīng)的實(shí)現(xiàn)[4],到21世紀(jì),熱電材料的耐久性逐漸提高,溫差發(fā)電技術(shù)的應(yīng)用領(lǐng)域也越來(lái)越廣,開(kāi)始從航天與軍事等高端領(lǐng)域逐漸向民用領(lǐng)域發(fā)展[5]。
國(guó)內(nèi)太陽(yáng)能溫差發(fā)電技術(shù)目前還并不是很成熟。郎寧在2015年提出了一種新型太陽(yáng)能溫差發(fā)電裝置[6],該裝置利用相變儲(chǔ)能原理,采用菲涅爾透鏡來(lái)聚集太陽(yáng)光,聚焦后的太陽(yáng)光投射到熱管上,將聚焦所得的熱量快速地傳送到相變材料中,再在其冷端采用金屬氫化物進(jìn)行制冷,從而達(dá)到太陽(yáng)能溫差發(fā)電[7]。這種太陽(yáng)能發(fā)電系統(tǒng)普遍在高溫下進(jìn)行[8],對(duì)太陽(yáng)能溫差發(fā)電的溫度要求比較高,控制及維護(hù)復(fù)雜[9],針對(duì)這些問(wèn)題,我們提出了低溫下的集熱型溫差發(fā)電微熱管陣列,微熱管與之前相比較有很多優(yōu)點(diǎn),如導(dǎo)熱效果好、均溫性、熱二極管特性、熱流密度可變等[10],可以減少維護(hù)和控制上的復(fù)雜程度,而液態(tài)金屬填充型硅脂和保溫框的使用降低了熱量的損失,提高了輸出功率[11],同時(shí)根據(jù)太陽(yáng)能輻射分散性強(qiáng)的特點(diǎn),增大集熱器的面積,采用PLC雙軸跟蹤,不但增加了太陽(yáng)能吸熱率,還提高了表面溫度[12],在太陽(yáng)能的溫差發(fā)電中應(yīng)用微熱管陣列,可以在低溫發(fā)電技術(shù)中有效利用太陽(yáng)能輻射分散性強(qiáng)、能流密度低的特性[13],本組件既具有集熱器的特點(diǎn),例如易于與建筑物結(jié)合,簡(jiǎn)單的跟蹤模式,同時(shí)還具有強(qiáng)大的抗凍性和穩(wěn)定的操作性,可以總體提高輸出功率[14-15]。
采用微熱管陣列的太陽(yáng)能溫差發(fā)電從光熱、熱電2個(gè)方面探究功率的優(yōu)化,提高了單位面積內(nèi)的溫差發(fā)電功率[16],為低溫下的溫差發(fā)電技術(shù)的大規(guī)模應(yīng)用提供參考依據(jù)。
微熱管是一種利用內(nèi)部工作液體來(lái)進(jìn)行傳熱的元件[17],工作時(shí),微熱管內(nèi)部的工作液體受到熱端傳遞的熱量蒸發(fā)為氣態(tài),中間的管道將氣態(tài)的工作液體傳輸?shù)綔囟认嗖钶^大的冷端,再將冷卻后得到的液體通過(guò)具有毛細(xì)作用的過(guò)型槽輸送到熱端再次蒸發(fā)[18]。
微熱管陣列平板太陽(yáng)能溫差發(fā)電實(shí)驗(yàn)平臺(tái)包括微熱管平板集熱器、發(fā)電系統(tǒng)、三菱系列PLC-CPU,光照傳感器模塊,溫差發(fā)電片,直流發(fā)電機(jī),繼電器,散熱系統(tǒng)、散熱水箱、水冷導(dǎo)熱銅管、風(fēng)速傳感器、風(fēng)向傳感器、濕度傳感器散熱器、示波器、電壓表、電流表、計(jì)算機(jī)、滑動(dòng)變阻器。試驗(yàn)系統(tǒng)結(jié)構(gòu)圖如圖1所示。
1.循環(huán)散熱水箱 2.水冷導(dǎo)熱銅管 3.微熱管溫差發(fā)電組件 4.總輻射表 5.風(fēng)速、風(fēng)向儀 6.濕度傳感器散熱器 7.太陽(yáng)光強(qiáng)度傳感器 8.示波器 9.電壓、電流表 10.計(jì)算機(jī) 11.滑動(dòng)變阻器 12.PLC上位機(jī) 13.光照傳感器 14.電動(dòng)機(jī)
微熱管陣列的太陽(yáng)能溫差發(fā)電由黑鉻鍍金膜,超白玻璃蓋板、微熱管陣列、半導(dǎo)體溫差發(fā)電片(technology engineering group)組件、預(yù)留水冷銅管,散熱器以及保溫框構(gòu)成示意圖如圖2所示。
1.黑鉻鍍金膜 2.超白玻璃 3.微熱管陣列 4.液態(tài)金屬填充型硅脂 5.半導(dǎo)體溫差發(fā)電組件 6.散熱器 7.保溫框 8.預(yù)留水冷接管
圖3 試驗(yàn)平臺(tái)實(shí)物圖
本文的太陽(yáng)能跟蹤采用PLC控制的視日軌跡跟蹤中的雙軸跟蹤,依據(jù)太陽(yáng)全天位置變化進(jìn)行實(shí)時(shí)跟蹤,并在微熱管表面鍍上了黑鉻鍍金膜[19-20]來(lái)提高吸熱能力。光照直射角度在光照傳感器上發(fā)生偏移時(shí)候,PLC控制的視日軌跡跟蹤中的雙軸跟蹤,所產(chǎn)生的光電反饋信號(hào)通過(guò)計(jì)算機(jī)輸送給PLC控制器,此時(shí)PLC控制步進(jìn)電機(jī)將脈沖信號(hào)轉(zhuǎn)化為角位移動(dòng),步進(jìn)電機(jī)調(diào)整光照接收裝置的雙軸轉(zhuǎn)速和相角變化,從而追蹤太陽(yáng)高度角和方位角的變化,實(shí)現(xiàn)對(duì)太陽(yáng)光吸熱的最佳自動(dòng)跟蹤,提高了光熱的輸出功率[21]。
表1是2018年10月1日到10月8日(每天早上08:00-晚上17:00)以東北農(nóng)業(yè)大學(xué)校內(nèi)某地點(diǎn)為例做太陽(yáng)光直射高度角和太陽(yáng)方位角的計(jì)算數(shù)值的擬合。
背板熱量一部分用于提高溫差發(fā)電片熱端溫度,產(chǎn)生電能,則溫差發(fā)電片產(chǎn)生電能所消耗的熱量見(jiàn)式(1)。
溫差發(fā)電片與背板熱端蒸發(fā)段間熱阻損耗的熱量見(jiàn)式(2)。
表1 太陽(yáng)高度角和方位角數(shù)值的近似擬合
背板熱端傳熱過(guò)程中由于自身熱阻損耗的熱量hp見(jiàn)式(3)。
系統(tǒng)產(chǎn)生的可利用熱能見(jiàn)式(4)。
系統(tǒng)的熱功率見(jiàn)式(5)。
圖4是不同光照強(qiáng)度下的跟蹤與非跟蹤的熱損失及溫度對(duì)比。由圖4可知,在300~800 W/m2范圍內(nèi),跟蹤與非跟蹤的背板溫度都隨著光照強(qiáng)度的增加而升高,但跟蹤相比較于非跟蹤,最高溫度可達(dá)到56 ℃,相比于非跟蹤增長(zhǎng)了約2.62%,背板的吸熱能力提高了5.32%,同樣溫度與熱損失也不斷增加,為解決熱損失較大的問(wèn)題,下文中引用了液態(tài)金屬填充型硅脂,來(lái)改善熱量損失的問(wèn)題,總體來(lái)說(shuō),太陽(yáng)能跟蹤的精度得到很大的改善,光熱輸出功率得到了一定程度的提升。
為改善太陽(yáng)能跟蹤過(guò)程中,背板熱損失嚴(yán)重的問(wèn)題,在溫差發(fā)電的微熱管陣列中采用新型的液態(tài)金屬填充型硅脂[22-23],提高光熱輸出功率。
導(dǎo)熱系數(shù)將影響溫度分布,在單位時(shí)間內(nèi)傳輸?shù)臒崃糠Q(chēng)為熱流,熱流與導(dǎo)熱系數(shù)的關(guān)系如式(6)[20]。
比較不同時(shí)間下的溫差發(fā)電裝置和液態(tài)金屬填充型硅脂微熱管陣列的輸出功率情況,如圖5所示。
圖5 溫差發(fā)電裝置和液態(tài)金屬填充型硅脂下的微熱管陣列的輸出功率對(duì)比圖
溫差發(fā)電裝置與金屬填充型硅脂微熱管陣列瞬時(shí)輸出功率的變化情況都為先上升后下降,瞬時(shí)輸出功率最低點(diǎn)是17:00,此時(shí)太陽(yáng)光強(qiáng)度較低,熱端溫度低,常規(guī)的瞬時(shí)輸出功率此時(shí)只有3.32 W,而液態(tài)金屬填充型硅脂的瞬時(shí)輸出功率提升了1.2%,輸出功率達(dá)到4.34 W,13:00到14:00光照強(qiáng)度較強(qiáng),增長(zhǎng)速度較快,增長(zhǎng)了約2.31%,14:00熱端溫度達(dá)到最高,通過(guò)使用液態(tài)金屬填充型硅脂減少了熱損失,把液體金屬填充型硅脂的輸出功率提升到22.02 W。通過(guò)計(jì)算總體的輸出功率可以提升2.21%左右,說(shuō)明液態(tài)金屬填充型硅脂可以提高光熱的輸出功率。
本研究引用的太陽(yáng)能最大功率跟蹤(maximum power point tracking,MPPT)控制算法是變步長(zhǎng)電導(dǎo)增量法,因?yàn)殡妼?dǎo)增量法常應(yīng)用于小功率系統(tǒng)的非線性檢測(cè)中??商岣邫z測(cè)速度和精度,確保了溫差穩(wěn)定輸出末端電壓值,一般采用增長(zhǎng)或縮短步長(zhǎng)的方式,因此電導(dǎo)增量法常應(yīng)用于小功率系統(tǒng)的輸出控制中。提高了檢測(cè)速度和精度,確保了溫差發(fā)電或縮短步長(zhǎng)的方式[24]得到了廣泛應(yīng)用,其工作原理:搭建Boost電路,控制微熱管陣列兩端的電壓數(shù)值(改變占空比),使跟蹤最大輸出功率[25]。
設(shè)處的斜率是0,則此時(shí)
結(jié)合太陽(yáng)能溫差發(fā)電微熱管陣列的MPPT整體結(jié)構(gòu)的仿真電路,如圖6所示,主要Boost設(shè)計(jì)電路,MPPT控制,最大功率點(diǎn)追蹤部分在Matlab中仿真。
圖7為光照強(qiáng)度與溫度均迅速變化時(shí),變步長(zhǎng)電導(dǎo)增量法MPPT仿真下輸出的電壓、電流的變化情況。
由圖可見(jiàn)光照強(qiáng)度隨溫度均迅速變化時(shí),變步長(zhǎng)電導(dǎo)增量法MPPT仿真下輸出的電壓、電流變化不大,觀察Boost主電路,新型變步長(zhǎng)電導(dǎo)增量法輸出功率穩(wěn)定時(shí),其占空比的波形幾乎沒(méi)變化,整體電路的功率損耗也不大,所以新型變步長(zhǎng)電導(dǎo)增量法的應(yīng)用能明顯地減小功率振蕩范圍,從而有效地提高了溫差發(fā)電中光伏的能源利用率。
注:Ipv為輸出電流;Upv為輸出電壓;Uo為電路輸出電壓Boost。
注:Ud為Boost電路占空比信號(hào);Ppv溫差發(fā)電片的輸出功率。
微熱管陣列在光照條件為1 kW/m2,=20 ℃下的功率變化情況依照?qǐng)D8所示。
圖8 溫差發(fā)電微熱管陣列變步長(zhǎng)電導(dǎo)輸出功率變化
由圖8可見(jiàn),改進(jìn)型變步長(zhǎng)電導(dǎo)增量法的仿真波形,一開(kāi)始便使變步長(zhǎng)跟蹤過(guò)程的平均步長(zhǎng)較長(zhǎng),系統(tǒng)的跟蹤速度得到較大提高,相比于不使用變步長(zhǎng)電導(dǎo)增量法,變步長(zhǎng)電導(dǎo)增量法可將系統(tǒng)啟動(dòng)時(shí)間由原來(lái)的60 ms縮短為35 ms,并且可以讓輸出功率迅速達(dá)到穩(wěn)定狀態(tài),能夠使系統(tǒng)穩(wěn)定的跟蹤到MPPT。
溫差發(fā)電片微熱管陣列系統(tǒng)光-電瞬時(shí)輸出功率在2018年10月1日到10月8日(每天早上08:00-晚上17:00)的變化情況如圖9所示。
由圖9可知,隨著溫度不斷的變化,試驗(yàn)得到的光-電輸出功率均是成線性緩慢增長(zhǎng)后降低,從11:00到14:00,功率提升速度比較快,尤其在14:00時(shí),太陽(yáng)光照強(qiáng)度較大,通過(guò)利用PLC追蹤與液態(tài)金屬填充型硅脂提高了光熱輸出功率,讓光熱輸出功率達(dá)到最大,達(dá)到了28.32 W,與常規(guī)的溫差發(fā)電裝置相比光電輸出功率提高了7.52%,早晚溫度較低,太陽(yáng)光吸收能力不是很強(qiáng),但相比于常規(guī)的溫差發(fā)電裝置,仍有3.57%的小幅度功率提升,總體的平均光電輸出功率到16.61 W,總體的輸出功率提升了5.19%。
圖9 光-電瞬時(shí)輸出功率變化情況
本文提出了將PLC雙軸跟蹤,黑鉻鍍金膜,液態(tài)金屬填充型硅脂,微熱管陣列應(yīng)用于低溫的太陽(yáng)能溫差發(fā)電裝置中,改善了溫差發(fā)電光電輸出功率不高的問(wèn)題,實(shí)現(xiàn)了從光熱、熱電2方面的功率優(yōu)化;光熱方面,組件外部通過(guò)PLC雙軸和黑鉻鍍金膜來(lái)提高,組件內(nèi)部通過(guò)液態(tài)金屬填充型硅脂,實(shí)現(xiàn)了良好的熱量傳遞,降低了熱量損耗,在算法MPPT方面進(jìn)行優(yōu)化,提高熱電輸出功率的穩(wěn)定性,在東北農(nóng)業(yè)大學(xué)校內(nèi)設(shè)置了太陽(yáng)能溫差發(fā)電組件,并進(jìn)行了數(shù)學(xué)建模與試驗(yàn),以下是得到的結(jié)論:
1)微熱管陣列中的太陽(yáng)能溫差發(fā)電對(duì)比于集熱型的發(fā)電系統(tǒng),增加了跟蹤系統(tǒng)和黑鉻鍍金膜,能夠根據(jù)太陽(yáng)光的旋轉(zhuǎn)角度自動(dòng)調(diào)整溫差發(fā)電系統(tǒng)中的熱端溫度,讓背板的吸熱能力提高了5.32%,改善了光熱能力較低的問(wèn)題,滿足低溫下的發(fā)電量需求。
2)針對(duì)微熱管的太陽(yáng)能溫差發(fā)電系統(tǒng)熱量損耗較大的問(wèn)題,本文在微熱管陣列組件內(nèi)部通過(guò)液態(tài)金屬型硅脂填充,實(shí)現(xiàn)了熱量傳遞,降低了熱損失,讓光熱平均的輸出功率提升2.21%。
3)新型的MPPT算法變步長(zhǎng)電導(dǎo)增量法,改善了溫差發(fā)電中輸出不穩(wěn)定,啟動(dòng)速度較慢等問(wèn)題,大幅度提高了能源的利用率,提高了熱電輸出功率的穩(wěn)定性。
本文仍需要改進(jìn)的地方是低溫的溫差的發(fā)電功率不是很高,提升效果不是特別的明顯,采用的PLC的雙軸跟蹤系統(tǒng)可能會(huì)過(guò)于麻煩,可用DCS進(jìn)行進(jìn)一步的優(yōu)化,集熱的微熱管陣列形狀可以進(jìn)行改進(jìn),提高吸熱能力,MPPT的算法也可以進(jìn)一步優(yōu)化,提高精準(zhǔn)度與輸出功率。
[1]王崗,全貞花,趙耀華,等. 太陽(yáng)能-空氣復(fù)合熱源熱泵熱水系統(tǒng)[J]. 化工學(xué)報(bào),2014(3):1033-1039. Wang Gang, Quan Zhenhua, Zhao Yaohua, et al. Solar-air composite heat source heat pump hot water system[J]. Journal of Chemical Industry and Engineering, 2014(3): 1033-1039. (in Chinese with English abstract)
[2]薄中亞. 遍歷式最大電流點(diǎn)硅光電池追蹤系統(tǒng)設(shè)計(jì)[J]. 信息技術(shù)與網(wǎng)絡(luò)安全,2018,37(10):59-61. Bo Zhongya. Design of traversing maximum current point silicon photocell tracking system[J]. Information Technology and Network Security, 2018, 37(10): 59-61. (in Chinese with English abstract)
[3]鄧華. 太陽(yáng)能光伏—溫差混合發(fā)電系統(tǒng)的研究[D]. 南昌:南昌大學(xué),2015. Deng Hua. The Research of Photovoltaic-Thermoelectric (PV-TE)Hybrid Power Systems[D]. Nanchang: Nanchang University, 2015. (in Chinese with English abstract)
[4]嚴(yán)李強(qiáng),程江,劉茂元. 淺談溫差發(fā)電[J]. 太陽(yáng)能,2015(1):11-15. Yan Liqiang, Cheng Jiang, Liu Maoyuan. Discussion on temperature difference power generation[J]. Solar Energy, 2015(1): 11-15. (in Chinese with English abstract)
[5]Shukla A. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 160(C): 275-286.
[6]郎寧,趙云,秦瑋昕,等. 新型太陽(yáng)能溫差發(fā)電裝置的研究[J]. 科技展望,2015,25(14):85-88. Lang Ning, Zhao Yun, Qin Weixin, et al. Study on new solar temperature difference power generation device[J]. Science & Technology Prospect, 2015, 25(14): 85-88. (in Chinese with English abstract)
[7]李漾,鄭少華,李偉光. 太陽(yáng)能溫差發(fā)電技術(shù)的研究現(xiàn)狀[J]. 機(jī)電工程技術(shù),2015,44(2):74-79. Li Yang, Zheng Shaohua, Li Weiguang. Research status of solar temperature difference power generation technology[J]. Mechanical & Electrical Engineering Technology, 2015, 44(2): 74-79. (in Chinese with English abstract)
[8]鮑亮亮,韓永輝,張永忠,等. 溫差發(fā)電技術(shù)及工業(yè)余熱溫差發(fā)電系統(tǒng)設(shè)計(jì)研究[J]. 兵器材料科學(xué)與工程,2015,38(2):110-114. Bao Liangliang, Han Yonghui, Zhang Yongzhong, et al. Design of temperature difference power generation technology and industrial waste heat temperature difference power generation system[J]. Ordnance Material Science and Engineering, 2015, 38(2): 110-114. (in Chinese with English abstract)
[9]吳雙應(yīng),吳瑩瑩,肖蘭. 環(huán)境風(fēng)下光伏-溫差發(fā)電系統(tǒng)耦合特性分析[J]. 工程熱物理學(xué)報(bào),2015,36(7):1528-1531. Wu Shuangying, Wu Yingying, Xiao Lan. Coupling characteristics analysis of photovoltaic-thermoelectric hybrid system under windy environment[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1528-1531. (in Chinese with English abstract)
[10]Wang Lincheng, Zhao Yaohua, Quan Zhenhua, et al. Simulation study on household forced circulation photovoltaic thermal system based on micro heat pipe array[J]. Energy Procedia, 2015, 70: 130-137.
[11]梅生福,高云霞,鄧中山,等. 液態(tài)金屬填充型硅脂導(dǎo)熱性能實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2015,36(3):624-626. Mei Shengfu, Gao Yunxia, Deng Zhongshan, et al. Experimental study on thermal conductivity of liquid metal filled silicone grease[J]. Journal of Engineering Thermophysics, 2015, 36(3): 624-626. (in Chinese with English abstract)
[12]王金平,王軍,張耀明,等. 槽式太陽(yáng)能聚光器跟蹤系統(tǒng)運(yùn)行特性分析[J]. 太陽(yáng)能學(xué)報(bào),2016,37(12):3125-3131. Wang Jinping, Wang Jun, Zhang Yaoming, et al. Operation characteristics analysis of trough solar concentrator tracking system[J]. Acta Solarica Sinica, 2016, 37(12): 3125-3131. (in Chinese with English abstract)
[13]楊孟鋮. 基于微熱管陣列的太陽(yáng)能溫差發(fā)電組件的效率研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2018. Yang Mengcheng. Research on Efficiency of Solar Thermoelectric Power Generation Components Based on Micro Heat Pipe Array[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract)
[14]Wang Xin. Research progress of solar photovoltaic/thermal (PV/T) water-cooled collector[C]// International Journal of Computational and Engineering(MARCH 2017 V2 N1). Academic Publishing House, 2017.
[15]茍小龍,平會(huì)峰,許昊煜,等. 一種帶有熱開(kāi)關(guān)的新型溫差發(fā)電系統(tǒng)[J]. 太陽(yáng)能學(xué)報(bào),2016,37(10):2653-2659. Gou Xiaolong, Ping Huifeng, Xu Haoyu, et al. Thermoelectric generation system with thermal switch[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2653-2659. (in Chinese with English abstract)
[16]王林成. 微熱管陣列光伏光熱組件及系統(tǒng)性能研究[D]. 北京:化學(xué)工業(yè)出版社,2014. Wang Lincheng. Research on Micro-Heat Pipe Array Photovoltaic Light-Heat Components and System Performance[D]. Beijing: Chemical Industry Press, 2014. (in Chinese with English abstract)
[17]Hou Longshu, Quan Zhenhua, Zhao Yaohua, et al. An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T)[J]. Energy & Buildings, 2016, 124: 60-69.
[18]別玉. 基于槽式聚光集熱的腔體吸收器熱損失特性研究[J]. 太陽(yáng)能學(xué)報(bào),2017,38(2):423-430. Bie Yu. Heat loss properties of cavity absorber in solar collecting system with parabolic trough concentrator[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 423-430. (in Chinese with English abstract)
[19]熊德華,陳煒,李宏. 太陽(yáng)能光熱轉(zhuǎn)化選擇性吸收涂層研究進(jìn)展[J]. 科技導(dǎo)報(bào),2014,32(9):50-58. Xiong Dehua, Chen Wei, Li Hong. Research progress in solar thermal conversion of selective absorption coatings[J]. Science and Technology Review, 2014, 32(9): 50-58. (in Chinese with English abstract)
[20]王宗雄,王超,彭海泉,等. 鍍鉻工藝的應(yīng)用及相關(guān)配方介紹(I)[J]. 表面工程與再制造,2016,16(3):28-32. Wang Zongxiong, Wang Chao, Peng Haiquan, et al. Application of chrome plating process and related formulas(I)[J]. Surface Engineering and Remanufacturing, 2016, 16(3): 28-32. (in Chinese with English abstract)
[21]丁修增. 基于拋物型聚光器太陽(yáng)能溫差發(fā)電系統(tǒng)設(shè)計(jì)及分析[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2017. Ding Xiuzeng. Design and Analysis of Solar and Thermoelectric Cell Generation System Based on Parabolic Concentrator[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract)
[22]李婧璇,朱海濤,雷清泉. 氧化鋁/碳材料導(dǎo)熱硅脂的研究[J]. 青島科技大學(xué)學(xué)報(bào):自然科學(xué)版,2018,39(1):54-58. Li Jingxuan, Zhu Haitao, Lei Qingquan. Study on thermal conductive silicone grease of alumina/carbon materials[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2018, 39(1): 54-58. (in Chinese with English abstract)
[23]康永. 不同無(wú)機(jī)填料對(duì)導(dǎo)熱硅脂熱導(dǎo)率的影響研究[J]. 陶瓷,2018(4):49-55. Kang Yong. Study on the influence of different inorganic fillers on the thermal conductivity of thermal grease[J]. Ceramics, 2018(4): 49-55. (in Chinese with English abstract)
[24]聶健. 太陽(yáng)能光伏定向跟蹤裝置的設(shè)計(jì)與開(kāi)發(fā)[D]. 長(zhǎng)沙:湖南師范大學(xué),2014. Nie Jian. Design and Development of Solar Photovoltaic Directional Tracking Device[D]. Changsha: Hunan Normal University, 2014. (in Chinese with English abstract)
[25]張政,太陽(yáng)能光伏光熱一體化熱泵/熱管系統(tǒng)性能研究[D]. 南京:東南大學(xué),2016. Zhang Zheng. Performance Research of a Solar Photovoltaic/Thermal Integrated Heat Pump/Heat Pipe system[D]. Nanjing: Southest University, 2016. (in Chinese with English abstract)
Optimization of solar thermoelectric power generation components with micro heat pipe array
Wang Lishu, Wen Jingchen, Wang Jinfeng, Liu Bo, Qiao Shuaixiang, Ma Yunfei
(150030,)
Thermoelectric power generation technology is a hotspot of scientific research on energy utilization in today's society because of its advantages of no noise, no pollutant emission, small volume, light weight, etc. However, its output power is too low, and the heat transfer effect is still a big problem. In this paper, the micro-heat pipe was applied to the solar temperature difference power generation under low temperature, and the system design of the thermoelectric power generation was optimized, and the problem of low light-heat output power and low-temperature output power was improved, and the dual-axis tracking and black by PLC were adopted. The chrome-plated gold film increased the solar heat absorption capacity by 5.32%. At the same time, the liquid metal was used to fill the silicon grease during the heat transfer and heat dissipation process, so that the micro heat pipe array could reduce the heat loss during the heat transfer process of the solar temperature difference power generation, so that the light heat was averaged. The output power could be increased by 2.21%. During the thermoelectric conversion process, the MPPT of the variable length conductance increment method improved the instability of the power output and the accuracy was not high. The overall photoelectric output power could reach 28.32 W. Compared with the previous one, the photoelectric output power increased by 5.19%. Through the tracking optimization of the solar temperature difference power generation system and the improvement of the heat transfer structure, the application of photovoltaic panels in agriculture was improved. We have proposed a collector-type thermoelectric micro-heat pipe array at low temperature. The complexity of control, and the use of liquid metal-filled silicone grease and insulation frame reduced heat loss, increased output power, and increased the area of the collector according to the characteristics of solar radiation dispersion. The use of PLC dual-axis tracking not only increased the solar heat absorption rate, but also increased the surface temperature. In the solar temperature difference power generation, the application of the micro heat pipe array could effectively utilize the solar radiation dispersion in the low-temperature power generation technology. Low flow density characteristics, this module had the characteristics of collectors, such as easy to integrate with buildings, simple tracking mode, and also had strong frost resistance and stable operation, which could improve the overall output power. Solar temperature difference power generation using micro-heat pipe arrays explored power optimization from two aspects of photothermal and thermal power, and improved the power generation power per unit area, which provided a reference for large-scale application of temperature difference power generation technology at low temperature. The micro heat pipe was a component that used internal working liquid to conduct heat transfer. During operation, the working liquid inside the micro heat pipe was evaporated into a gaseous state by the heat transferred from the hot end, and the middle pipe transfered the gaseous working liquid to a temperature difference. At the cold end, the liquid obtained after cooling was transported to the hot end by the capillary having a capillary action and evaporated again.
solar energy; power generation; photothermal conversion efficiency; thermoelectric conversion efficiency; liquid metal filled silicone grease; micro heat pipe array; MPPT; PLC
王立舒,文競(jìng)晨,王錦鋒,劉 勃,喬帥翔,馬云飛. 基于微熱管陣列的太陽(yáng)能溫差發(fā)電系統(tǒng)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):251-256. doi:10.11975/j.issn.1002-6819.2019.22.030 http://www.tcsae.org
Wang Lishu, Wen Jingchen, Wang Jinfeng, Liu Bo, Qiao Shuaixiang, Ma Yunfei. Optimization of solar thermoelectric power generation components with micro heat pipe array[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 251-256. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.030 http://www.tcsae.org
2019-04-30
2019-10-10
教育部春暉計(jì)劃(Z2012074);黑龍江省教育廳科技課題(12521038)
王立舒,教授,博士,博導(dǎo)。研究方向?yàn)檗r(nóng)業(yè)電氣化與自動(dòng)化;電力新能源開(kāi)發(fā)與利用。E-mail:wanglishu@neau.edu.cn
10.11975/j.issn.1002-6819.2019.22.030
TK513.4;TG51;TM516
A
1002-6819(2019)-22-0251-06