王 昊,張 悅,王 欣,林治家,彭 渤,譚長銀,章新平
硅酸鹽調(diào)控抑制水稻對富硒水稻土中Cd吸收
王 昊1,張 悅1,王 欣1※,林治家2,彭 渤1,譚長銀1,章新平1
(1. 湖南師范大學(xué)資源與環(huán)境科學(xué)學(xué)院,長沙 410081;2. 湖南省地質(zhì)調(diào)查院,長沙 410116)
研究目的:通過水稻盆栽試驗,探討了海泡石(SP)、硅鈣復(fù)合礦物(CS)和水溶性葉面硅肥(YS)3種硅酸鹽不同復(fù)配處理對富Se水稻土中Cd的遷移和轉(zhuǎn)運和Se的生物有效性的調(diào)控效果,以及對糙米中礦質(zhì)元素吸收的影響。結(jié)果表明,海泡石(SP)、海泡石-硅鈣復(fù)合礦物(SPC)和海泡石-硅鈣復(fù)合礦物-水溶硅肥(SCY)處理水稻根際土pH值增加0.15~0.31個單位,使土壤Cd由可交換態(tài)向碳酸鹽結(jié)合態(tài)和有機結(jié)合態(tài)轉(zhuǎn)變,而土壤Se由殘渣態(tài)向生物可利用態(tài)轉(zhuǎn)變。與對照(CK)相比,SP、SPC和SCY處理水稻根際土CaCl2-Cd含量降低了19.5%~34.0%,而土壤有效態(tài)Se的含量增加了17.8%~36.8%。且SPC和SCY處理糙米中的Cd含量顯著降低,比食品安全國家標準(0.2 mg/kg)降低了25.0%~90.0%。各處理在降低糙米中Cd的同時,對糙米中Se含量和各礦質(zhì)元素(Cu、Fe、Zn、Mg和Mn)無顯著影響。該研究可為進一步利用SP有效修復(fù)富Se水稻土中Cd污染和提高土壤Se的生物有效性提供了有益途徑。
重金屬;污染;土壤;海泡石;硅鈣復(fù)合礦物;水溶性葉面硅肥;Se富集;聯(lián)合調(diào)控
Cd(鎘)是重金屬中毒害性最高的污染物之一,其在環(huán)境中具有高遷移率的特征,且不可被生物降解[1-3]。近年來,越來越多的重金屬Cd隨著工業(yè)廢水、農(nóng)藥使用和采礦冶煉等途徑排放或釋放到環(huán)境中[4]。而Cd極易通過植物的富集作用進入食物鏈,對人體和動物的各器官、系統(tǒng)產(chǎn)生危害,從而產(chǎn)生諸多疾病,如骨軟化、腎臟疾病、癌癥、貧血、支氣管炎、腎毒性和高血壓等[5-7]。根據(jù)2014公布的《全國土壤污染狀況調(diào)查公報》顯示,中國Cd點位超標率達7%,位于8種無機物污染首位[8]。湖南省中部是華南地區(qū)東西向分布的黑色頁巖帶的中段,長期的采礦活動和道路建設(shè)等使巖石和礦渣暴露地表,導(dǎo)致Cd的淋濾析出加速,使當?shù)厮就粒╬H值=6.84)中Cd富集程度超過污染臨界值0.6 mg/kg[9-10]。此外,黑色頁巖中富集了Se(硒)這一有益微量元素,如湘西(湖南西部)黑色頁巖中Se質(zhì)量分數(shù)達140~3140 mg/kg,而巖石風化促使黑色頁巖帶周邊的水稻土中Se富集[11]。因此,針對黑色頁巖發(fā)育土壤的富Se高Cd特點,如何保障水稻在富集吸收Se的前提下有效降低對Cd的吸收積累,這是本研究重點解決的科學(xué)問題。
針對稻田土壤Cd污染的減控與修復(fù),化學(xué)鈍化法因其費用低、見效快等優(yōu)勢而成為實現(xiàn)污染土壤邊修復(fù)邊利用的較好選擇[12]。常見的鈍化材料主要包括含鈣鈍化劑[13]、含磷鈍化劑[14]、含硅鈍化劑[15]和復(fù)合鈍化劑[16]等。硅酸鹽類鈍化劑與其他鈍化劑相比具有來源廣泛、改良酸性土壤等優(yōu)點[17];同時Si是水稻生長不可缺少的有益元素,因為水稻的高Si積累可以提高谷物產(chǎn)量[18-19]。此外,中國土壤普遍缺Si,而硅酸鹽類鈍化劑具有補充Si源等作用[17,20]。因此,近年來硅酸鹽類作為環(huán)境友好型鈍化修復(fù)材料正受到的日益廣泛的關(guān)注和重視[21-25]。
但目前的已有研究主要側(cè)重于單一硅酸鹽類鈍化劑或硅酸鹽類鈍化劑與其他類材料聯(lián)控的篩選,而關(guān)于在根施硅酸類鈍化劑的基礎(chǔ)上聯(lián)合噴施水溶性葉面硅肥的研究相對較少[12,23-26];同時,已有研究較少探討硅酸鹽類的施用對稻米吸收有益礦質(zhì)元素的影響,而稻米對礦質(zhì)元素的正常吸收也是保障人體健康的重要因素。
本文以海泡石(SP)、硅鈣復(fù)合礦物(CS)和水溶性葉面硅肥(YS)3種硅酸鹽為修復(fù)材料,分別探討海泡石(SP)、海泡石-硅鈣復(fù)合礦物(SPC)和海泡石-硅鈣復(fù)合礦物-水溶硅肥(SCY)3種處理對富Se水稻土中Cd的生物有效性以及Cd在水稻體內(nèi)遷移和轉(zhuǎn)運的影響和機制,同時探究修復(fù)措施對糙米中礦質(zhì)元素和有益微量元素Se吸收的影響,從而篩選出最佳的修復(fù)措施,為后期的大規(guī)模的農(nóng)田土壤的修復(fù)提供理論依據(jù)。
供試土壤采自湖南省婁底市漣源市稻田耕作層土壤(0~20 cm),成土母質(zhì)為二疊系中統(tǒng)黑色頁巖坡積殘物風化物,土壤類型為水耕人為土[27]。將供試土壤自然處風干研磨過10目(2 mm)篩備用,其基本理化性質(zhì)見表 1。SP由湘潭源遠海泡石新材料股份有限公司提供,純度為10%~15%,pH值 8.61。CS具有較高的pH值(13.1),富含Si(SiO224.7%)、Ca(CaO 52.4%)等元素[24]。葉面硅肥為水稻專用的正大速溶硅肥(可溶硅和其他養(yǎng)分≥40%)。
表1 供試土壤基本理化性質(zhì)
將供試土壤裝入無孔花盆中(直徑24 cm×28 cm高),每盆4.0 kg土。每盆土壤按照120 mg/kg N,30 mg/kg P和75.7 mg/kg K的標準施加底肥NH4NO3和K2HPO4。水稻盆栽試驗設(shè)計如表2所示,共設(shè)置4個處理,每個處理設(shè)置3次重復(fù)。其中,以1∶20(質(zhì)量體積比)的比例稀釋葉面硅肥用以噴施。淹水并將土壤、底肥和鈍化劑充分混合穩(wěn)定一周。
表2 水稻盆栽試驗設(shè)計表
注:CK、SP、SPC和SCY分別為對照、海泡石、海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥,下同
Note: CK, SP, SPC and SCY are control, sepiolite, sepiolite-silicon calcium composite mineral and sepiolite-silicon calcium composite mineral-water soluble silicon fertilizer, respectively, the same as below.
參照Zhang等[24]對水稻(陵兩優(yōu)211)進行育苗,直至水稻葉片達到4~5片,并選取3株長勢相當?shù)乃居酌缫圃灾凉┰囃寥乐?,然后將土壤孔隙水采集器插入水稻幼苗根際區(qū)域。水稻生長期間管理與當?shù)氐奶镩g管理措施一致。
供試土壤和材料pH值用去離子水(體積比1∶2.5)浸提,利用氧化還原電位儀去極化法自動測定儀(FJA-6,南京傳滴儀器設(shè)備有限公司)測定pH值。水稻育苗后移栽到無孔花盆中,移栽后整個生育期內(nèi),每隔7 d收集水稻根際孔隙水,利用AAS(原子吸收分光光度計,PinAAcle 900T,PerkinElmer,USA)測定孔隙水中Cd和Ca的含量;利用紫外—可見光分光光度計(EvolutionTM260 Bio,Thermo Scientific,USA)測定Si的含量,參考Elliott等[28]方法測定;孔隙水中的Se含量利用AFS(液相色譜—原子熒光聯(lián)用儀,LC-AFS6500,北京海光儀器有限公司)測定。此外,在收集孔隙水后利用上述儀器測定水稻根際孔隙水的pH值和Eh。
水稻成熟收獲后,收集水稻根表土,自然風干后研磨過100目(0.149 mm)篩。隨后將水稻根際土分別用CaCl2(0.01 mol/L)、NH4HAc(1 mol/L)和乙酸(0.5 mol/L)提取有效Cd、有效Ca和有效Si,利用AAS測定Cd、Ca和紫外—可見光分光光度計測定Si含量[29-32]。而土壤中生物有效Se用0.1 mol/L KH2PO4浸提溶液進行提取[33],利用AFS測定Se含量。
水稻根際土收獲后,將水稻根部用自來水去沙后再用去離子水沖洗干凈用以根表鐵膜的提取,參考DCB(Dithionite-Citrate-Bicarbonate)提取法[34]進行提取,利用AAS測定鐵膜中Cd和Fe的含量,然后再把無鐵膜的水稻根于40 ℃下烘干至恒定質(zhì)量。
水稻其余部位(莖葉、谷粒)用上述方法沖洗干凈,105 ℃殺青30 min,在70 ℃中烘至恒定質(zhì)量。烘干后,首先將稻谷分為谷殼和糙米兩部分;然后將白根(無根表鐵膜)、莖葉、谷殼和糙米分別研磨并過100目篩;最后水稻各部位Cd、Ca等消解方法參考EPA 3051a進行微波消解(高通量高壓微波消解儀,CEM MARS6,CEM,USA),并利用AAS測定Cd、Ca和糙米消解液中Cu、Zn、Fe和Mn含量,利用ICP-AES(電感耦合等離子體發(fā)射光譜儀,CAP6300 DUO,Thermo Scientifici,USA)測定Mg含量,利用AFS測定Se含量。植物Si的消解和測定參考Seyfferth等[35]和Elliott等[28]方法,并利用紫外—可見光分光光度計測定Si含量。
試驗數(shù)據(jù)均以平均值±SD(≥3)表示,利用Excel 2016處理后采用OriginPro 9.0分析并繪圖。并使用IBM SPSS 22.0進行各處理間的差異顯著性和相關(guān)性分析。
SP和CS的pH值較高,根施SP或CS都能提高土壤pH值,從而降低土壤中有效態(tài)Cd的含量。試驗表明(圖1a),在水稻的生長期內(nèi),SP、SPC或SCY處理與CK比都提高了水稻根際土的pH值,并隨淹水時間延長而逐步趨于中性。隨著土壤pH值逐步升高,土壤固相對Cd的吸附能力增強和吸附量提高,土壤中有效Cd降低,減少了水稻對Cd的吸收利用[36]。同時,3種處理提高了水稻根際土pH值,促使土壤對Se的吸附力降低,提高了Se的生物可利用性。
而在水稻不同生長期,3種處理水稻根際土Eh均處于-60~40 mV(圖1b),根際土Eh遠低于發(fā)生氧化的臨界值300 mV,說明長期的淹水灌溉使得根際土在水稻整個生長期內(nèi)都處于強烈還原環(huán)境[37]。長期處于強烈還原環(huán)境,土壤會形成較多的H2S、S2-與Cd2+形成硫化物沉淀,降低Cd的生物活性[13],這與水稻根際土CaCl2-Cd含量降低的結(jié)果相一致。
由圖1c可知,與CK比,SPC、SCY處理提高了孔隙水中Si的含量,這與2種處理施加富含Si的CS有關(guān)。而SCY處理在分蘗期后期孔隙水中Si含量明顯高于SP和SPC處理,這可能是由于在噴施YS過程中有少許YS進入水稻盆栽的上覆水中引起Si含量偏高。
如圖1d所示,SP、SPC和SCY處理孔隙水中Ca含量比CK增加了18.9%~111.3%,而SPC和SCY處理Ca含量提高較SP處理更為顯著,這可能跟土壤中根施富含Ca的CS有關(guān)[24]。此外,如圖1e所示,與CK比,SP、SPC和SCY處理均增加了孔隙水中Se的含量,這是因為3種處理都提高了土壤pH值,使得土壤對Se的吸附能力降低,因此促進了土壤Se的溶出[38],同時也提高了水稻對Se的吸收利用。而在水稻整個生育期內(nèi),孔隙水中Cd的含量均低于儀器檢出限。
注:SS、TS、HFS和MS分別為幼苗期、分蘗期、抽穗揚花期和成熟期。
由圖2a-b可知,與CK相比,3種處理對根表鐵膜中Fe的含量無顯著影響,而SPC和SCY處理顯著降低了根表鐵膜中Cd的濃度,較CK分別降低了53.9%和51.5%,這一結(jié)果極有可能是由于硅酸鹽聯(lián)合處理使土壤pH值顯著升高,導(dǎo)致土壤Fe氧化物沉淀量及其結(jié)合態(tài)Cd含量增加,從而使根表所捕獲的Cd含量降低(圖5)。進一步相關(guān)性分析顯示,根表鐵膜中Fe和Cd呈顯著正相關(guān)(= 0.979,<0.05),表明鐵膜中Fe含量與根表鐵膜對Cd的固持能力緊密相關(guān)[39]。
如圖3a所示,與CK比,SP、SPC和SCY處理白根中Cd含量增加了16.9%~234.4%,但SPC和SCY處理白根中Cd的含量顯著高于SP處理,2種處理分別是SP處理的3.12、2.86倍。而SP、SPC和SCY處理莖葉中Cd的含量與CK比顯著下降了47.1%~88.1%。由表3可知,轉(zhuǎn)移系數(shù)(TF莖葉/白根)由6.22降到0.22,SPC和SCY處理TF比CK降低了92.1%~96.5%,這說明大量的Cd持留在白根中,可能與白根和莖葉中Ca(圖3c)和Si(圖3d)含量增加有關(guān)。因為水稻根部橫截面的Si沉積增加,這可能對Cd向上轉(zhuǎn)運有顯著的抑制作用[24]。再者水稻根施CS后,土壤中Ca含量增加可以與Cd競爭植物根系上的吸收位點,以減少Cd向地上部運輸[40-41]。另外,葉面噴施YS能夠降低水稻葉面的蒸騰作用,這也能減少水稻對Cd的吸收以及Cd通過水分向地上部分轉(zhuǎn)運[42]。
與CK比,SP單施處理沒有顯著降低糙米中的Cd含量。而SPC和SCY處理糙米中Cd質(zhì)量分數(shù)從0.32 mg/kg分別降低到0.15 mg/kg和0.02 mg/kg,比食品安全國家標準(0.2 mg/kg)降低了25%~90%,且SCY處理糙米中Cd含量僅為食品安全國家標準的10%。這主要與大量Cd持留在白根中有關(guān)(表3)。其次,相關(guān)性分析顯示糙米-Cd與莖葉-Si呈顯著負相關(guān)(=-0.99,<0.01)。因此,糙米中Cd含量顯著降低也可能與Si在水稻莖葉的細胞壁,特別是在次生細胞壁上沉積有關(guān),這是因為Si在細胞壁沉積改變了細胞壁的孔隙度,降低Cd從質(zhì)外體遷移到水稻上部,從而減少糙米中Cd的含量[43]。此外,SPC和SCY處理TF糙米/莖葉和TF糙米/谷殼比TF糙米/白根更高(表 3),這表明2種處理中Cd從稈、葉等活躍部分再次活化,然后部分Cd再沿著韌皮部向上運輸,這是少量Cd進入稻粒的主要途徑[44]。
注:不同的小寫字母表示處理間差異顯著(P <0.05),下同
如圖3b所示,與CK比,SP、SPC和SCY處理白根和莖葉中Se含量分別降低了0.4%~32.5%和0.3%~22.3%。Se含量降低可能與Se和Cd都會在某種蛋白質(zhì)的半胱氨酸的巰基上結(jié)合有關(guān)[45];再則也可能跟Se與Cd會在植物體內(nèi)結(jié)合成一種較穩(wěn)定、毒性低的Se-Cd復(fù)合物有關(guān)[46]。SPC、SCY處理谷殼和糙米中的Se含量與CK比無顯著變化,而SP處理Se含量存在明顯下降,與CK比分別下降了51.4%和29.8%,形成該現(xiàn)象的原因需進一步探索。如圖3c-d所示,與CK比,SP、SPC和SCY處理白根、莖葉、谷殼和糙米中Si和Ca的含量都出現(xiàn)增加,這主要是根施或噴施富含Si或Ca的材料有關(guān)。而水稻組織(白根、莖葉)中Si、Ca增加可能抑制Cd的向上遷移,減少糙米中Cd的含量。
上述結(jié)果表明,SCY處理效果最佳,可顯著降低糙米Cd含量,同時對糙米Se含量無明顯影響。盡管如此,考慮到在嚴格控制試驗條件(溫度、光照、養(yǎng)分和水分等)下進行的盆栽試驗,與田間試驗的自然條件差異較大,調(diào)控效果可能存在差異,因此,建議后續(xù)研究進一步通過大田試驗檢驗以上方法的控Cd效果并加以優(yōu)化調(diào)整,以加速推進該方法的落地推廣。
表3 Cd在水稻植株中的轉(zhuǎn)移系數(shù)(TF)
圖3 不同處理水稻各組織中Cd、Se、Ca和Si的含量
如圖4a所示,SP處理對Cd的鈍化效果不明顯,可能與SP的吸附量?。╩ax=4.20 mg/kg)有關(guān)[2]。而SPC或SCY處理對Cd的鈍化效果明顯優(yōu)于SP處理,這可能是在SP基礎(chǔ)上配施CS提高了Cd的吸附量,從而提高了修復(fù)效果。此外,SP、SPC和SCY處理提高了水稻根際土pH值 0.15~0.31個單位,這降低了水稻根際土CaCl2-Cd含量(19.5%~34.0%)(圖4a)。相關(guān)性分析表明土壤pH值與CaCl2-Cd含量呈顯著負相關(guān)(=-0.649,<0.05)。因此,SP、SPC和SCY處理增加根際土pH值,這不利于碳酸鹽態(tài)-Cd釋放到土壤環(huán)境中(圖5a),從而可以降低Cd的生物有效性[47-48]。廖敏等[49]研究表明,紅壤中pH值處于6.0以上,隨著pH值升高Cd的活性逐漸降低,這與該研究結(jié)果相一致。與CK比,SP、SPC或SCY處理有效態(tài)Se的含量增加了17.8%~36.8%(圖4b),利于植物吸收利用。相關(guān)性分析顯示根際土pH值與有效性Se的含量呈顯著正相關(guān)(= 0.906,<0.001)。這說明隨著根際土pH值的升高,土壤對Se的吸附能力下降,從而提高了土壤Se的生物有效性[47]。
如圖4c-d所示,與CK比,SP、SPC和SCY處理可增加根際土的有效態(tài)Si、Ca含量。有效態(tài)Ca含量增加可提高Ca與Cd對水稻吸收點位的競爭,從而減少Cd的向水稻上部遷移轉(zhuǎn)運;而Si是水稻的營養(yǎng)元素,水稻吸收Si后不僅能提高生物質(zhì)含量,而且還可以促使水稻分泌抗氧化酶以緩解Cd對水稻的毒害作用,因此有效態(tài)Si含量增加提高水稻的吸收利用,從而緩解Cd的毒害作用[17]。
圖4 各處理水稻根際土Se、Cd、Si和Ca的有效態(tài)含量
土壤重金屬的全量不能完全表征其在土壤中的生物有效性、遷移性等。因此,根據(jù)Tessier[50]提出的方法將土壤重金屬分為5種形態(tài),其中可交換態(tài)Cd具有強遷移性,最容易被植物吸收,而殘渣態(tài)Cd比較穩(wěn)定,不易釋放到環(huán)境中;其余3種形態(tài)的Cd在一定條件下釋放到環(huán)境中有利于植物的吸收利用。
由圖5a可知,SP、SPC和SCY處理下可交換態(tài)Cd較CK降低了3.5%~7.1%,這說明Cd的生物有效性較低,較少Cd向地上部遷移轉(zhuǎn)運。與CK比,SP、SPC和SCY處理增加了根際土Cd的碳酸鹽結(jié)合態(tài)和有機結(jié)合態(tài),碳酸鹽結(jié)合態(tài)在酸性條件下易轉(zhuǎn)化為可交換態(tài)被水稻吸收利用,有機結(jié)合態(tài)在天然水的氧化條件下易溶出釋放。而該試驗中土壤處于中性和強還原環(huán)境,因此不利于碳酸鹽結(jié)合態(tài)-Cd和有機結(jié)合態(tài)-Cd釋放,從而降低了Cd的有效性。并且隨著土壤pH值升高,水稻根際土Cd由可交換態(tài)轉(zhuǎn)變?yōu)樘妓猁}結(jié)合態(tài),形成碳酸鹽結(jié)合態(tài)Cd的共沉淀,降低土壤中Cd的生物有效性[44]。
土壤Se的賦存形態(tài)影響水稻對Se的吸收利用。因此,根據(jù)吳少尉等[51]提出的方法將Se的形態(tài)分為5種。由圖5b可知,與CK比,SPC和SCY處理下可交換態(tài)Se增加了30.7%~37.9%,酸溶態(tài)增加了22.8%~36.2%,而殘渣態(tài)顯著降低了68.6%~78.3%。這說明3種處理使Se從難溶態(tài)轉(zhuǎn)向生物可利用態(tài),從而提高Se的生物有效性,有利于水稻對Se的吸收。根據(jù)相關(guān)性分析可知,有效態(tài)Se的含量與CaCl2-Cd的含量成顯著負相關(guān)(=-0.967,<0.5),表示在降低Cd生物有效性同時,增加了Se的生物有效性。然而,值得注意的是,在利用修復(fù)技術(shù)修復(fù)Cd污染同時,需要避免糙米中Se含量過高對人和動物可能造成毒害[52]。
為了討論SP、SPC和SCY處理在調(diào)控水稻土中Cd以減少糙米對Cd吸收的同時,看其是否對糙米中礦質(zhì)元素的累積存在影響,為此需進一步對糙米中礦質(zhì)元素進行分析和探討。如圖6所示,與CK比,各處理對水稻糙米中Cu、Fe、Zn、Mg和Mn礦質(zhì)元素的累積無顯著影響。各處理顯著增加水稻各組織中Si的含量,從而有效的降低了各組織對Cd的吸收,而各處理對水稻各組織Se的吸收未造成顯著地影響。這說明SP、SPC和SCY處理在降低Cd生物有效性的同時,沒有對Se的生物有效性造成影響。硒是谷胱甘肽過氧化物酶的重要組成成分,這種酶參與植物體內(nèi)有害自由基的清除;同時,Se與Cd形成Cd-Se復(fù)合物,而植物對Cd-Se復(fù)合物無法利用[53-54]。此外,SCY處理對糙米中Cd的減控效果要優(yōu)于SP和SPC處理(如圖3a),因為SCY處理顯著降低糙米中Cd含量同時,對Se、Cu、Fe、Zn、Mg和Mn的含量沒有顯著影響。
圖6 各處理糙米中礦質(zhì)元素(Cu、Fe、Zn、Mg和Mn)的含量
1)海泡石、海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥處理提高土壤根際土pH值到中性,這促使了土壤中Se的溶出;且長期淹水灌溉使水稻在整個生育期都處于強烈還原環(huán)境(Eh <300 mV),降低了Cd的生物有效性。
2)海泡石、海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥處理水稻根際土CaCl2-Cd含量較對照降低了19.5%~34.0%,且可交換態(tài)Cd向碳酸鹽結(jié)合態(tài)Cd和有機結(jié)合態(tài)Cd轉(zhuǎn)換,從而降低了Cd的生物有效性。而海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥處理下可交換態(tài)Se較對照增加了30.7%~37.9%,殘渣態(tài)Se顯著降低了68.6%~78.3%,說明Se由殘渣態(tài)向生物可利用態(tài)轉(zhuǎn)換,提高Se的生物可利用性。
3)海泡石、海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥處理白根中Cd含量比對照增加了16.9%~234.4%,莖葉中Cd則顯著降低了47.1%~88.1%;且海泡石-硅鈣復(fù)合礦物和海泡石-硅鈣復(fù)合礦物-水溶硅肥處理轉(zhuǎn)移系數(shù)莖葉/白根<0.5,這說明白根對Cd的持留能力增加,抑制Cd向地上部遷移和轉(zhuǎn)運,從而使糙米中Cd含量降低,較食品安全國家標準降低了25.0%~90.0%。
4)海泡石-硅鈣復(fù)合礦物-水溶硅肥處理使糙米Cd含量由0.32 mg/kg顯著降低至0.02 mg/kg,此濃度僅為食品安全國家標準的10%,同時對糙米Se含量和主要礦質(zhì)元素(Cu、Fe、Zn、Mg、Mn)含量沒有顯著影響,表明海泡石-硅鈣復(fù)合礦物-水溶硅肥聯(lián)合處理對減控水稻Cd吸收具有重要應(yīng)用潛力。
[1] Wang Cuiping, Wang Baolin, Liu Jingting, et al. Adsorption of Cd(II) from acidic aqueous solutions by tourmaline as a novel material[J]. Chinese Science Bulletin, 2012, 57(24): 3218-3225.
[2] 張悅,王欣,林治家,等. 酸熱活化對海泡石吸附水溶液中Cd的影響機制[J/OL]. 環(huán)境科學(xué)研究,2019[2019-08-20]. https://doi.org/10.13198/j.issn.1001-6929.2018.11.28. Zhang Yue, Wang Xin, Lin Zhijia, et al. Efficiency and mechanisms of aqueous Cd removal by sepiolite modified by heat and acidification[J/OL]. Acta Scientiae Circumstantiae,2019[2019-08-20]. https://doi.org/10.13198/j.issn. (in Chinese with English abstract)
[3] Peng B, Song Z, Tu X, et al. Release of heavy metals during weathering of the lower cambrian black shales in western Hunan, China[J]. Environmental Geology, 2004, 45(8): 1137-1147.
[4] Zhao F, Repo E, Yin D, et al. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms[J]. J Colloid Interface Sci, 2013, 409(11): 174-182.
[5] Bhanjana G, Dilbaghi N, Singhal N K, et al. Copper oxide nanoblades as novel adsorbent material for cadmium removal[J]. Ceramics International, 2017, 43(8): 6075-6081.
[6] 萬亞男,余垚,齊田田,等. 硒對植物吸收轉(zhuǎn)運鎘影響機制的研究進展[J]. 生物技術(shù)進展,2017,7(5):473-479. Wan Yanan, Yu Yao, Qi Tiantian, et al. Progress on influence mechanism of Selenium on Cadmium uptake and translocation in plants[J]. Current Biotechnology, 2017, 7(5): 473-479. (in Chinese with English abstract)
[7] 呂琳莉,李朝霞,黃毅,等. 西藏尼洋河水體重金屬分布特征及風險評價[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):193-199. Lü Linli, Li Zhaoxia, Huang Yi, et al. Distribution characteristics and risk assessment of heavy metals in Niyang River, Tibet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 193-199. (in Chinese with English abstract)
[8] 環(huán)境保護部,國土資源部. 全國土壤污染狀況調(diào)查公報[J]. 中國環(huán)保產(chǎn)業(yè),2014(5):10-11.
[9] Peng B, Rate A, Song Z, et al. Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the lower cambrian black shales in central Hunan, China[J]. Applied Geochemistry, 2014, 51:191-203.
[10] 余昌訓(xùn),彭渤,唐曉燕,等. 湘中下寒武統(tǒng)黑色頁巖土壤的地球化學(xué)特征[J]. 土壤學(xué)報,2009,46(4):557-570. Yu Changxun, Peng Bo, Tang Xiaoyan, et al. Geochemical characteristics of soil sderived from the lower-cambrian black shalesdstributed in central Hunan, China[J]. Acta Pedologica Sinica, 2009, 46(4): 557-570. (in Chinese with English abstract)
[11] 彭渤,吳甫成,肖美蓮,等. 黑色頁巖的資源功能和環(huán)境效應(yīng)[J]. 礦物巖石地球化學(xué)通報,2005,24(2):153-158. Peng Bo, Wu Fucheng, Xiao Meilian, et al. The resource functions and environment effects of black shales[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2005, 24(2): 153-158. (in Chinese with English abstract)
[12] 周航,周歆,曾敏,等. 2種組配改良劑對稻田土壤重金屬有效性的效果[J]. 中國環(huán)境科學(xué),2014,34(2):437-444. Zhou Hang, Zhou Xin, Zeng Min, et al. Effects of two combined amendments on heavy metal bioaccumulation in paddy soil[J]. China Environmental Science, 2014, 34(2): 437-444. (in Chinese with English abstract)
[13] 郭京霞,馮蓮蓮,張起佳,等. 不同鈣質(zhì)鈍化劑對稻田土壤溶液中Cd濃度的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):1984-1991. Guo Jingxia, Feng Lianlian, Zhang Qijia, et al. Effects of limestone, slaked lime and dolomite on cadmium concentration in the solution of paddy rice soils[J]. Journal of Agro-Environment Science, 2017, 36(10): 1984-1991. (in Chinese with English abstract)
[14] 杜嬌嬌. 含磷材料原位修復(fù)Cd(II)污染地下水的實驗研究[D]. 杭州:浙江農(nóng)林大學(xué),2015. Du Jiaojiao. Experimental Study on Cd(II) Polluted Groundwater Repairing with Phosphorus-containing substances[D]. Hangzhou: Zhejiang A&F University, 2015. (in Chinese with English abstract)
[15] 趙明柳,唐守寅,董海霞,等. 硅酸鈉對重金屬污染土壤性質(zhì)和水稻吸收Cd、Pb、Zn的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(9):1653-1659. Zhao Mingliu, Tang Shouyin, Dong Haixia, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9): 1653-1659. (in Chinese with English abstract)
[16] 楊僑,趙龍,孫在金,等. 復(fù)合鈍化劑對污灌區(qū)鎘污染農(nóng)田土壤的鈍化效果研究[J]. 應(yīng)用化工,2017,46(6):1037-1041. Yang Qiao, Zhao Long, Sun Zaijin, et al. Study on passivation effects of multi-passivators on the cadimium (Cd) contaminated soils in sewage irrigation area[J]. Applied Chemical Industry, 2017, 46(6): 1037-1041. (in Chinese with English abstract)
[17] 武成輝,李亮,晏波,等. 新型硅酸鹽鈍化劑對鎘污染土壤的鈍化修復(fù)效應(yīng)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):2007-2013. Wu Chenghui, Li Liang, Yan Bo, et al. Remediation effects of a new type of silicate passivator on cadmium-contaminated soil[J]. Journal of Agro-Environment Science, 2017, 36(10): 2007-2013. (in Chinese with English abstract)
[18] Tamai K, Ma J F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant[J]. Plant and Soil, 2008, 307(1-2): 21-27.
[19] Shi X, Zhang C, Wang H, et al. Effect of Si on the distribution of Cd in rice seedlings[J]. Plant and Soil, 2005, 272(1/2): 53-60.
[20] Zhang C C, Wang L J, Nie Q, et al. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice()[J]. Environmental and Experimental Botany, 2008, 62(3): 300-307.
[21] Li Libin, Cheng Zheng, Fu Youqiang, et al. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-Contaminated soil[J]. Biological Trace Element Research, 2012, 145(1): 101-108.
[22] Zhan F, Zeng W, Yuan X, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743–7751.
[23] Sun Y B, Zhao D, Xu Y M, et al. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Frontiers of Environmental Science and Engineering, 2016, 10(1): 85-92.
[24] Zhang Yue, Wang Xin, Ji Xionghui, et al. Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system[J]. Journal of Environmental Management, 2019, 233: 802-811.
[25] Gu H H, Qiu H, Tian T, et al. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (.) planted on multi-metal contaminated acidic soil[J]. Chemosphere, 2011, 83(9): 1234-1240.
[26] Wu Y J, Zhou H, Zou Z J, et al. A three-year in-situ study on the persistence of a combined amendment (limestone+ sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170.
[27] 林治家,王珍英,胡航,等. 漣源富硒土壤研究與湖南省富硒土壤分布初探[J]. 國土資源導(dǎo)刊,2016,13(04):50-55, 61. Lin Zhijia, Wang Zhenying, Hu Hang, et al. Selenium-rich soil research in Lianyuan County and preliminary study for distribution of Selenium-rich soil in Hunan[J]. Land & Resources Herald, 2016, 13(04): 50-55, 61. (in Chinese with English abstract)
[28] Elliott C L, Snyder G H. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw[J]. Journal of Agricultural and Food Chemistry, 1991, 39(6): 1118-1119.
[29] Kornd?rfer G H, Coelho N M, Snyder G H, et al. Evaluation of soil extractants for silicon availability in upland rice[J]. Revista Brasileira de Ciência do Solo, 1999, 23(1): 101-106.
[30] Houba V J G, Temminghoff E J M, Gaikhorst G A, et al. Soil analysis procedures using 0.01M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31(9-10): 1299-1396.
[31] Vázquez de Aldana B R, Pérez Corona M E, García Criado B. Mineral content in semiarid grassland systems affected by community structure and soil characteristics[J]. Acta Oecol, 1996, 17: 245-259.
[32] Mehlich A. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc[J]. Communications in Soil Science and Plant Analysis, 1978, 9(6): 477-492.
[33] 趙成義. 土壤硒的生物有效性研究[J]. 中國環(huán)境科學(xué),2004,24(2):184-187. Zhao Chengyi. Studies on the bioavailability of soil selenium[J]. China Environmental Science, 2004, 24(2): 184-187. (in Chinese with English abstract)
[34] Liu H, Zhang J, Christie P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (.) seedlings grown in soil[J]. Science of the Total Environment, 2008, 394(2-3): 361-368.
[35] Seyfferth A L, Fendorf S. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (.)[J]. Environmental Science & Technology, 2012, 46(24): 13176-13183.
[36] 杜彩艷,祖艷群,李元. pH和有機質(zhì)對土壤中鎘和鋅生物有效性影響研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報,2005,20(4):539-543. Du Caiyan, Zu Yanqun, Li Yuan. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539-543. (in Chinese with English abstract)
[37] 張燕,鐵柏清,劉孝利,等. 玉米秸稈生物炭對稻田土壤砷、鎘形態(tài)的影響[J]. 環(huán)境科學(xué)學(xué)報,2018,38(2):715-721. Zhang Yan, Tie Boqing, Liu Xiaoli, et al. Effects of waterlogging and application of bio-carbon from corn stalks on the physico-chemical properties and the forms of arsenic and cadmium in arsenic and cadmium-contaminated soils[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 715-721. (in Chinese with English abstract)
[38] 梁凱,唐麗永,王大偉. 海泡石活化改性的研究現(xiàn)狀及應(yīng)用前景[J]. 化工礦物與加工,2006,35(4):4-10. Liang Kai, Tang Liyong, Wang Dawei. Present situation of sepiolite activated and modified and its application prospect[J]. Industrial Minerals & Processing, 2006, 35(4): 4-10. (in Chinese with English abstract)
[39] 王秋營. 富硒紅壤中硒與重金屬關(guān)系及作物對硒的吸收規(guī)律研究[D]. 福州:福建農(nóng)林大學(xué),2016. Wang Qiuying. Study on the Relationship of Se and Heavy metal and Selenium uptake of Crop in Se-rich red soil[D]. Fuzhou: Fujiang Agricultural and Forestry University, 2016. (in Chinese with English abstract)
[40] 汪洪,周衛(wèi),林葆. 鈣對鎘脅迫下玉米生長及生理特性的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2001,7(1):78-87. Wang Hong, Zhou Wei, Lin Bao. Effects of Ca on growth and some physiological characteristics of maize under Cd stress[J]. Plant Nutrition and Fertilizer Science, 2001, 7(1): 78-87. (in Chinese with English abstract)
[41] Tan W N, Li Zhian, Qiu J, et al. Lime and phosphate could reduce Cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2): 223-229.
[42] 高敏,周俊,劉海龍,等. 葉面噴施硅硒聯(lián)合水分管理對水稻鎘吸收轉(zhuǎn)運特征的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2018,37(2):215-222. Gao Min, Zhou Jun, Liu Hailong, et al. Effect of silica and selenite foliar sprays on the uptake and transport of cadmium by rice under water management[J]. Journal of Agro-Environment Science, 2018, 37(2): 215-222. (in Chinese with English abstract)
[43] 史新慧,王賀,張福鎖. 硅提高水稻抗鎘毒害機制的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2006,25(5):1112-1116. Shi Xinhui, Wang He, Zhang Fusuo. Research on the mechanism of Silica improving the resistance of rice seedlings to Cd[J]. Journal of Agro-Environment Science, 2006, 25(5): 1112-1116. (in Chinese with English abstract)
[44] Du Y Y, Wang X, Ji X, et al. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil[J]. Chemosphere, 2018, 204: 130-139.
[45] 龐曉辰,王輝,吳澤嬴,等. 硒對水稻鎘毒性的影響及其機制的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(9):1679-1685. Pang Xiaochen, Wang Hui, Wu Zeying, et al. Alleviation by Selenium of Cadmium toxicity to rice and its mechanisms[J]. Journal of Agro-Environment Science, 2014, 33(9): 1679-1685. (in Chinese with English abstract)
[46] 龐曉辰. 硒對水稻鎘毒性的影響及其機制的研究[D]. 福州:福建農(nóng)林大學(xué),2014. Pang Xiaochen. Alleviation by Selenium of Cadmium Toxicity to Rice and Its Mechanisms[D]. Fuzhou: Fujian Agricultural and Forestry University, 2014. (in Chinese with English abstract)
[47] 潘麗萍,劉永賢,黃雁飛,等. 土壤-植物體系中硒與重金屬鎘的相互作用[J]. 生物技術(shù)進展,2017,7(5):480-485. Pan Liping, Liu Yongxian, Huang Yanfei, et al. Interaction between Selenium and Cadmium in soil-plant system[J]. Current Biotechnology, 2017, 7(5): 480-485. (in Chinese with English abstract)
[48] 楊海君,張海濤,劉亞賓,等. 不同修復(fù)方式下土壤-稻谷中重金屬含量特征及其評價[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(23):164-171. Yang Haijun, Zhang Haitao, Liu Yabin, et al. Characteristics and its assessment of heavy metal content in soil and rice with different repair methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 164-171. (in Chinese with English abstract)
[49] 廖敏,黃昌勇,謝正苗. pH對鎘在土水系統(tǒng)中的遷移和形態(tài)的影響[J]. 環(huán)境科學(xué)學(xué)報,1999,9(1):81-86. Liao Min, Huang Changyong, Xie Zhengmiao. Effect of pH on transport and transformation of cadmium in soil-water system[J]. Acta Scientiae Circumstantiae, 1999, 19(1): 81-86. (in Chinese with English abstract)
[50] Tessier A. Sequential extraction procedure for the speciation of particle trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[51] 吳少尉,池泉,陳文武,等. 土壤中硒的形態(tài)連續(xù)浸提方法的研究[J]. 土壤,2004,36(1):92-95. Wu Shaowei, Chi Quan, Chen Wenwu, et al. Sequential extraction-a new procedure for selenium of different froms in soil[J]. Soils, 2004, 36(1): 92-95. (in Chinese with English abstract)
[52] 張玉革,劉艷軍,張玉龍. Se和Cd在土壤-植物系統(tǒng)中的遷移與食品安全[J]. 土壤通報,2005,36(5):778-784. Zhang Yuge, Liu Yanjun, Zhang Yulong. Immigration of Se and Cd in soil-plant systems and their relations to food safety[J]. Chinese Journal of Soil Science, 2005, 36(5): 778-784. (in Chinese with English abstract)
[53] Rotruck J T, Pope A L, Ganther H E, et al. Selenium: biochemical role as a component of glutathione peroxidase[J]. Science, 1973: 179.
[54] 林莉. 硒緩解水稻鎘毒害的機理研究[D]. 杭州:浙江大學(xué),2011. Lin Li. Mechanisms of Alleviation Effects of Selenium Application on Cadmium Toxicity in Rice[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstrac
Suppression of silicates regulation on Cd uptaking of rice in Se-rich paddy soils
Wang Hao1, Zhang Yue1, Wang Xin1※, Lin Zhijia2, Peng Bo1, Tan Changyin1, Zhang Xinping1
(1.,,410081,; 2.,410116,)
Cd contamination is serious in some Se-rich paddy soils, which has posed potential human health risks through soil-to-crop transfer of Cd. Being the staple food feeding more than half population of China, rice has exhibited a prominent capability of Cd uptake and accumulation. With arable land per capita being less than half of the world average, it is quite essential to develop strategies to deal with soil Cd contamination for food safety and agricultural sustainability in China. In order to achieve safe utilization of Se-rich paddy soil, it is essential to reduce Cd bioavailability and thus mitigate its accumulation in rice grain. Previous studies have showed that it is difficult to achieve effective mitigation on Cd transfer into paddy rice by using a single ameliorator. The present work studied the effect of different combination of three kinds of silicates,sepiolite(SP), silica-calcium composite mineral(CS) and water-soluble foliar silicon fertilizer(YS), on bioavailability of Cd and Se in paddy soils and their transport into rice. Firstly, the dynamic changes Cd/Se/Si/Ca in soil pore water were determined with sepiolite(SP), sepiolite-silicon calcium composite mineral(SPC) and sepiolite-silicon calcium composite mineral-water soluble silicon mineral fertilizer(SCY) treatments. Secondly, the Cd and Se concentration of brown rice was investigated to understand exactly the mitigating effect of each treatment on grain Cd accumulation. Finally, the impacts of Si treatments on the availability and uptake of some mineral nutrients were also identified and discussed. The results showed that with SP, SPC and SCY treatment, the pH of rice rhizosphere soil increased by 0.15-0.31 units, which largely favored Cd transformation from easily exchangeable pool to carbonate- and organic-bound fractions while Se from residual fraction to bioavailable pool. In parallel, the concentration of Si, Ca and Se in soil pore water was remarkably enhanced by SPC and SCY treatment. Compared to control(CK), CaCl2-Cd in rhizosphere treated by SP, SPC and SCY was decreased by 19.5%-34.0%, while available Se was enhanced by 17.8%-36.8%. Transport factor(TFstem/white root) of Cd in rice plants from SPC and SCY treatments decreased by 92.1%-96.5% relative to that of CK, suggesting a significantly enhanced Cd sequestration in rice root. Most importantly, Cd concentration in brown rice was decreased from 0.32 mg/kg in CK to 0.15 and 0.02 mg/kg with SPC and SCY amendment, respectively, which were 25% and 90% lower than Chinese food safety standards for total Cd in rice (0.2 mg/kg). Each treatment had no significant effect on the accumulation of Se and other essential mineral elements (Cu, Fe, Zn, Mg and Mn) in brown rice. Taken together, SCY exhibited the most prominent mitigation effect on Cd accumulation in rice grain, which provides a cost-effective pathway for safe utilization of Cd-rich paddy soils without affecting Se enrichment in food chain.
heavy metals; contamination; soils; sepiolite ; silica-calcium composite mineral ; foliar water-soluble silicon fertilizer ; Se-rich; combined regulation
王 昊,張 悅,王 欣,林治家,彭 渤,譚長銀,章新平. 硅酸鹽調(diào)控抑制水稻對富硒水稻土中Cd吸收[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(22):225-233. doi:10.11975/j.issn.1002-6819.2019.22.027 http://www.tcsae.org
Wang Hao, Zhang Yue, Wang Xin, Lin Zhijia, Peng Bo, Tan Changyin, Zhang Xinping. Suppression of silicates regulation on Cd uptaking of rice in Se-rich paddy soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 225-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.027 http://www.tcsae.org
2019-04-23
2019-08-28
國家自然科學(xué)基金(41977108);中央引導(dǎo)地方科技發(fā)展專項資金項目(2017XF5039);湖南省地理學(xué)一流學(xué)科建設(shè)項目
王 昊,主要從事土壤重金屬污染修復(fù)研究。Email:201820131062@smail.hunnu.edu.cn
王 欣,博士,副教授,主要從事土壤重金屬污染修復(fù)研究。Email:hdhuanjing@163.com
10.11975/j.issn.1002-6819.2019.22.027
X53
A
1002-6819(2019)-22-0225-09