楊世琦,邢 磊,劉宏元,楊正禮
植物籬埂壟向區(qū)田技術(shù)對坡耕地水土和氮磷流失控制研究
楊世琦,邢 磊,劉宏元,楊正禮
(1. 中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)環(huán)境與氣候變化重點開放實驗室,北京 100081)
針對松干流域農(nóng)田面源污染控制需求,該文開展了植物籬埂壟向區(qū)田技術(shù)在坡耕地上的水土及氮磷流失控制效應(yīng)研究。田間設(shè)置8個試驗處理,包括兩個對照即傳統(tǒng)順壟種植(CK1)與橫壟種植(CK2)、3個間距的順壟種植植物籬?。? m間距,T1;3 m間距,T2;5 m間距,T3)和3個間距的土?。? m間距,T4;3 m間距,T5;5 m間距,T6)。選擇三葉草為植物籬材料。結(jié)果表明:1)與傳統(tǒng)順壟種植相比,橫壟種植泥沙量減少46.9%,徑流量減少52.9%;植物籬埂T1、T2與T3泥沙量分別減少44.6%、44.1%和42.1%,徑流量分別減少50.6%、49.8%和49.2%;T4、T5和T6也能降低水土流失量,但與T1、T2與T3相比,泥沙流失量分別增加16.3%、12.6%和29.5%,徑流量分別增加29.6%、46.8和76.9%;植物籬埂壟向區(qū)田技術(shù)的泥沙量與徑流量控制效果相對接近橫壟種植。2)與傳統(tǒng)順壟種植相比,各處理泥沙與徑流TN濃度增大,TP濃度無變化;各處理的徑流TN與TP濃度增大,其中各處理間的TN濃度有較大差異,TP濃度無明顯差異;徑流液TN濃度增加并沒有引起農(nóng)田氮流失增加,農(nóng)田氮流失平均降低19.7%。3)考慮到經(jīng)濟投入問題,推薦植物籬埂間距3~5 m,較大坡度和坡上坡中采用較小間距,較小坡度和坡底采用較大間距;植物籬埂壟向區(qū)田技術(shù)能夠提高玉米產(chǎn)量,平均增產(chǎn)5%~5.6%。
徑流;泥沙;植物籬??;氮磷;坡耕地;順壟種植
中國坡耕地水土流失非常嚴重[1],有關(guān)坡耕地水土流失特征、影響因素及其控制技術(shù)研究很多[2-5]。植物籬技術(shù)具有延遲產(chǎn)流,減少土壤養(yǎng)分流失與增加水穩(wěn)性土壤團粒結(jié)構(gòu)[6],在陡坡耕地效果更明顯[7];能增加土壤有機碳和提高干旱時期土壤濕度[8]。豆科植物籬除了降低水土流失,還能提高土壤肥力和玉米產(chǎn)量[9],連續(xù)三季種植香根草,玉米產(chǎn)量提高6.5%~34.4%[10];苜蓿等高種植降低徑流量34.0%、產(chǎn)沙量86.0%、氮流失量50.0%和磷流失量68.0%[11]。三峽坡耕地植物籬5年試驗結(jié)果表明,產(chǎn)沙量降低140.1~172.4 t/hm2,徑流量減少55.1%~76.7%,氮磷鉀減少11.0%~35.2%、45.5%~72.7%和22.0%~47.4%[12]。等高植物籬與草配置的水保效應(yīng)明顯[13],降低產(chǎn)沙量53.0%、徑流量24.0%、徑流養(yǎng)分20.0%~30.0%、泥沙養(yǎng)分44.0%~57.0%[14];香根草與蕨類植物形成具有致密結(jié)構(gòu)的植物籬,徑流量減少了一半[15-16],作物產(chǎn)量也有一定提高[17]。植物籬具有阻滯徑流和過濾泥沙功能[18-19],在保護性耕作中采用植物籬,徑流量、產(chǎn)沙量、全氮和全磷降低68.0%、82.0%、66.0%和70.0%[20]。植物籬修剪對表土碳氮及溶解磷沒有顯著影響,但土壤容重顯著提高[21]。溫帶坡耕地狼尾草籬()水土流失減少56.0%和81.0%,野古草籬()減少55.0%和67.0%[22]。植物籬修剪殘枝落葉提高土壤碳與礦化氮[23]。香草籬與免耕結(jié)合顯著提高137Cs、SOC、N、P和K含量,但降低了可溶性陰陽離子濃度[24]。在流域尺度上降低植物籬網(wǎng)絡(luò)密度,導(dǎo)致土壤侵蝕增加[25]。等高植物籬與農(nóng)作物間作,減少水土流失83.0%和93.0%,改善土壤理化性狀[26],提高土壤肥力[3]。等高植物籬形成小水洼促進了泥沙沉積[27]。植物籬也有負面效應(yīng)[28],如狼尾草籬()作為飼料用途則會帶走大量土壤養(yǎng)分,不施肥可能導(dǎo)致土壤氮素虧缺[29]。
東北農(nóng)田黑土層由50年代的60~70 cm下降至20~30 cm[30-31],40~70年后將可能流失殆盡[32]。開墾20a年黑土肥力下降1/3,40a下降1/2,70~80a下降2/3,土壤有機質(zhì)年下降0.1%;年表土流失約5 960~9 180萬t,按有機質(zhì)3%、全氮0.2%和全磷0.15%含量,則年流失有機質(zhì)178.8~275.4 萬t、氮11.9~18.4萬t、磷8.9~13.8萬t,不包括地表徑流帶走的養(yǎng)分[33]。由于東北漫坡漫崗耕地存在較大面積匯流和長距離順坡沖蝕導(dǎo)致耕層土壤流失與坡底農(nóng)田侵蝕尤其嚴重,加上傳統(tǒng)的順壟種植,加劇了水土流失。因此,構(gòu)建壟溝內(nèi)產(chǎn)流控制與匯流切割技術(shù),把農(nóng)田徑流轉(zhuǎn)化為土壤入滲,以期減少坡耕地水土及氮磷流失,最大限度保護黑土地。
植物籬的具體做法是在坡耕地邊沿地帶種植短、濃密直立莖植物減緩徑流與降低水蝕[34-35],植物草籬通過過濾、沉淀與滲透等作用控制徑流和產(chǎn)沙[36],僅僅對坡耕地下沿水土流失控制有效,僅作用于耕地邊“線”,對農(nóng)田內(nèi)水土位移沒有作用,不具備農(nóng)田內(nèi)水土流失控制功能。為此,我們創(chuàng)立了植物籬埂壟向區(qū)田技術(shù),并于2018年獲得國家發(fā)明專利[37],為坡耕地內(nèi)水土和氮磷流失控制提供了技術(shù)支持。植物籬埂壟向區(qū)田技術(shù)是在坡耕地順壟種植的壟溝中,按一定間距修筑土埂,并在土埂上種植三葉草、大豆或苜蓿等低矮高密莖植物,形成植物籬埂壟向區(qū)田。壟向區(qū)田是由植物籬埂與壟圍成的條帶狀小四方塊,類似區(qū)田,沿順壟方向平行展開,因此,稱之為壟向區(qū)田,類似防風固沙的草方格,在“面”上實現(xiàn)了農(nóng)田面源污染控制,尤其適于東北坡耕地。
試驗地位于黑龍江省哈爾濱市方正縣德善鄉(xiāng)史皮鋪村(45.796°N,128.865°E),屬于溫帶大陸性半濕潤氣候帶,日照充足,四季分明,冬長夏短,光熱資源比較豐富。年平均溫度3 ℃,最低氣溫-35 ℃,最高氣溫34 ℃,無霜期110~145 d。大于10 ℃的有效積溫2 600~2 700 ℃,年日照時數(shù)2 500~2 700 h,多年平均降水量500 mm左右,主要集中在6-8月。2014、2015和2016年玉米生長季降水量分別為459.4,491.3和593.5 mm。試驗地土壤基本理化性質(zhì)見表1。
表1 試驗前耕層土壤基本性質(zhì)
試驗設(shè)置8個處理,包括傳統(tǒng)順壟種植、橫壟種植、順壟+1 m間距植物籬埂、順壟+3 m間距植物籬埂、順壟+5 m間距植物籬埂、順壟+1 m間距土埂、順壟+3 m間距土埂、以及順壟+5 m間距土埂。傳統(tǒng)順壟種植CK1為基本對照,橫壟種植CK2為水土流失控制最佳對照。試驗處理見表2。起壟后,壟溝內(nèi)按照試驗設(shè)計間距筑埂,壟上播種玉米與埂上種植三葉草同步進行。玉米播種期為4月底至5月上旬。底肥500 kg/hm2(復(fù)合肥 N、P2O5、K2O養(yǎng)分含量分別為17%、17%與17%)占總施肥量的71.4%,6月中下旬追施尿素(46.4%N)200 kg/hm2占總施肥量的28.6%。全程無灌溉。小區(qū)4 m×8 m,坡度17.6%(10°);小區(qū)間用彩鋼板隔開,高出壟高5 cm,埋深25 cm。試驗重復(fù)3次。植物籬埂壟向區(qū)田技術(shù)示意見圖1。
表2 植物籬埂壟向區(qū)田技術(shù)的試驗處理
注:T1~T6均為順壟種植。
Note: T1-T6 are all longitude ridge.
1.壟(高15 cm,寬30 cm) 2.壟溝(深15 cm,寬30 cm) 3.土埂(高15 cm,寬30 cm) 4.植物籬
Fig 1 Short ridge of clover hedgerow with ridge tillage
采用坡耕地徑流收集裝置。水深用米尺在不同位置測量4次,用水深平均值與集流桶直徑計算得到小區(qū)單次徑流量;攪動集流桶使泥水充分混勻再用瓶子取樣,室內(nèi)測定泥沙含量。2014、2015與2016年分別收集產(chǎn)流6、4和9次。土壤全氮采用半微量凱氏法,土壤全磷采用NaOH熔融-鉬銻抗比色法,水樣總氮、總磷采用過硫酸鉀消解—紫外分光光度法,土壤浸提液硝態(tài)氮與銨態(tài)氮用流動分析儀測定。
植物籬埂能夠明顯降低坡耕地土壤流失量(見表 3)。與順壟種植CK1相比,植物籬埂處理T1、T2與T3土壤流失量降低44.6%,44.1%與42.1%,達到了顯著差異(<0.05)。與順壟種植CK1相比,土埂處理T4、T5與T6土壤流失量降低33.6%、37.0%與19.8 %,達到了顯著差異。植物籬埂與土埂處理達到顯著差異,T1比T4降低16.3%,T2比T5降低12.6%,T3比T6降低29.5%,表明植物籬埂在坡耕地土壤流失控制方面具有顯著功效。3種植物籬埂處理未達到顯著差異,土埂處理T6與T4和T5之間達到顯著差異(T4和T5無顯著差異)。
與橫壟種植CK2相比,各處理的土壤流失量均達到顯著差異,植物籬埂處理T1、T2與T3土壤流失量分別增加4.3%、5.3%和9.0%,土埂處理T4、T5與T6分別增加21.3%、18.6%和51.1%,顯現(xiàn)了植物籬埂水土保持優(yōu)勢。
與順壟種植CK1相比,各處理的泥沙全氮含量顯著降低,但與橫壟種植CK2相比未達到顯著差異;土埂處理與植物籬埂處理無顯著差異;各處理土壤TP濃度未達到顯著差異。總體上看,順壟種植引起較多的土壤氮流失,植物籬埂和土埂則能夠有效阻控。
表3 植物籬埂對坡耕地徑流量和土壤流失量及泥沙和徑流的TN與TP含量的影響
注:*<0.05,小寫字母表示同列處理間的差異(α=0.05),下同。
Note: *<0.05, small letters in the same column mean that the differences are significant among treatments at the 0.05 level. The same as below.
由圖2可知:2015的土壤流失量顯著小于2014與2016年,2014年與2016年沒有顯著差異。2014年與2015年生長季降雨量相當,但2015年生長季前期降雨量小(至7月30日,降雨量分別是387.1、248.4和402.8 mm),所以土壤流失也??;2016年生長季降雨量比2014年同期多134.1 mm,但至7月30日的降雨量差異不太大,因而土壤流失量接近。生長季前期(7月30日)降雨量對土壤流失量有重要影響,中后期耕層土壤逐漸緊實和表層抗蝕性增加,引起土壤流失減少。2014年,與CK1產(chǎn)沙量(2.82kg/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少48.2、45.0%、44.0%、42.9%、37.2%、27.3%和17.4%;2015年,與順壟種植CK1產(chǎn)沙量(1.58 kg/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少50.0%、45.6%、46.2%、45.6%、34.8%、28.5%和13.3%;2016年,與順壟種植CK1產(chǎn)沙量(3.54 kg/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少46.9%、44.6%、44.1%、42.1%、35.6%、37.0和19.8%。
植物籬埂處理能夠顯著降低坡耕地徑流量(見表 3)。與順壟種植CK1相比,植物籬埂處理T1、T2與T3顯著降低徑流量,分別減少50.6%、49.8%與49.2%;土埂處理T4、T5與T6徑流量減少36.0%、 26.4%與10.1%,土埂處理也能顯著降低坡耕地徑流量。植物籬埂與土埂處理徑流量達到顯著差異,T1比T4降低了29.6%,T2比T5降低了46.8%,T3比T6降低了76.9%,反映了植物籬埂的徑流控制優(yōu)勢。T1與T2和T3達到顯著差異(T2與T3未達到顯著差異),以及T1與橫壟種植CK2未達到顯著差異,表明埂距對坡耕地徑流量有一定影響,1m埂距與橫壟種植相當,3 m與5 m埂距處理的徑流控制效果降低。幾乎全部處理的徑流液TN濃度達到顯著差異,橫壟種植CK2最大,順壟種植CK1最小,表明橫壟種植與植物籬埂導(dǎo)致較高濃度徑流氮流失,可能是徑流過程相對延長導(dǎo)致土壤溶解氮更容易隨水流失所致。由于橫壟與植物籬埂處理的徑流量明顯降低,徑流氮總體上是顯著降低。各處理徑流TP濃度與順壟種植CK1相比達到顯著差異,但T1-T6與CK2未達到顯著差異,表明坡耕地順壟種植會導(dǎo)致更多的土壤溶解磷流失,同時也表明植物籬埂和土埂能夠降低土壤溶解磷流失。
2015年與2016年的徑流量有顯著差異,2014與2015及2016沒有顯著差異(見圖2b),與生長季降雨量差異表現(xiàn)不盡一致。2015年的降雨量雖大,但單次降雨量小,尤其在生長季前期,因而徑流量小,且與2014年接近。2014年與2016年生長季前期降雨量接近,徑流量也接近。2014年,與順壟種植CK1徑流量(262.2 m3/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少52.3、49.2%、48.8%、47.7%、37.7%、33.8%和14.8%;2015年,與順壟種植CK1徑流量(193.6 m3/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少56.5%、56.8%、55.8%、55.5%、52.5%、50.5%和23.7%;2016年,與順壟種植CK1徑流量(341.1 m3/區(qū))相比,CK2、T1、T2、T3、T4、T5和T6減少52.9%、50.6%、49.8%、49.2%、36.0%、26.4%和10.1%。
植物籬埂對玉米產(chǎn)量有較大影響,3 a的玉米產(chǎn)量有顯著差異(見表4)。2014年,與順壟種植CK1單產(chǎn)(6 578.3 kg/hm2)相比,CK2、T1、T2與T3達到顯著差異,分別提高6.9%、6.6%、7.2%和6.7%;2015年,與順壟種植CK1單產(chǎn)(4 322.7 kg/hm2)相比,CK2、T1、T2、T3、T4、T5和T6均未達到顯著差異;2016年,與順壟種植CK1單產(chǎn)(9 348.4 kg/hm2)相比,CK2、T1、T2和T3相比達到顯著差異,分別提高4.9%、5.0%、5.6%和5.2%。玉米年際產(chǎn)量差異與生長季降雨量有關(guān)。2016年玉米產(chǎn)量最高,2015年產(chǎn)量最低。主要原因是2016年全生長季降雨量充沛,2015年生長季前期降雨量不足;2014年生長季后期降雨量不足。
植物籬(三葉草)對土埂具有保護作用使其穩(wěn)定性增加(見表4)。植物籬埂處理(T1、T2與T3)土埂高度分別高于對應(yīng)的土埂處理(T4、T5與T6),且達到顯著差異,表明植物籬在土埂高度或穩(wěn)定性方面具有一定貢獻。3a土埂T4高于T5以及T5高于T6的結(jié)果表明土埂間距也可能影響土埂高度,埂距越長,土埂越容易塌落。植物籬埂與土埂相比均達到顯著差異。2014年,T1、T2和T3土埂高度分別是T4、T5和T6的1.4、1.8和2.0倍;2015年,T1、T2和T3土埂高度分別是T4、T5和T6的1.7、1.8和2.2倍;2016年,T1、T2和T3土埂高度分別是T4、T5和T6的1.4、1.7和1.9倍。因此,植物籬與土埂結(jié)合的技術(shù)優(yōu)勢明顯。順(橫)壟的壟高與其它處理相比均達到顯著差異。順壟與橫壟處理的壟高沒有差異(最初壟高15 cm,壟底部寬30cm),與初期相比降低了26.0%,降幅遠低于植物籬埂與土?。ㄗ畛醺叨?5 cm),表明玉米對壟具有一定的穩(wěn)固作用,且要優(yōu)于三葉草,顯現(xiàn)了玉米籬壟(長埂為壟)的優(yōu)勢。
表4 植物籬埂技術(shù)對農(nóng)作產(chǎn)量及土埂高度的影響
注:CK1和CK2土埂高度是指順壟和橫壟的高度,其他處理均為植物籬埂或土埂高度。
Note: The height of ridge of CK1 and CK2 are the height of longitudinal ridges, and other treatments are the height of short ridges.
農(nóng)田上設(shè)置植物籬對植物類型有一定選擇性。首先植物地上部不能太大,太大影響農(nóng)作物生長;其次,根系不能太粗,否則影響主栽作物生長及土壤耕作,如多年生苜蓿因根系太粗太深不適宜作籬;另外,還得有一定的耐陰性,最好也有經(jīng)濟價值和養(yǎng)地功能。三葉草、大豆與一年生苜蓿都基本滿足要求。常見植物籬不適合坡耕地,主要是地上部濃密堅挺,不利于作物生長和影響田間管理。大豆是較好的植物籬,兼具經(jīng)濟效益與生態(tài)效益。玉米間作大豆種植歷史悠久,但因施用除草劑降低了大豆經(jīng)濟價值,甚至致死。三葉草作為植物籬的水土保持效果有限,但與土埂結(jié)合形成植物籬埂就大為改觀,水土保持效應(yīng)顯著提升。
植物籬埂壟向區(qū)田技術(shù)很好協(xié)調(diào)了坡耕地順壟種植水土流失控制與農(nóng)田排水安全關(guān)系。首先,將坡耕地劃分成若干區(qū)田,每個區(qū)田都有切割徑流、控制壟溝匯流、延長徑流滯留時間和提高土壤入滲量的功效,避免坡面產(chǎn)生較大匯流,把農(nóng)田徑流主導(dǎo)轉(zhuǎn)化為土壤入滲主導(dǎo)。按20 cm耕層和20%田間持水量計,就能消納40 mm的降雨量。其次,靈活調(diào)控植物籬埂間距,兼顧保水保土與農(nóng)田排水。具體做法:減小筑埂間距(1~3 m)、坡中加大筑埂間距(3~5 m)、坡底延長筑埂間距(5~8 m)或不筑埂。由于坡上與坡中控制了較大部分徑流量,坡底匯流量大大降低,避免了農(nóng)田坡底侵蝕,水土流失得到有效控制。在大暴雨情況下,由于坡度效應(yīng)占主導(dǎo)功效遠遠超過植物籬埂,整體坡面體現(xiàn)為排水,植物籬埂處于失效狀態(tài)。因此,植物籬埂壟向區(qū)田技術(shù)是不會影響農(nóng)田排水,是值得信賴的坡耕地水土保持技術(shù)。實際中還可采取隔行(根據(jù)需要確定一行、兩行或多行)修筑植物籬埂,或拖拉機行車壟溝不修筑植物籬?。词剐拗凉∫矔卉囕唹浩蕉鴥H存植物籬),兼做排水壟溝。橫壟種植水保效果最好,但實際中應(yīng)用并不多見。主要原因是在坡度較大情況下,農(nóng)機作業(yè)危險性大、機械損耗與油耗消耗增加,種植成本增加;另外東北地塊多是順坡長橫坡短,橫壟種植的播種、管理和收獲機械作業(yè)難度或損耗同步增加。
全部處理的泥沙TN含量,與順壟種植CK1相比,含量顯著降低;各處理及橫壟種植之間未達到顯著差異;全部處理的泥沙TP含量與順壟種植CK1相比,含量無顯著改變。泥沙中TN含量降低的原因是一部分土壤氮溶解進入徑流液。泥沙中以顆粒態(tài)氮磷為主,由于顆粒態(tài)磷相對穩(wěn)定,徑流液及徑流過程對之影響相對較小,因此,處理與對照的泥沙TP含量一致。全部處理的徑流液TN濃度,與順壟種植CK1相比,濃度顯著提高??赡苁侵参锘h埂、土埂以及橫壟的攔截作用,使徑流液對耕層土壤浸潤時期延長,致使較多的土壤氮溶入徑流液而引起徑流液TN濃度提高。試驗結(jié)果也有例外,T1的徑流液TN濃度排第4(依照分析應(yīng)該排第2),T3和T6徑流液TN濃度排處理第2(依照分析應(yīng)該排第3和第6)。全部處理的徑流液TP濃度與順壟種植CK1相比顯著提高,但各處理及橫壟種植CK2未達到顯著差異;TP濃度提高與TN濃度提高的原因相同。據(jù)表 2數(shù)據(jù),與順壟種植CK1相比,T1、T2和T3處理的徑流量平均降低49.8%,TN濃度的平均增加59.7%,徑流氮流失平均降低了19.7%,土壤氮磷與徑流磷的流失減少。因此,農(nóng)田土壤氮磷流失得到有效控制。
1)植物籬埂是將植物籬、土埂和區(qū)田結(jié)合在一起的的耕作技術(shù),農(nóng)田水土流失控制效果大大提升。植物籬埂實現(xiàn)了農(nóng)田“面”上控制(區(qū)田并聯(lián)與串聯(lián)),有效解決了順壟種植的水土流失控制問題。與順壟種植相比,植物籬埂土壤流失量減少42.1%~44.6%,技術(shù)效果接近橫壟種植(橫壟種植與順壟相比減少46.9%);農(nóng)田徑流量減少49.2%~50.7%,技術(shù)效果接近橫壟種植(橫壟種植與順壟相比減少52.9%)。
2)植物籬埂壟向區(qū)田技術(shù)降低了泥沙TN含量,提高了徑流液TN濃度;泥沙TP含量基本沒有變化,但降低了徑流液TP濃度。由于植物籬埂壟向區(qū)田技術(shù)顯著降低了農(nóng)田產(chǎn)沙量與徑流量,土壤氮磷流失也表現(xiàn)為顯著降低,植物籬埂處理的農(nóng)田氮流失平均減低了19.7%。
3)植物籬埂壟向區(qū)田技術(shù)模式選擇。1 、3 和5 m埂間距的土壤流失量和徑流量沒有顯著差異,推薦筑埂間距選擇3~5 m,坡上和坡中間距可小一些,坡底間距可大一些。
4)植物籬埂壟向區(qū)田技術(shù)可以提高玉米產(chǎn)量。試驗結(jié)果表明,與對照順壟種植相比,植物籬埂處理產(chǎn)量提高5.0%~5.6%。
[1] Liang Y, Li D, Lu X, et al. Soil erosion changes over the past five decades in the red soil region of Southern China[J]. J Mt Sci-Engl, 2010, 7(1): 92-9.
[2] 郭賢仕,楊如萍,馬一凡,等. 保護性耕作對坡耕地土壤水分特性和水土流失的影響[J]. 水土保持通報,2010(4):1-5.Guo Xianshi, Yang Ruping, Ma Yifan, et al. Effects of conservation tillage on soil water characteristics and soil erosion in slope farmland[J]. Bulletin of Soil and Water Conservation, 2010(4): 1-5.(in Chinese with English abstract)
[3] 林超文,羅春燕,龐良玉,等. 不同覆蓋和耕作方式對紫色土坡耕地降雨土壤蓄積量的影響[J]. 水土保持學報,2010(3):213-216.Lin Chaowen, Luo Chunyan, Pang Liangyu, et al. Influence of mulching and tillage methods on the rainfall storage by soil in purple soil Area[J]. Journal of Soil and Water Conservation, 2010(3): 213-216.(in Chinese with English abstract)
[4] Wu J Y, Huang D, Teng W J, et al. Grass hedges to reduce overland flow and soil erosion[J]. Agron Sustain Dev, 2010, 30(2): 481-485.
[5] Xiao B, Wang Q, Wang H, et al. The effects of narrow grass hedges on soil and water loss on sloping lands with alfalfa (.) in Northern China[J]. Geoderma, 2011, 167-168: 91-102.
[6] Fan J, Yan L, Zhang P, et al. Effects of grass contour hedgerow systems on controlling soil erosion in red soil hilly areas, Southeast China[J]. Int J Sediment Res, 2015, 30(2): 107-116.
[7] Kinama J M, Stigter C J, Ong C K, et al. Contour Hedgerows and Grass Strips in Erosion and Runoff Control on Sloping Land in Semi-Arid Kenya[J]. Arid Land Res Manag, 2007, 21(1): 1-19.
[8] Lenka N K, Dass A, Sudhishri S, et al. Soil carbon sequestration and erosion control potential of hedgerows and grass filter strips in sloping agricultural lands of eastern India[J]. Agriculture, Ecosystems & Environment, 2012, 158: 31-40.
[9] Mutegi J K, Mugendi D N, Verchot L V, et al. Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops[J]. Aaroforest Syst, 2008, 74(1): 37-49.
[10] Oshunsanya S O. Spacing effects of vetiver grass () hedgerows on soil accumulation and yields of maize–cassava intercropping system in Southwest Nigeria[J]. Catena, 2013, 104: 120-126.
[11] Xia L, Hoermann G, Ma L, et al. Reducing nitrogen and phosphorus losses from arable slope land with contour hedgerows and perennial alfalfa mulching in Three Gorges Area, China[J]. Catena, 2013, 110: 86-94.
[12] Lu W, Zhang H, Cheng J, et al. Effect of a hedgerow agroforestry system on the soil properties of sloping cultivated lands in the Three-Gorges area in China[J]. Journal of Food Agriculture & Environmen, 2012, 10: 1368-1375.
[13] Angima S D, Stott D E, O Neill M K, et al. Use of calliandra–Napier grass contour hedges to control erosion in central Kenya[J]. Agriculture, Ecosystems & Environment, 2002, 91(1): 15-23.
[14] Jie Y, Haijin Z, Xiaoan C, et al. Effects of tillage practices on nutrient loss and soybean growth in red-soil slope farmland[J]. International Soil and Water Conservation Research, 2013, 3(1): 45-49.
[15] Rodríguez O S. Hedgerows and mulch as soil conservation measures evaluated under field simulated rainfall[J]. Soil Technology, 1997, 11(1): 79-93.
[16] Presbitero A L, Escalante M C, Rose C W, et al. IErodibility evaluation and the effect of land management practices on soil erosion from steep slopes in Leyte, the Philippines[J]. Soil Technology, 1995, 8: 205-213.
[17] Phien T. Leucaena and other shrubby green manure cover crops in contour hedgerow farming systems on sloping lands in Vietnam[J]. Leucaena-Adaptation, Quality and Farming Systems, 1998, 86: 344-349.
[18] Paningbatan E P, Ciesiolka C A, Coughlan K J, et al. Alley cropping for managing soil erosion of hilly lands in the Philippines[J]. Soil Technology, 1995, 8(3): 193-204.
[19] Cao L, Zhang Y, Lu H, et al. Grass hedge effects on controlling soil loss from concentrated flow: A case study in the red soil region of China[J]. Soil and Tillage Research, 2015, 148: 97-105.
[20] 肖波,喻定芳,趙梅,等. 保護性耕作與等高草籬防治坡耕地水土及氮磷流失研究[J]. 中國生態(tài)農(nóng)業(yè)學報,2013(3):315-323Xiao Bo, Yu Dingfang, Zhao Mei, et al. Effects of conservation tillage and grass-hedge on soil, water, nitrogen and phosphorus loss in sloping cropland[J]. Chinese Journal of Eco-Agriculture, 2013(3): 315-323.(in Chinese with English abstract)
[21] Samsuzzaman S, Garrity D P, Quintana R U. Soil property changes in contour hedgerow systems on sloping land in the Philippines[J]. Agroforestry Systems, 1999, 46(3): 251-272.
[22] Xiao B, Wang Q, Wang H, et al. The effects of grass hedges and micro-basins on reducing soil and water loss in temperate regions: A case study of Northern China[J]. Soil and Tillage Research, 2012, 122: 22-35.
[23] Isaac L, Wood C W, Shannon D A. Pruning management effects on soil carbon and nitrogen in contour-hedgerow cropping with Leucaena leucocephala (Lam.) De Wit on sloping land in Haiti[J]. NutrCycl Agroecosys, 2003, 65(3): 253-263.
[24] Hien P D, Dung B D, Phien T. Redistributions of137Cs and soil components on cultivated hill slopes with hedgerows as conservation measures[J]. Soil and Tillage Research, 2013, 128: 149-154.
[25] Follain S, Walter C, Bonté P, et al. A-horizon dynamics in a historical hedged landscape[J]. Geoderma, 2009, 150(3/4): 334-343.
[26] Alegre J C, Rao M R. Soil and water conservation by contour hedging in the humid tropics of Peru[J]. Agriculture, Ecosystems & Environment, 1996, 57(1): 17-25.
[27] Vieira D A N, Dabney S M. Two-dimensional flow patterns near contour grass hedges[J]. Hydrol Process, 2012, 26(15): 2225-2234.
[28] Dercon G, Deckers J, Poesen J, et al. Spatial variability in crop response under contour hedgerow systems in the Andes region of Ecuador[J]. Soil and Tillage Research, 2006, 86(1): 15-26.
[29] Agus F, Garrity D P, Cassel D K. Soil fertility in contour hedgerow systems on sloping oxisols in Mindanao, Philippines[J]. Soil and Tillage Research, 1999, 50(2): 159-167.
[30] 田立生,谷偉,王帥. 東北黑土區(qū)水土流失與耕地退化現(xiàn)狀及修復(fù)措施[J]. 現(xiàn)代農(nóng)業(yè)科技,2011(21):308-311.
[31] 孫莉英,蔡強國,陳生永,等. 東北典型黑土區(qū)小流域水土流失綜合防治體系[J]. 水土保持研究,2012(03):36-41.Sun Liying, Cai Qiangguo, Chen Yongsheng, et al. Integrated governing system on soil and water loss of small watersheds in a typical black soil redion of Northwest China[J]. Research of Soil and Water Conservation, 2012(3): 36-41.(in Chinese with English abstract)
[32] 孟祥志,劉艇,王繼紅. 我國黑土區(qū)水土流失研究綜述[J]. 中國農(nóng)村水利水電,2010(10):36-38.Meng Xiangzhi, Liu Ting, Wang Jihong. A review of soil and water losses in Black region of China[J]. China Rural Water and Hydropower, 2010(10): 36-38.(in Chinese with English abstract)
[33] 張永光,伍永秋,劉洪鵠,等. 東北漫崗黑土區(qū)地形因子對淺溝侵蝕的影響分析[J]. 水土保持學報,2007(1):35-38.Zhang Yongguang, Wu Yongqiu, Liu Honghu, et al. Effect of topography on ephemeral gully erosion in Northeast China with black soils[J]. Journal of Soil and Water Conservation, 2007(1): 35-38.(in Chinese with English abstract)
[34] Becker H. Hedging against erosion (planted stiff grasses prevent soil erosion)[J]. Agricultural Research, 1992, 40(12): 8.
[35] Dalton P A, Smith R J, Truong P N V. Vetiver grass hedges for erosion control on a cropped flood plain: Hedge hydraulics[J]. Agr Water Manage, 1996, 31(1): 91-104.
[36] Gilley J E, Eghball B, Kramer L A, et al. Narrow grass hedge effects on runoff and soil loss[J]. J Soil Water Conserv, 2000, 55(2): 190-196.
[37] 楊世琦,吳會軍,韓瑞云,等. 具有水土氮磷流失保持作用的植物籬埂壟向區(qū)田及耕作方法[P].ZL201510552968.X,2015-09-02.
Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage
Yang Shiqi , Xing Lei, Liu Hongyuan, Yang Zhengli
(1.,,100081,; 2.,,100081,)
Based on the demand of non-point source pollution control in Songhua River basin, the technique of short ridge of clover () hedgerow with ridge tillage (SRCHRT) was applied to research the control effect of the runoff, sediment, nitrogen (N) and phosphorus (P) losses in sloping farmland. SRCHRT is a novel technique that could decrease soil and water losses in sloping farmland, in which, the furrow between ridges the short ridge that is as high as ridge is piled up by a certain distance, and grass is planted in these short ridge, the grass and short ridge form hedgerow ridge, and hedgerow ridge and long ridge form the technique that is named SRCHRT. SRCHRT gained the national invention patent in 2018 and can retard runoff and control soil and soil N and P losses. A three-year field experiment was conducted to investigate the effects of application of SRCHRT on reducing sediment, runoff, and soil N and P losses in sloping farmland in the Songhua River basin. There are eight treatments, including two control, three space SRCHRT and three space short ridge of non-clover hedgerow with ridge tillage (SRNCHRT), the two controls were traditional longitudinal ridge tillage (CK1) and cross ridge tillage (CK2), three space SRCHRT were longitudinal ridge tillage + 1 m space short ridge with clover hedgerow (T1), longitudinal ridge tillage + 3 m space short ridge with clover hedgerow (T2), longitudinal ridge tillage + 5 m space short ridge with clover hedgerow (T3), longitudinal ridge tillage + 1 m space short ridge without clover hedgerow (T4), longitudinal ridge tillage + 3 m space short ridge without clover hedgerow (T5), and longitudinal ridge tillage + 5 m space short ridge without clover hedgerow (T6). Clover was chosen as the hedgerow. The results indicated as follow: 1) Compared with the traditional longitudinal ridge tillage (CK1), the sediment and runoff of CK2 decreased 46.9% and 52.9%; T1, T2 and T3 decreased sediment by 44.6%, 44.1% and 42.1%, respectively, and runoff by 50.6%, 49.8% and 49.2%, respectively. T4, T5and T6 can also decrease water and soil losses in sloping farmland, compared with T1, T2 and T3, T4, T5 and T6 increased sediment by 16.3%, 12.6% and 29.5%, respectively, and runoff by 29.6%, 46.8% and 76.9%, respectively. The SRCHRT method in controlling sediment and runoff losses were close to cross ridge tillage (CK2), but there were significant differences (<0.05). 2) Compared with the traditional longitudinal ridge tillage (CK1), total N (TN) concentration of sediment and TN concentration of runoff of all treatments were increased but total P (TP) concentration of sediment and TN concentration of runoff of all treatments were unchanged. TN and TP concentration of all treatments were increased and there were significant differences among treatments about TN concentration and no significant differences among treatments about TP concentration. The soil N from sloping farmland was not increased at all because of the higher TN concentration of SRCHRT runoff, and the losses of soil N was reduced by an average of 19.7% because the contribution of runoff reduction was more than TN concentration of runoff increment. 3) SRCHRT had significant effect of water and soil control and can decrease sediment, runoff, soil N and P losses in sloping farmland. From the cost-effective considerations, the 3-5 space short ridge of SRCHRT was recommended, and small spaces were suitable for bigger slope, the top and middle slope, longer spaces were suitable for smaller slope and the down of slope. SRCHRT can increase the corn yield by 5%-5.6%.
runoff; sediment; short ridge of clover hedgerow with ridge tillage (SRCHRT); nitrogen and phosphorus; sloping farmland; traditional longitudinal ridge tillage
楊世琦,邢 磊,劉宏元,楊正禮. 植物籬埂壟向區(qū)田技術(shù)對坡耕地水土和氮磷流失控制研究[J]. 農(nóng)業(yè)工程學報,2019,35(22):209-215. doi:10.11975/j.issn.1002-6819.2019.22.025 http://www.tcsae.org
Yang Shiqi , Xing Lei, Liu Hongyuan, Yang Zhengli. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 209-215. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.025 http://www.tcsae.org
2019-06-25
2019-10-21
國家水體污染控制與治理科技重大專項(2014ZX07201-009)
楊世琦,博士,研究員,主要從事農(nóng)業(yè)面源污染控制研究。Email:shiqiyang@126.com
10.11975/j.issn.1002-6819.2019.22.025
S157.4
A
1002-6819(2019)-22-0209-07