吳志遠,杜文鳳,聶俊麗,崔 凡
基于探地雷達早期信號振幅包絡值的黏性土壤含水率探測
吳志遠1,杜文鳳1,聶俊麗2※,崔 凡1
(1. 中國礦業(yè)大學(北京)煤炭資源與安全開采國家重點實驗室,100083 北京;2. 貴州大學國土資源部喀斯特環(huán)境與地質(zhì)災害重點實驗室,貴陽 550025)
為了驗證探地雷達探測黏性土壤含水率的精確性,利用探地雷達早期信號振幅包絡法平均值方法(average amplitude envelope, AEA)對降雨前后野外農(nóng)田表層(<0.3 m)土壤含水率進行探測,并利用TDR探測土壤含水率以作對比。研究結(jié)果顯示,土壤水分含量與黏粒含量具有一定相關(guān)性。在大面積范圍內(nèi)(1 000 m長測線),TDR 2次探測土壤平均含水率分別為14.16 、16.91 cm3/cm3;AEA方法2次探測土壤平均含水率分別為14.62、17.88 cm3/cm3,與TDR實測含水率差值分別為0.46、0.97 cm3/cm3,2種方法探測所得含水率具有極顯著的相關(guān)性(<0.01),相關(guān)系數(shù)分別為0.825、0.814。小范圍內(nèi)(40 m×40 m)降雨前后TDR 2次探測黏性土壤含水率分別為14.11 、16.77 cm3/cm3。AEA 2次探測土壤平均含水率分別為14.86 cm、17.46 cm3/cm3,比TDR實測含水率分別大0.74 、0.69 cm3/cm3。AEA與TDR探測所得含水率相關(guān)系數(shù)分別為0.701、0.827(<0.01),研究結(jié)果表明利用探地雷達AEA方法能夠獲得與TDR實測精度相近的黏性土壤含水率。利用常規(guī)探地雷達共中心點法及共偏移距方法對研究區(qū)黏性土壤含水率探測結(jié)果顯示,這2種方法均不能有效地探測黏性土壤含水率。
土壤;含水率;探地雷達;AEA方法;TDR
黏性土壤是土地資源評價、農(nóng)田土地整理中較為常見的土壤介質(zhì)。黏性土壤的介電性質(zhì)、理化性質(zhì)及力學性質(zhì)等與土壤中水分含量具有密切的關(guān)系[1-3]。探地雷達作為一種快速無損的探測工具,能夠提供有關(guān)電磁波在地下傳播的信息,進而實現(xiàn)對地下介質(zhì)的探測。特別是在土壤水分探測中,探地雷達以其快速、無損、探測范圍適中等優(yōu)點得到了廣泛的應用[4-9]。但由于黏性土壤成分復雜、電磁波在黏土介質(zhì)傳播中衰減速度快等缺點,探地雷達在黏性土壤含水率探測中應用較少,這大大限制了探地雷達技術(shù)的應用和發(fā)展[10-12]。
雷達波早期信號是由收發(fā)天線距離較小致使空氣波和地面波疊加而產(chǎn)生的信號,與空氣波和地面波相同,它同樣能夠反應周圍介質(zhì)的物理性質(zhì)[13-17]。研究顯示,雷達波早期信號的振幅值、波形等屬性與土壤中水分含量具有一定的相關(guān)性[18],這為利用雷達波早期信號探測黏土層含水率提供的理論基礎(chǔ)。同時對于黏性土壤,由于土壤電導率較高導致大部分雷達波能量在地表附近已被損耗,因此相較于反射波,地面波是更加有用的波形信號。雷達波早期信號振幅包絡值(average envelope amplitude,AEA)的概念是由Pettinelli等[19]提出,并利用于土壤水分探測中。其將雷達波前6 ns的瞬時幅度信號與從TDR測量中提取的介電參數(shù)(?和σ)以及實測土壤含水率含水率進行比較分析,結(jié)果顯示GPR信號的空間變化與TDR參數(shù)之間具有良好的一致性。另外,Pettinelli等[20]還分析了雷達信號前12 ns窗口內(nèi)探地雷達信號的包絡幅值與土壤介電參數(shù)關(guān)系,認為土壤介電參數(shù)對早期信號有較強的影響,利用探地雷達早期信號方法估算含水率含水率的空間分布具有一定的可行性。在進一步的研究基礎(chǔ)上,Pettinelli等[21]對探地雷達早期信號屬性與砂層介電性質(zhì)的相關(guān)性進行了分析,結(jié)果表明,利用早期雷達波信號屬性結(jié)合適當?shù)男使ぞ撸ㄈ鏣DR),利用較小固定偏移距GPR配置即可方便、快速的得到可靠、詳細的淺層土電磁屬性分布。Matteo等[22]對利用雷達波早期信號振幅屬性估計含水率變化條件下的土壤介電常數(shù)進行了數(shù)值模擬分析。結(jié)果顯示在典型收發(fā)距及土壤電磁參數(shù)條件下,空氣波和地面波難以區(qū)分。介電常數(shù)變化對雷達波初次波的影響較大。介質(zhì)電導率對雷達信號波峰產(chǎn)生影響但對雷達波早期信號振幅基本沒有影響。Ferrara等[23]研究顯示雷達波早期信號對土壤的介電性質(zhì)變化相當敏感。此外,探地雷達早期信號振幅包絡值與TDR探測土壤介電參數(shù)之間具有較高的相關(guān)性,而早期信號對電導率的變化相當敏感。Comite等[24-26]利用數(shù)值模擬和實驗室試驗對雷達波早期信號與介質(zhì)介電常數(shù)關(guān)系進行了大量的分析研究,研究結(jié)果表明,雷達波早期信號對GPR探測系統(tǒng)(天線類型和位置、輸入波形等環(huán)境參數(shù))較為敏感。隨著介電常數(shù)值的增加,利用雷達波探測介質(zhì)介電參數(shù)的靈敏度大大降低,雷達波信號很容易被強波形畸變和干擾信號(如噪聲、雜波、不均勻性等)所淹沒。因此較小的收發(fā)距天線配置更適合雷達波早期信號的應用。Algeo等[18]利用多種探地雷達方法對富黏土的農(nóng)田灌溉區(qū)地表土壤水分進行了探測,結(jié)果顯示只有早期雷達波信號方法能夠得到15 cm范圍內(nèi)土壤水分的空間精確變化情況,而共中心點法和共偏移距方法均不可行,由此可見利用探地雷達早期信號探測黏土層含水率具有一定的可行性。在國內(nèi)崔凡等[27]利用雷達波早期信號振幅評價沙壤土含水率,結(jié)果顯示利用雷達波早期信號振幅包絡平均值能夠精確的評價沙壤土含水率。前人對利用探地雷達早期信號振幅包絡值(AEA)評價土壤含水率進行了一定的研究,但利用該方法評價黏性土壤含水率的研究還處于起步階段。基于此,本次研究通過對比AEA方法所得含水率與TDR探測含水率,驗證該方法在黏性土壤含水率探測中的精確性,同時對比分析了常規(guī)探地雷達方法在黏性土壤含水率探測中的適用性。本研究為利用探地雷達探測黏性土壤含水率提供了新的方向,研究成果在農(nóng)業(yè)土地治理、環(huán)境工程勘探等領(lǐng)域均有較大的應用潛力。
雷達波早期信號一般是指第1個周期內(nèi)的雷達波,在提取子波信號的基礎(chǔ)上,利用希爾伯特變換即可獲得雷達波早期信號振幅包絡值[28-29]。圖1為雷達波信號1/4周期、1/2周期信號振幅及振幅包絡值。
a. 1/4周期振幅b. 1/4周期振幅包絡值c. 1/2周期振幅d. 1/2 周期振幅包絡值 a. 1/4 period amplitudeb. 1/4 period amplitude envelope valuec. 1/2 period amplituded. 1/2 period amplitude envelope value
研究顯示雷達波振幅包絡值與土壤電磁性質(zhì)關(guān)系密切,Matteo對雷達波振幅包絡與土壤電磁參數(shù)的關(guān)系進行了推導,并得出以下公式[22]
土壤樣品黏粒測定的原理是經(jīng)分散處理的土粒在懸浮中自由沉降,粒徑不同沉降速度不同,粒徑越大沉降越快。根據(jù)Stakes定律(即懸液中沉降的土粒。沉降速度與其粒徑平方成正比,而與懸液的黏滯系數(shù)成反比),算出不同直徑的土粒在水中沉降一定距離所需時間,并用比重計測出土壤懸液中所含土粒的數(shù)量。本次研究土壤黏粒測定方法依據(jù)公式(3)完成。
本次研究選取場地為未耕作農(nóng)田,土壤性質(zhì)主要為黏土及含沙黏土,雷達探測范圍內(nèi)土壤性質(zhì)變化較小,地面較為平整。探地雷達探測區(qū)域分別為1條1 000 m長測線及40 m×40 m正方形區(qū)域,正方形區(qū)域與長測線的垂直距離為50 m,如圖2所示。1 000 m長測線內(nèi)每隔25 m布置1個測點。正方形區(qū)域內(nèi)在縱向和橫向上平均每隔10 m布置1條雷達測線,布置雷達測線L1-L10共10條,TDR探測共布置25個測點。雷達測線及TDR測點布置如圖2所示。雷達及TDR探測總共分2次進行,時間分別為2018年10月20日及2018年11月2日。第1次探測天氣較好,探測前10天內(nèi)未有降雨;第2次探測前3天有降雨發(fā)生。為了減少地表非均質(zhì)性的干擾,在探測前對地表雜質(zhì)進行了清理。本研究探地雷達探測參數(shù)選取天線中心頻率為200 MHz,采樣點數(shù)為1 024,分辨率為0.2 m。
圖2 雷達測線及TDR取樣示意
本次研究對100個雷達波信號振幅進行了希爾伯特變換,并利用相關(guān)性分析對不同時窗內(nèi)的雷達波早期信號振幅值倒數(shù)與介電常數(shù)及電導率的關(guān)系進行計算,計算結(jié)果如表1所示。介電常數(shù)、電導率數(shù)據(jù)由TDR實測獲得。從表中可以看出當時窗為4~9 ns時雷達波振幅與介電常數(shù)、電導率的相關(guān)性最好,相關(guān)系數(shù)達到0.85。利用AEA方法的最大探測深度約為36 cm,大于40 cm是該方法探測精度明顯降低。
在研究區(qū)內(nèi)選取1 000 m長測線進行TDR、多種探地雷達探測土壤含水率,同時在實驗室對土壤黏粒含量進行分析。結(jié)果顯示,TDR 2次探測土壤平均含水率分別為14.16、16.91 cm3/cm3;AEA方法2次探測土壤平均含水率分別為14.62、17.88 cm3/cm3,與TDR2次探測含水率差值分別為0.46、0.97 cm3/cm3;共中心點、共偏移距2種方法第11次探測土壤平均含水率分別為26.15、25.88 cm3/cm3,與TDR第1次探測土壤含水率差值分別為11.99、11.72 cm3/cm3。從表1中可以看出,AEA 2次探測含水率與TDR 2次探測土壤含水率呈極顯著相關(guān)性(相關(guān)系數(shù)為分別為0.835、0.814),表明AEA方法能夠獲得與TDR實測精度相近的土壤含水率。另外從表中可以看出黏粒含量與TDR、AEA探測所得含水率具有明顯的相關(guān)性。
表1 雷達信號振幅包絡值倒數(shù)與介電常數(shù)、電導率相關(guān)系數(shù)
注:H-εr,σ為雷達早期信號平均振幅包絡值倒數(shù)與介電常數(shù)、電導率關(guān)系,由公式(3)計算所得。*為顯著正相關(guān),**為極顯著正相關(guān)。
Note:-1-ε,is the ratio of early radar signal amplitude envelope reciprocalwith dielectric constant and conductivity, calculated by formula (3). * expresses significant positive correlation, ** expresses very significantly correlated.
表2 1 000 m長測線內(nèi)TDR、多種探地雷達方法探測所得含水率相關(guān)性
注:**為在0.01水平(雙側(cè))上顯著相關(guān);*為在0.05水平(雙側(cè))上顯著相關(guān)。下同。
Note: ** expressesvery significantly correlated (<0.01), * expresses significant positive correlation (<0.05). Same as below.
2.3.1 正方形區(qū)域內(nèi)土壤黏粒含量
大范圍內(nèi)土壤含水率等額變化是由小范圍內(nèi)的土壤含水率變化引起的,因此本次研究在1 000 m長測線東南50 m處布置了1個40 m×40 m的正方形區(qū)域進行含水率探測。本次研究首先對雷達探測范圍內(nèi)的地表黏土含量進行了取樣分析,共采集黏土樣品25個,實測樣品黏粒含量值分布在33%~75.8%,平均為49.4%。黏粒含量平面分布特征如圖3所示,從圖中可以看出探測區(qū)域內(nèi)黏粒含量呈現(xiàn)南高北低的特點,其中黏粒含量最大值分布在探測區(qū)內(nèi)西南角和東南角。土壤樣品中除了黏粒外,其余土壤介質(zhì)主要為中砂,含少量礫石。
圖3 探測區(qū)域內(nèi)黏粒含量分布
2.3.2 正方形區(qū)域內(nèi) TDR探測含水率結(jié)果
利用TDR 2次探測地表(0~30 cm)黏性土壤含水率平均分別為14.11、16.77 cm3/cm3,降雨后研究區(qū)地表土壤含水率比降雨前增大2.56 cm3/cm3。2次探測地表(<0.3 m)土壤含水率平面分布如圖4所示,2次探測南部區(qū)域含水率均大于北部地區(qū)含水率,其中西南部區(qū)域2次探測含水率均較大,東南角和西北部地區(qū)2次探測含水率均較小。統(tǒng)計分析顯示2次探測土壤含水率呈極顯著性相關(guān)(<0.01),相關(guān)系數(shù)為0.808。對比2次探測土壤含水率與土壤黏粒分布情況,如表3所示,可以看出含水率的分布與土壤黏粒含量具有明顯的相關(guān)性,第1次探測土壤含水率與土壤黏粒含量呈極顯著性相關(guān)(<0.01),相關(guān)系數(shù)為0.592。第2次探測土壤含水率與土壤黏粒含量呈顯著性相關(guān)(<0.05),相關(guān)系數(shù)為0.486。
2.3.3 正方形區(qū)域AEA方法探測含水率結(jié)果
利用4~9 ns范圍內(nèi)的雷達波早期信號振幅包絡值對研究區(qū)地表土壤含水率進行計算統(tǒng)計分析。統(tǒng)計分析結(jié)果顯示,第1、2次探測土壤含水率平均為14.86、17.46 cm3/cm3,利用AEA方法2次探測所得含水率比TDR2次探測所得含水率分別大0.74、0.69 cm3/cm3。2 次探測土壤含水率平面分布如圖5所示,從圖中可以看出,AEA方法探測所得含水率與TDR探測所得含水率具有一定的相似性,即研究區(qū)南部地區(qū)含水率大,北部地區(qū)含水率小。統(tǒng)計分析顯示,如表4所示,AEA第1次探測含水率值與TDR第1次探測含水率呈極顯著性相關(guān)(在0.01水平),相關(guān)系數(shù)為0.701;AEA第2次探測含水率值與TDR第2次探測含水率值呈極顯著性相關(guān)(在0.01水平),相關(guān)系數(shù)為0.827。AEA第1探測土壤含水率值與黏性土壤含量呈極顯著性相關(guān)(在0.01水平),相關(guān)系數(shù)為0.546;AEA第2次探測土壤含水率值與黏性土壤含量呈顯著性相關(guān)(在0.05水平上),相關(guān)系數(shù)為0.432。由此可見,利用探地雷達AEA方法能夠獲取與TDR實測精度相近的黏性土壤含水率。
表3 正方形區(qū)域TDR 2次探測含水率與土壤黏粒關(guān)系
表4 AEA探測土壤含水率與TDR探測土壤含水率及土壤黏粒含量關(guān)系
2.3.4 其他探測雷達方法探測黏性土壤含水率分析
本研究在第1次探測中分別利用探地雷達共中心點法和共偏移距反射波方法等常規(guī)探地雷達方法對研究區(qū)黏性土壤地表含水率進行了探測,以驗證常規(guī)探地雷達方法探測黏性土壤含水率的精確性。共中心點法和共偏移距方法探測所得土壤含水率分別在4.69~43.6、3.69~45.6 cm3/cm3之間,平均分別為22.05、20.64 cm3/cm3,2種方法獲得土壤含水率與實測含水率相差較大。2種方法探測所得含水率平面分布如圖6所示,從圖中可以看出與TDR及AEA方法獲取土壤含水率相比,共中心點法和共偏移距方法獲得土壤含水率規(guī)律不同。統(tǒng)計分析結(jié)果顯示,如表5所示,常規(guī)探地雷達方法探測所得含水率與TDR及AEA方法所得含水率沒有相關(guān)性,表明利用常規(guī)探地雷達方法難以獲取精確的黏性土壤含水率。
表5 共中心點法、共偏移距反射波法探測所得含水率與AEA、TDR探測含水率及黏粒含量關(guān)系
本次研究對比分析了不同探測范圍內(nèi)探地雷達AEA方法探測土壤含水率與TDR方法探測土壤含水率,并得出以下結(jié)論:
1)無論在大面積范圍內(nèi)(1 000 m長測線),或者小面積范圍內(nèi)(40 m×40 m),利用探地雷達AEA方法均能夠獲得與TDR探測精度相近的黏性土壤含水率,2種方法探測所得地表(<0.3 m)土壤含水率差值<1 cm3/cm3,相關(guān)系數(shù)>0.7(<0.01),表明利用探地雷達AEA方法可以精確探測黏性土壤含水率。該方法為利用探地雷達探測黏性土壤含水率提供了一個新的方向。
2)利用共中心點及共偏移距探地雷達方法對黏性土壤含水率進行探測結(jié)果顯示,這2種常規(guī)探地雷達探測方法難以精確探測黏土土壤含水率,其探測結(jié)果與TDR探測含水率結(jié)果相差甚遠,表明常規(guī)探地雷達方法難以應用到黏性土壤含水率的探測中。
[1]陳權(quán),曾江源,李震,等. 遙感監(jiān)測介電常數(shù)與土壤含水率關(guān)系模型[J]. 農(nóng)業(yè)工程學報,2012,28(12):171-175. Chen Quan, Zeng Jiangyuan, Li Zhen, et al. Relationship model of soil moisture and dielectric constant monitored with remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 171-175. (in Chinese with English abstract)
[2]付同剛,陳洪松,張偉,等. 喀斯特小流域土壤含水率空間異質(zhì)性及其影響因素[J]. 農(nóng)業(yè)工程學報,2014(14):124-131. Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Spatial variability of soil moisture content and its influencing factors in small Karst catchment during dry period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)
[3]沈杰,余群. 黏性土壤剪切強度與容重和含水率含水率之間關(guān)系的研究[J]. 土壤學報,1991(2):132-138. Shen Jie, Yu Qun. Study on the relationship between shear strength, bulk density and water content of cohesive soil[J]. Acta Pedologica Sinica, 1991(2): 132-138. (in Chinese with English abstract)
[4]吳志遠,尹尚先,馬麗紅. 基于探地雷達的煤礦開采區(qū)地表土壤含水率變化研究[J]. 華北科技學院學報,2017,14(6):17-23. Wu Zhiyuan, Yin Shangxian, Ma Lihong. Research on the change of surface soil water content in mining area based on ground penetrating radar[J]. Journal of North China Institute of Science and Technology, 2017, 14(6): 17-23. (in Chinese with English abstract)
[5]Liu Xinbo, Chen Jin, Cui Xihong, et al. Measurement of soil water content using ground-penetrating radar: A review of current methods[J]. International Journal of Digital Earth, 2017(3): 1-24.
[6]Cetrangolo G P, Domenech L D, Moltini G, et al. Determination of moisture content in ceramic brick walls using ground penetration radar[J]. Journal of Nondestructive Evaluation, 2017, 36(1): 12.
[7]Jafarov, Parsekian, Schaefer, et al. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska[J]. Geoscience Data Journal, 2017, 4(2): 72-79.
[8]吳志遠,彭蘇萍,杜文鳳,等. 基于探地雷達波振幅包絡平均值確定土壤含水率[J]. 農(nóng)業(yè)工程學報,2015,31(12):158-164. Wu Zhiyuan, Peng Suping, Du Wenfeng, et al. Detection of soil water content using ground penetrating radar average envelope amplitude method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 158-164. (in Chinese with English abstract)
[9]崔凡,吳志遠,武彥斌. 探地雷達在西部煤礦砂壤地層含水率時空變化中的應用[J]. 煤炭學報,2015,40(10):2437-2444. Cui Fan, Wu Zhiyuan, Wu Yanbin. Application of GPr in the spatio-temporal variation of moisture content of sandy loam layer in Western China[J]. Journal of China Coal Society, 2015, 40(10): 2437-2444. (in Chinese with English abstract)
[10]吳信民,曹俊昌,楊亞新,等. 黏土中電磁波速度與含水率含水率關(guān)系研究及應用[J]. 水文地質(zhì)工程地質(zhì),2007,34(5):120-122. Wu Xinmin, Cao Junchang, Yang Yaxin, et al. Research of the relation between velocity of electromagnetic wave and water content in clay and its application[J]. Hydrogeology and Engineering Geology, 2007, 34(5): 120-122. (in Chinese with English abstract)
[11]吳信民,楊亞新,高建宏. 探地雷達電磁波在黏土中速度的研究[C]//中國地球物理學會年會. 2004. Wu Xinmin, Yang Yaxin, Gao Jianhong. Velocity of ground penetrating radar electromagnetic waves in clay[C]// Annual Meeting of the Chinese Geophysical Society, 2004.
[12]馬福建,雷少剛,楊賽,等. 土壤含水率與探地雷達信號屬性的關(guān)系研究[J]. 土壤通報,2014,45(4):809-815. Ma Fujian, Lei Shaogang, Yang Sai, et al. Relationship between soil moisture content and GPR signal properties[J]. Chinese Journal of Soil Science, 2014, 45(4): 809-815. (in Chinese with English abstract)
[13]Hans G, Redman D, Leblon B, et al. Determination of log moisture content using early-time ground penetrating radar signal[J]. Wood Material Science & Engineering, 2015, 10(1): 112-129.
[14]Ferrara C, Barone P M, Mattei E, et al. An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring[C]// 7th International Workshop on Advanced Ground Penetrating Radar, 2013.
[15]Jang S, Choi W, Sarkar T K, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas & Propagation, 2004, 52(11): 3109-3121.
[16]Ferrara C, Tullio V D, Barone P M, et al. Integrated GPR and unilateral NMR approach to estimate water content in a porous material[C]// International Workshop on Advanced Ground Penetrating Radar, 2011.
[17]Ferrara C, Barone P M, Mattei E, et al. An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring[C]// International Workshop on Advanced Ground Penetrating Radar, 2013.
[18]Algeo J, Dam R L V, Slater L. Early-Time GPR: A method to monitor spatial variations in soil water content during irrigation in Clay Soils[J]. Vadose Zone Journal, 2016, 15(11) Doi: 10.2136/v2j2016.03.0026.
[19]Pettinelli E, Matteo A D, Paolucci F, et al. Early-time GPR signal analysis: implications for water content measurement[C]// International Workshop on Advanced Ground Penetrating Radar, 2005:51-54.
[20]Pettinelli Elena, Giuliano Vannaroni, Barbara Di Pasquo, et al. Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study[J]. Geophysics, 2007, 72(2): A25-A28.
[21]Pettinelli E, Matteo A D, Beaubien S E, et al. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties[J]. Journal of Applied Geophysics, 2014, 101(1): 68-76.
[22]Matteo A D, Pettinelli E, Slob E. Early-Time GPR Signal Attributes to Estimate Soil Dielectric Permittivity: A Theoretical Study[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(3): 1643-1654.
[23]Ferrara C, Barone P M, Steelman C M, et al. Monitoring Shallow Soil Water Content Under Natural Field Conditions Using the Early-Time GPR Signal Technique[J]. Vadose Zone Journal, 2013, 12(4): 1742-1751.
[24]Comite D, Galli A, Ferrara C, et al. Numerical and experimental surveys on the GPR early-time signal features for the evaluation of shallow-soil permittivity[C]// International Conference on Ground Penetrating Radar. IEEE, 2014.
[25]Comite D, Galli A, Ferrara C, et al. Relations between GPR early-time signal attributes and ground permittivity: A numerical investigation[C]// European Conference on Antennas & Propagation, 2014.
[26]Comite D, Galli A, Lauro S E, et al. Analysis of GPR Early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 178-187.
[27]崔凡,陳柏平,吳志遠等. 基于探地雷達功率譜和雷達波振幅包絡估算砂壤含水率[J]. 農(nóng)業(yè)工程學報,2018,34(7):121-127. Cui Fan, Chen Baiping, Wu Zhiyuan, et al. Soil moisture estimation based on GPR power spectrum and envelope amplitude in sand loam[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 121-127. (in Chinese with English abstract)
[28]Jang S, Choi W, Sarkar T K, et al. Exploiting Early Time Response Using the Fractional Fourier Transform for Analyzing Transient Radar Returns[J]. IEEE Transactions on Antennas & Propagation, 2004, 52(11): 3109-3121.
[29]Ren Mingqiu, Cai Jinyan, Zhu Yuanqing. Classification of radar signals using time-frequency transforms and fuzzy clustering[C]// International Conference on Microwave & Millimeter Wave Technology. 2010.
Detection of cohesive soil water content based on early signal amplitude envelope of ground penetrating radar
Wu Zhiyuan1, Du Wenfeng1, Nie Junli2※, Cui Fan1
(1.,,100083,; 2.,,,550025,)
Cohesive soil is a common soil medium in land resource evaluation and farmland land consolidation. The dielectric properties, physical, chemical properties and mechanical properties of cohesive soils are closely related to the soil water content. Ground penetrating radar (GPR), as a fast and non-destructive detection tool, can provide information about electromagnetic wave propagation in the ground, so as to realize the detection of underground media. Especially in soil water content detection, ground penetrating radar (GPR) has been widely used. However, due to the complex composition of cohesive soil and the fast attenuation of electromagnetic waves in cohesive, GPR is rarely used in the detection of water content in cohesive soil, which greatly restricts the application and development of GPR technology. The early signal of radar wave is the signal generated by the superposition of air wave and ground wave due to the small distance between the transmitting and receiving antenna, and it can also reflect the physical properties of the surrounding medium. The results show that there is a certain correlation between the early signal amplitude, waveform and soil water content. For cohesive soils, most of the radar wave energy has been lost near the surface due to the high conductivity, so ground waves are more useful waveform signals than reflected waves. In order to verify the accuracy of GPR, AEA (average amplitude envelope) method in detecting the water content of cohesive soil, this study used GPR to detect the soil water content of field farmland (<0.3 m) before and after rainfall, and TDR was used for comparison. The results showed that there was a certain correlation between soil water content and clay content. In a large area (1 000 m long survey line), the average soil water content detected by TDR was 14.16, 16.91 cm3/cm3, respectively. The average soil water content detected by AEA method was 14.62, 17.88 cm3/cm3, respectively, and the difference between them and the measured water content by TDR was 0.46, 0.97 cm3/cm3, respectively. The water content detected by the two methods had extremely significant correlation (<0.01), and the correlation coefficients were 0.825 and 0.814, respectively (<0.01). Within a small range (40 m×40 m), the water content of cohesive soil detected by TDR before and after rainfall was 14.11, 16.77 cm3/cm3, respectively. The average soil water content detected by AEA method was 14.86, 17.46 cm3/cm3, respectively, which were 0.74, 0.69 cm3/cm3higher than that measured by TDR. The correlation coefficients of water content detected by the two methods were 0.701 and 0.827, respectively (<0.01). Analysis of the water cut plane distribution of the two detection methods showed that the soil water content detected by AEA method was similar to TDR method. The results showed that ground penetrating radar (GPR) AEA model could accurately detect the water content of cohesive soil. The conventional GPR common mid point method and fixed offset method were used to detect the water content of cohesive soil in the study area. The results showed that neither of the two methods could effectively detect the moisture content of cohesive soil.
soils; water content; radar; AEA method; TDR
吳志遠,杜文鳳,聶俊麗,崔 凡. 基于探地雷達早期信號振幅包絡值的黏性土壤含水率探測[J]. 農(nóng)業(yè)工程學報,2019,35(22):115-121. doi:10.11975/j.issn.1002-6819.2019.22.013 http://www.tcsae.org
Wu Zhiyuan, Du Wenfeng, Nie Junli, Cui Fan. Detection of cohesive soil water content based on early signal amplitude envelope of ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 115-121. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.013 http://www.tcsae.org
2019-02-28
2019-09-26
煤炭資源與安全開采國家重點實驗室資助項目(SKLCRSM17KFA06)
吳志遠,博士,主要從事探地雷達及土壤修復等工作。Email:15201359815@163.com
聶俊麗,博士,主要從事地球物理探測技術(shù)和環(huán)境問題的研究。Email:38240493@qq.com
10.11975/j.issn.1002-6819.2019.22.013
S152.7
A
1002-6819(2019)-22-0115-07