陳朝輝,張 韋,李澤宏,孔孟茜,潘明章
柴油機CDPF被動再生特性及機理分析
陳朝輝1,張 韋1※,李澤宏1,孔孟茜1,潘明章2
(1. 昆明理工大學(xué)交通工程學(xué)院,云南省內(nèi)燃機重點實驗室,昆明 650500;2.廣西大學(xué)機械工程學(xué)院,南寧,530004)
為了探究CDPF(catalyzed diesel particulate filter)的再生性能及再生機理,該文利用發(fā)動機試驗臺,分別對催化劑負(fù)載量為0、530和636 g/m3的3組CDPF開展耐久循環(huán)工況下的再生特性試驗研究。試驗結(jié)果表明,測試過程中被動再生消耗NO2,530 g/m3CDPF(CDPF1)在大負(fù)荷工況下,后端NO2濃度低于前端,隨著催化劑負(fù)載量增加,636 g/m3CDPF(CDPF2)的后端NO2濃度高于前端。在耐久循環(huán)的首個3 000r/min、100%負(fù)荷工況時,CDPF1與CDPF2的排氣壓降比DPF(diesel particulate filter)低約14 kPa。耐久循環(huán)測試中,CDPF1的再生效率為87.5%,CDPF2的再生效率達(dá)到93.1%。利用量子化學(xué)密度泛函理論DFT(density functional theory),構(gòu)建了組成Soot的大分子菲與NO2,在Pt(111)晶面氧化為CO和CO2的反應(yīng)模型。通過DFT計算呈現(xiàn)NO2的N=O化學(xué)鍵斷裂、解離產(chǎn)生的活性氧O與菲基的1號C在Pt晶面滑移并結(jié)合的反應(yīng)歷程。利用DFT計算得到的化學(xué)反應(yīng)動力學(xué)參數(shù),對CDPF1進行再生過程的一維仿真計算,排氣壓降的模擬值與試驗值誤差范圍在3%以內(nèi)。研究結(jié)果可為提高CDPF再生效率提供理論依據(jù)與工程指導(dǎo)。
柴油機;催化劑;燃燒;再生過程;再生機理;CDPF;密度泛函理論
柴油機具備動力性強、經(jīng)濟性好和熱效率高等優(yōu)點,被廣泛應(yīng)用于以農(nóng)業(yè)機械和工程機械為代表的非道路移動機械。但由于柴油機的PM排放較高,且非道路移動機械的保有量逐年持續(xù)增加,PM排放問題日益突出。而DPF(diesel particulate filter)可有效捕集與去除PM,而要維持DPF的持續(xù)、高效捕集,需對DPF內(nèi)的碳煙進行適時再生。在發(fā)動機排氣后處理系統(tǒng)中,應(yīng)用最多的再生方式主要包括基于排氣熱管理的主動再生[1],和涂覆催化劑的被動再生[2]。主動再生需要采用額外的燃料進行缸內(nèi)后噴或尾管噴射,這既會引起燃油消耗的增加,同時在燃料燃燒及碳煙燃燒的雙重放熱下,易于引起DPF載體熱負(fù)荷過高,峰值溫度甚至超過1 000 ℃[3-4]。被動催化再生無需額外能耗,且再生過程中載體的熱負(fù)荷較小[5-6],是氧化去除碳煙的最常用方式。
目前,Pt、Pd等貴金屬廣泛應(yīng)用在CDPF(catalyzed diesel particulate filter)中,用于碳煙的被動再生[7-8]。這是由于貴金屬能將發(fā)動機排氣內(nèi)的NO氧化為NO2,NO2較O2更易于解離產(chǎn)生活性氧O[9-10],因而其具有更強的碳煙氧化活性。當(dāng)前大量文獻分別從發(fā)動機的排氣特性[11-12]、CDPF的載體結(jié)構(gòu)[13-15]、初始碳載量[16-17]、NO2/Soot質(zhì)量比[18-19]等方面,開展了被動再生過程中CDPF壓降變化的研究。也有部分學(xué)者[20-22]從宏觀化學(xué)反應(yīng)動力學(xué)的角度,對Soot的氧化特性開展了研究。由于柴油機燃燒過程中形成的多環(huán)芳烴PAHs是碳煙的前驅(qū)物[23],宏觀化學(xué)反應(yīng)動力學(xué)計算并不能詳細(xì)展示Soot的氧化過程。Hauptmann[24]提出運用微觀反應(yīng)動力學(xué)理論解釋Soot的氧化歷程。量子力學(xué)原理的密度泛函理論(density functional theory,DFT),根據(jù)電子的密度分布,能計算并反映由電子和原子核構(gòu)成的多粒子體系的微觀運動規(guī)律[25-26],運用該理論能研究PAHs與NO2相互反應(yīng)的成鍵規(guī)律與反應(yīng)歷程。文獻[27-28]利用DFT分析了以芘為代表的PAHs在沒有催化劑的條件下的氧化路徑,不能反應(yīng)Soot中的活性碳以及活性氧等成分,在CDPF催化劑晶面的吸附、運動、解離及相互結(jié)合等微觀反應(yīng)過程。通過以上分析可知,將CDPF的發(fā)動機臺架測試與Soot-NO2的微觀反應(yīng)DFT計算相結(jié)合,既能從宏觀角度揭示碳煙的被動再生特性,也能從微觀方面反映Soot的被動再生過程。
本論文基于發(fā)動機臺架試驗,測試DOC+DPF/CDPF對碳煙被動再生的影響,并結(jié)合DFT計算方法,研究Soot-NO2吸附在貴金屬催化劑表面、Soot活性位與NO2解離的活性氧O相互結(jié)合生成CO與CO2的反應(yīng)歷程。以期為提高CDPF再生效率提供理論依據(jù)與工程指導(dǎo)。
本文以D30TCI型四缸直列高壓共軌柴油機為研究對象,加裝后處理系統(tǒng)的發(fā)動機測試臺架如圖1所示,發(fā)動機的主要技術(shù)參數(shù)見表1。試驗所采用的DPF/CDPF載體直徑為144 mm,長度為152 mm,DOC(diesel oxidation catalyst)直徑為151 mm,長度為150 mm。DOC與CDPF負(fù)載的貴金屬Pt與Pd的配比均為5:1,CDPF1的催化劑負(fù)載為530 g/m3,CDPF2的催化負(fù)載為636 g/m3,DOC的催化負(fù)載則為882 g/m3。試驗過程中使用均為規(guī)格相同的DOC,為了標(biāo)示區(qū)別,加裝在CDPF1前端稱為DOC1,加裝在CDPF2前端稱為DOC2。
注:P1、P2為DPF/CDPF的前、后端壓力,kPa;T1、T2為DPF/CDPF的前、后端溫度,℃。
表1 D30TCI柴油機的主要技術(shù)參數(shù)
發(fā)動機臺架耐久測試試驗方案如圖2所示,整個試驗過程由4個步驟組成:1)用精密電子天平稱取未加碳煙的DPF/CDPF載體質(zhì)量,并在發(fā)動機3 000 r/min、100%負(fù)荷工況下,測試DPF/CDPF未加載碳煙的壓降;2)由于D30TCI發(fā)動機在1 200 r/min、100%負(fù)荷工況下的碳煙排放較高,所以選擇該工況進行第1次快速積碳(稱為積碳1,目的在于使隨后將要進行的耐久測試過程中,有一定量的積碳可進行被動再生)。積碳時長20 min,積碳1完成后,調(diào)整發(fā)動機至3 000 r/min、100%負(fù)荷工況,進行第1次積碳后的壓降測評,完成壓降評價后稱取積碳質(zhì)量;3)根據(jù)GB-20890-2007重型汽車排氣污染物排放控制系統(tǒng)耐久性要求及試驗方法,進行不同工況下的耐久循環(huán)發(fā)動機后處理臺架測試,耐久循環(huán)測試工況如表2所示。1個測試循環(huán)歷時5 h,折算為車輛在實際道路行駛800 km,在每個耐久測試循環(huán)結(jié)束后,調(diào)整發(fā)動機至3 000 r/min、100%負(fù)荷工況進行壓降評價,完成壓降評價后稱取碳煙質(zhì)量;4)調(diào)整發(fā)動機至1 200 r/min、100%負(fù)荷工況,持續(xù)運行20 min,進行第2次快速積碳(稱為積碳2,目的在于評價DPF/CDPF的碳煙捕集量與捕集效率),積碳結(jié)束后,進行3 000 r/min、100%負(fù)荷工況的壓降評價,最后稱得積碳質(zhì)量。
圖2 發(fā)動機被動再生耐久測試臺架試驗方案
表2 發(fā)動機臺架耐久循環(huán)測試工況
圖3為DPF/CDPF1/CDPF2的2次積碳過程的壓降曲線。由圖3可知,在積碳1測試過程中,發(fā)動機加裝3組后處理裝置的排氣背壓基本一致,初始壓降在3~6 kPa之間,1 200 s后的最終壓降在6~8 kPa之間波動。由此可知,在1 200 r/min、100%負(fù)荷時的碳煙捕集速率大于氧化速率,后處理裝置進行了有效的碳加載。經(jīng)過5 h耐久測試循環(huán)后,DPF在積碳2的碳煙加載過程中,壓降在8~10 kPa之間波動,與積碳1相比平均壓降增加了28.6%。CDPF1經(jīng)過1 200 s積碳2后,其最終壓降比積碳1增加了約2 kPa;CDPF2經(jīng)過積碳2后,最終壓降與積碳1一致。由此可知,在耐久測試循環(huán)中,受發(fā)動機高溫尾氣的影響,DPF和CDPF中都進行了被動再生反應(yīng),去除了載體中的部分碳煙,但在催化劑的幫助下,CDPF能更有效地抑制由碳煙積累所引起的排氣背壓的提升。
注:運行工況為發(fā)動機轉(zhuǎn)速1 200 r·min-1、100%負(fù)荷;DPF為催化劑負(fù)載量0 g/m3;CDPF1為催化劑負(fù)載量530 g/m3;CDPF2為催化劑負(fù)載量636 g/m3。
圖4為耐久測試循環(huán)過程中DPF/CDPF兩端的排氣壓降、溫度及組分濃度變化曲線。圖4a和4b為耐久循環(huán)過程中DPF/CDPF兩端的壓降與溫度,可以看出,DPF兩端的排氣壓降明顯高于CDPF,而CDPF1與CDPF2的排氣壓降區(qū)別不大。運行在耐久循環(huán)的工況8時,由于CDPF入口溫度達(dá)到500 ℃,CDPF內(nèi)的碳煙具有較高的被動再生速率,因此,CDPF1與CDPF2的壓降比DPF低了約14 kPa。在耐久循環(huán)的工況25時,CDPF與工況8的壓降相差不大,而DPF則比工況8的壓降減少了約8 kPa。這說明從工況8運行到工況25時,CDPF幾乎能將捕集的碳煙完全氧化,雖然DPF沒有涂覆催化劑,但由于運行在12、21、25這幾個大負(fù)荷工況時,DPF的入口溫度接近達(dá)到500 ℃,促使了碳煙的氧化再生。雖然再生過程中碳煙氧化會釋放熱量,但由于耐久循環(huán)前進行的積碳量較少,且碳化硅載體的導(dǎo)熱系數(shù)高達(dá)14 W/m·K,這導(dǎo)致了在傳熱過程中損失了較多熱量。因此,在耐久循環(huán)的大部分工況下,載體前后端的溫度相差不大。
圖4c與圖4d為26個耐久循環(huán)工況下DPF及CDPF兩端的NO與NO2濃度曲線,可以看出,當(dāng)CDPF1處于15、16、17、19、20、21、24這幾個工況時,由于缸內(nèi)噴油量較大,并且發(fā)動機處于中、高轉(zhuǎn)速時,其增壓器處于高效率工作區(qū)域,因此進氣較為充分,使缸內(nèi)燃油的燃燒更加充分,燃燒室內(nèi)溫度及排氣溫度都相對較高,促使了CDPF內(nèi)催化劑較為充分的起活,促進了被動再生的進行,引起CDPF后端的NO2濃度低于其前端濃度。而在其余低速、低負(fù)荷工況下,由于催化劑活性尚未完全激活,在被動再生無法充分進行的情況下,則出現(xiàn)CDPF后端的NO2濃度高于前端的情況。由于CDPF2較CDPF1具有更高的催化負(fù)載量,這促使CDPF2內(nèi)的NO氧化產(chǎn)生了更高濃度的NO2,且NO2的氧化生成量高于被動再生的消耗量。因此,在耐久循環(huán)的所有26個工況,CDPF2的后端NO2濃度均高于前端。
圖4 耐久循環(huán)測試過程中DPF/CDPF的排氣參數(shù)
圖5與表3為2次積碳量與耐久循環(huán)的碳煙再生量及再生效率,本文定義耐久循環(huán)過程碳煙的再生質(zhì)量為1,第一次積碳的質(zhì)量為,再生效率為,計算公式如式(1)。結(jié)合圖5與表3可以看出,DPF第1次積碳量為19.3 g,由于DPF未涂覆催化劑,經(jīng)過耐久循環(huán)后,碳煙再生質(zhì)量為7.7 g,再生效率僅為39.9%。這是由于DPF只是在排氣溫度較高的工況下,才能使排氣中的O2與NO2擴散到碳煙層表面,引起少量碳煙參與了氧化反應(yīng)。在催化劑的作用下,CDPF內(nèi)氧化產(chǎn)生了較高濃度的NO2,這不但降低了碳煙氧化的起燃溫度,且NO2解離產(chǎn)生的活性氧,也有效提升了碳煙的氧化速率。因此,CDPF的再生效率較DPF大幅增加,CDPF1耐久循環(huán)的再生效率為87.5%,而CDPF2的再生效率則達(dá)到93.1%。由于積碳時CDPF內(nèi)伴隨有連續(xù)捕集與被動再生反應(yīng),因此,CDPF的兩次積碳量都較DPF低,CDPF1的第2次積碳量比DPF少4.4 g,CDPF2的第2次積碳量則比DPF少8 g。
圖5 積碳量與再生碳煙量
Fig.5 Mass of soot deposition and regeneration
表3 DPF/CDPF的被動再生效率
由于Ragini等[23]采用質(zhì)譜結(jié)合高效液相色譜測試法,確認(rèn)了柴油機排放的碳煙中有11種多環(huán)芳烴,其中3環(huán)與4環(huán)芳烴所占比重最大,測試結(jié)果表明,每克Soot中包含菲0.505 mmol、蒽0.431 mmol、芘0.396 mmol。因此,本文選取Soot中含量最高的菲作為研究對象,菲基的結(jié)構(gòu)簡式如圖6所示,定義1號碳為表面活性位C,分析1號C在貴金屬晶面的氧化過程?;诹孔踊瘜W(xué)DFT(density functional theory)計算方法,構(gòu)建Pt(111)晶面6×5×5的周期平板模型,在Pt的晶面頂層摻雜了Pd原子,Pt與Pd的摻雜比例為5:1。將反應(yīng)物(菲基、NO2)以及氧化產(chǎn)物(CO、CO2、NO)吸附在Pt晶面,分別進行吸附構(gòu)型的結(jié)構(gòu)優(yōu)化。根據(jù)反應(yīng)物及產(chǎn)物的優(yōu)化結(jié)構(gòu),搜索C在氧化過程中的過渡態(tài),并分析C與NO2在Pt晶面的運動、解離及相互結(jié)合等微觀過程。在過渡態(tài)的搜索過程中,運用式(2)~(4)得到C氧化的活化能E、指前因子、速率常數(shù)。
圖6 菲基的結(jié)構(gòu)簡式及1號C的氧化構(gòu)型簡圖
圖7a為菲基與NO2在Pt(111)晶面反應(yīng)生成CO與NO的歷程,可以看出,菲基的所有C原子、NO2中的2個O原子,分別與表層的Pt、Pd原子產(chǎn)生了化學(xué)鍵。菲基的1號C被氧化為CO,由反應(yīng)物演變到產(chǎn)物的最低能量路徑上,處于能量極大值的中間態(tài)即為過渡態(tài)[29-30];NO2中的1號O原子在Pt(111)晶面不斷滑移,N=O雙鍵被逐漸拉長并斷裂,從而解離產(chǎn)生了1號活性氧O;菲基的1號C與2號C產(chǎn)生的C=C雙鍵、1號C與10號C產(chǎn)生的C-C單鍵均被拉長,化學(xué)鍵斷裂后1號C從菲基中解離出來;解離的1號C與1號活性氧O在Pt晶面繼續(xù)滑移并相互靠近,逐漸產(chǎn)生C-O單鍵最終生成了CO;CO的C原子分別與2個相鄰的Pt原子以C-Pt化學(xué)鍵的形式吸附在Pt表面,NO2失去1號O原子后,形成N=O雙鍵,NO中的N原子與1個Pt原子形成N-Pt化學(xué)鍵;菲基失去1號C原子后,鄰位的2號與10號C結(jié)合形成C-C單鍵,生成5環(huán)芳烴,至此1號C被不完全氧化成CO。在反應(yīng)溫度為427~827 ℃時,C氧化為CO的活化能E為234 kJ/mol,反應(yīng)速率系數(shù)為1.34×1018/s。
將菲基的1號C完全氧化為CO2,需要2個NO2分子各提供1個活性氧O,圖7b即為菲基與2個NO2分子吸附在Pt(111)晶面的反應(yīng)物、過渡態(tài)與產(chǎn)物構(gòu)型。由圖7b可知,菲基的所有C原子,2個NO2分子的O原子,分別吸附在Pt晶面的表層原子上。2個NO2分子各自解離產(chǎn)生了1個活性氧O,分別為O1和O2,這2個活性氧O與菲基的1號活性C,在晶面滑移并相互靠近,生成O=C=O化學(xué)鍵,反應(yīng)結(jié)束后C與2個活性氧O結(jié)合產(chǎn)生了CO2。在上述反應(yīng)過程中,C氧化為CO2的活化能E為218 kJ/mol,反應(yīng)速率系數(shù)為5.63×1016/s。
圖7 菲基在Pt(111)晶面的反應(yīng)歷程
為了驗證DFT計算得到的化學(xué)反應(yīng)速率系數(shù)的準(zhǔn)確性,本文基于發(fā)動機耐久測試的CDPF1的物性參數(shù),構(gòu)建了CDPF1的一維模型。根據(jù)發(fā)動機在3 000 r/min、100%負(fù)荷工況下的排氣參數(shù),設(shè)置計算邊界條件,排氣質(zhì)量流量為0.16 kg/s,排氣溫度為505 ℃,基于DFT計算得到圖7中碳煙氧化的活化能與反應(yīng)速率系數(shù),開展CDPF1被動再生過程的一維仿真計算,獲得CDPF1的排氣壓降。圖8為CDPF1壓降的一維仿真結(jié)果與試驗數(shù)據(jù)對比,可以看出,模擬計算的壓降最高值略高于試驗值,計算值與試驗值的誤差范圍在3%以內(nèi),驗證了本文DFT計算結(jié)果的準(zhǔn)確性。
注:計算工況為發(fā)動機轉(zhuǎn)速3 000 r·min-1、100%負(fù)荷。
1)DPF與CDPF經(jīng)過時長1 200 s的積碳,最終壓降在6~8 kPa之間波動,在耐久循環(huán)工況測試過程中,CDPF1在大負(fù)荷工況時載體后端的NO2濃度低于前端,CDPF2在26個工況下后端的NO2濃度均高于前端。CDPF1與CDPF2的排氣背壓降別不大,運行在耐久循環(huán)的第1個3 000 r/min、100%負(fù)荷工況時,CDPF1比DPF的壓降低約14 kPa,而運行在第2個3 000 r/min、100%負(fù)荷工況時,CDPF1比DPF的壓降低約5 kPa。由于碳化硅載體具有較高導(dǎo)熱系數(shù),因此,大部分工況下載體前后端溫度相差不大。CDPF1耐久循環(huán)的再生效率為87.5%,而CDPF2耐久循環(huán)的再生效率則達(dá)到93.1%。
2)利用量子化學(xué)密度泛函理論,計算菲基的1號C與NO2在Pt(111)晶面反應(yīng)生成CO與CO2的反應(yīng)歷程;菲基的1號C與鄰位碳形成的C=C雙鍵、C-C單鍵逐漸被拉長產(chǎn)生活性碳C,NO2分子的一個O=N雙鍵斷裂產(chǎn)生活性氧O,活性碳C與1個活性氧O在Pt晶面滑移并相互靠近,產(chǎn)生了C-O單鍵,并最終生成了CO,活性碳C與2個活性氧O相互靠近產(chǎn)生了CO2。
3)活性碳C與NO2在Pt(111)晶面反應(yīng)生成CO與CO2的反應(yīng)過程中,C氧化為CO的活化能為234 kJ/mol,反應(yīng)速率系數(shù)為1.34×1018/s。利用DFT計算得到的反應(yīng)動力學(xué)參數(shù),計算CDPF1被動再生過程中的排氣壓降,模擬值與試驗值的誤差范圍在3%以內(nèi)。
[1]張韋,陳朝輝,孔孟茜,等. 柴油機催化型顆粒捕集器噴油助燃再生特征[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(8):92-97.
Zhang Wei, Chen Zhaohui, Kong Mengxi, et al. Bench test of regeneration characteristics of catalyzed diesel particulate filter based on fuel injection combustion system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 38(8): 92-97. (in Chinese with English abstract)
[2]黃河,孫平,劉軍恒,等. 納米CeO2催化劑對柴油機碳煙顆粒和NO降低效果[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):54-59.
Huang He, Sun Ping, Liu Junheng, et al. Reducing soot and NO emission from diesel engine exhaust catalyzed by nano- CeO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 54-59. (in Chinese with English abstract)
[3]伏軍,龔金科,左青松,等. 微粒捕集器噴油助燃再生噴油與補氣的優(yōu)化控制[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(17):11-16.
Fu Jun, Gong Jinke, Zuo Qingsong, et a1. Optimum control of fuel injection and air supply for burner-type diesel particulate filter regeneration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 11-16. (in Chinese with English abstract)
[4]Meng Zhongwei, Zhang Jing, Chen Chao, et al. A numerical investigation of the diesel particle filter regeneration process under temperature pulse conditions[J]. Heat and Mass Transfer, 2017, 53(5): 1589-1602.
[5]Jiao Penghao, Li Zhijun, Shen Boxi, et al. Research of DPF regeneration with NOX-PM coupled chemical reaction[J].Applied Thermal Engineering, 2017(110): 737-745.
[6]Jeremy D Smith, Chris Ruehl, Mark Burnitzki, et al. Real-time particulate emissions rates from active and passive heavy-duty diesel particulate filter regeneration[J]. Science of the Total Environment, 2019(680) :132-139.
[7]Wei Yuechang, Wu Qiangqiang, Xiong Jing, et al. Efficient catalysts of supported Pt-Pd nanoparticles on 3D ordered macroporous TiO2for soot combustion: Synergic effect of Pt-Pd binary components[J]. Catalysis Today, 2019(327): 143-153.
[8]Tang Hailian, Su Yang, Guo Yalin, et al.Oxidative strong metal-support interactions (OMSI) of supported platinum- group metal catalysts[J].Chemical Science, 2018, 9(32): 6679-6684.
[9]Virginia Alcalde-Santiago, Arantxa Davó-Qui?onero, Dolores Lozano-Castelló, et al. On the soot combustion mechanism using 3DOM ceria catalysts[J].Applied Catalysis B: Environmental, 2018, 234: 187-197.
[10]Shuang Liu, Xiaodong Wu, Duan Weng, et al.Sulfation of Pt/Al2O3catalyst for soot oxidation: High utilization of NO2and oxidation of surface oxygenated complexes[J].Applied Catalysis B: Environmental, 2013, 138: 199-211.
[11]Oana Mihai, Marie Stenfeldt, Louise Olsson. The effect of changing the gas composition on soot oxidation over DPF and SCR-coated filters[J]. Catalysis Today, 2018, 306: 243-250.
[12]王建,曹政,張多軍,等. 基于DPF主動再生溫度需求的柴油機進氣節(jié)流控制策略[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):32-37.
Wang Jan, Cao Zheng, Zhang Duojun, et al. Intake throttling control strategy based on DPF active regeneration temperature for diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 32-37. (in Chinese with English abstract)
[13]Deng Yuanwang, Zheng Wenping, E Jiaqiang, et al.Influence of geometric characteristics of a diesel particulate filter on its behavior in equilibrium state[J].Applied Thermal Engineering, 2017(123): 61-73.
[14]Marek Václavík, Marie Plachá, Petr Ko?í, et al. Structure characterisation of catalytic particulate filters for automotive exhaust gas aftertreatment[J]. Materials Characterization, 2017(134): 311-318.
[15]José Ramón Serrano, Vicente Bermúdez, Pedro Piqueras, et al.On the impact of DPF downsizing and cellular geometry on filtration efficiency in pre- and post-turbine placement[J]. Journal of Aerosol Science, 2017(113): 20-35.
[16]Bai Shuzhan, Tang Jiao, Wang Guihua, et al. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine[J]. Applied Thermal Engineering, 2016(100): 1292-1298.
[17]Chen Tao, Wu Zhixin, Gong Jinke, et al. Numerical simulation of diesel particulate filter regeneration considering ash deposit[J]. Flow Turbulence and Combustion, 2016, 97(3): 849-864.
[18]Soheil Soltani, Ronnie Andersson, Bengt Andersson. The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration[J].Fuel, 2018, 220: 453-463.
[19]Madhu Singh, Mek Srilomsak, Yujun Wang, et al.Nanostructure changes in diesel soot during NO2–O2oxidation under diesel particulate filter-like conditions toward filter regeneration[J].International Journal of Engine Research, 2019, 20(8/9): 953-966.
[20]Schejbal M, ?těpánek J, Marek M, et al. Modelling of soot oxidation by NO2in various types of diesel particulate filters[J].Fuel, 2010, 89 (9): 2365-2375.
[21]Kyeong O Lee, Heeje Seong, Seung M Choi. Detailed analysis of kinetic reactions in soot oxidation by simulated diesel exhaust emissions[J]. Proceedings of the Combustion Institute, 2013(34): 3057-3065.
[22]Zhang Hailong, Yuan Shandong, Wang Jianli, et al. Effects of contact model and NOXon soot oxidation activity over Pt/MnOx-CeO2and the reaction mechanisms. Chemical Engineering Journal, 2017(327): 1066-1076.
[23]Ragini Ramdas, Ewa Nowicka, Robert Jenkins, et al.Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters[J]. Applied Catalysis B: Environmental, 2015(176): 436-443.
[24]Hauptmann W, Votsmeier M, Gieshoff J, et al. Inverse hysteresis during the NO oxidation on Pt under lean conditions[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 22-29.
[25]Gr?fenstein J, Hjerpe A M, Elfi Kraka A, et al. An accurate description of the bergman reaction using restricted and unrestricted DFT:?Stability test, spin density, and on-top pair density[J]. Journal of Physical Chemistry A, 2000, 104(8): 1748-1761.
[26]Zhang Minhua, Wu Yufei, Dou Maobin, et al.A DFT Study of Methanol Synthesis from CO2Hydrogenation on the Pd(111) Surface[J].Catalysis Letters, 2018, 148 (9): 2935-2944.
[27]Abhijeet Raj, Gabriel Robert da Silva, Suk Ho Chung. Reaction mechanism for the free-edge oxidation of soot by O2[J]. Combustion and Flame, 2012, 159 (11): 3423-3436.
[28]Peng Liu, Zepeng Li, William L Roberts. The growth of PAHs and soot in the post-flame region[J]. Proceedings of the Combustion Institute, 2019, 37 (1): 977-984.
[29]David E. Edwards, Dmitry Yu. Zubarev, William A. Lester, et al.Pathways to Soot Oxidation: Reaction of OH with Phenanthrene Radicals[J].The Journal of Physical Chemistry A, 2014, 118 (37): 8606-8613.
[30]?zlem Y?nder, Christof H?ttig. Density functional theory study of CO formation through reactions of polycyclic aromatic hydrocarbons with atomic oxygen (O(3P))[J]. Fuel, 2019(241): 851-860.
Passive regeneration characteristics and mechanism of CDPF for diesel engine
Chen Zhaohui1, Zhang Wei1※, Li Zehong1, Kong Mengxi1, Pan Mingzhang2
(1.,,,650500,; 2.,,530004,)
To explore the regeneration performance and mechanism of the catalyzed diesel particulate filter (CDPF), an engine bench test was carried out to study the regeneration characteristics for three groups of CDPFs with catalyst loading of 0, 530(CDPF1) and 636 g/m3(CDPF2)under endurance cycle conditions in this paper. The endurance cycle tests consist of 26 operating conditions, and each test cycle lasted 5 hours, which equivalent to the vehicle traveling 800 km on the actual road. The test results showed that exhaust pressure drop across CDPF during the test was significantly lower than that of DPF. When the inlet temperature reaches 500 ℃, the pressure drop between CDPF1 and CDPF2 was about 14 kPa lower than that of DPF. From the 8th operating condition of endurance cycle to the 25th, CDPF could almost completely oxidize the trapped soot. Passive regeneration consumes NO2, and the NOxconcentration of CDPF1 with 530 g/m3catalyst loading was lower than that of the front end under heavy load conditions. The CDPF2 with 636 g/m3catalyst loading produced higher concentration of NO2with the increase of catalyst loading, and generated amounts of oxidation components were higher than consumed amounts of passive regeneration. Therefore, regeneration efficiency of CDPF was greatly increased compared with DPF, the regeneration efficiency for endurance cycle of CDPF1 was 87.5%, and that of the CDPF2 was 93.1%. Because the soot emitted by diesel engines have 11 kinds of polycyclic aromatic hydrocarbons, and phenanthrene is composed of 3 ring aromatics accounts for the largest proportion, so the density functional theory (DFT) in quantum chemistry was used to construct the oxidation reaction model of phenanthrene and NO2to produce CO and CO2on the Pt (111) crystal plane in the paper. DFT calculation results showed that O1atom in NO2was continuously slipped on the Pt(111) crystal plane, and chemical double bond of the N=O was gradually elongated and broken, and dissociated produced the active oxygen O1. The C=C double bond was produced by C1and C2atoms of phenanthrene radical, and the C-C single bond was elongated between C1and C10atoms. The C1atom was dissociated from phenanthrene radical after C-C bond was broken. The dissociated C1and active O1atoms continued to slip on Pt crystal plane and approach each other, gradually producing a C-O single bond and finally generating CO molecule. The activation energyof C1atomoxidized to CO was 234 kJ/mol, and reaction rate coefficient was 1.34×1018/s. When the C1atom was completely oxidized to CO2, two NO2molecules were required to dissociate, and produces two active O atoms which were O1and O2, respectively. These two active O and C1atoms were slipped on Pt crystal plane, and were close to each other to generate O=C=O chemical bond. The activation energ of C1atom oxidized to CO2was 218 kJ/mol, and reaction rate coefficient was 5.63×1016/s. Based on chemical reaction kinetic parameters calculated by DFT, a one-dimensional regeneration model of CDPF1 was constructed to calculate the exhaust pressure drop during passive regeneration, and the error range between simulation value and test value was within 3%. This also verified the accuracy of DFT calculation results. The study of combining engine bench test with DFT calculation of Soot-NO2reactions, which was not only reveals passive regeneration characteristics of soot from a macroscopic perspective, but also reflected passive regeneration process of soot from a microscopic perspective. This study can provide theoretical basis and engineering guidance for improvement of CDPF regeneration efficiency.
diesel engine; catalyst; combustion; regeneration process; regeneration mechanism; CDPF; density functional theory
陳朝輝,張 韋,李澤宏,孔孟茜,潘明章. 柴油機CDPF被動再生特性及機理分析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(23):80-86.doi:10.11975/j.issn.1002-6819.2019.23.010 http://www.tcsae.org
Chen Zhaohui, Zhang Wei, Li Zehong, Kong Mengxi, Pan Mingzhang. Passive regeneration characteristics and mechanism of CDPF for diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 80-86. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.010 http://www.tcsae.org
2019-08-21
2010-11-01
國家自然科學(xué)基金資助項目(51666007;51665023;51865002)
陳朝輝,博士,副教授,主要從事內(nèi)燃機燃燒與排放控制研究。Email:chenzhaohuiok@sina.com
張 韋,博士后,教授,主要從事內(nèi)燃機燃燒與排放控制研究,Email:koko_575@aliyun.com
10.11975/j.issn.1002-6819.2019.23.010
TK411+.5
A
1002-6819(2019)-23-0080-07