• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7

    2023-02-20 13:16:08TinaRaoufiJinchengHe何金城BinbinWang王彬彬EnkeLiu劉恩克andYoungSun孫陽(yáng)
    Chinese Physics B 2023年1期
    關(guān)鍵詞:金城圖書(shū)館評(píng)價(jià)

    Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬),Enke Liu(劉恩克), and Young Sun(孫陽(yáng))

    1Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Center of Quantum Materials and Devices,Chongqing University,Chongqing 401331,China

    Keywords: magnetocaloric effect,cobaltite,phase transition,Griffiths phase

    1. Introduction

    Global warming has made society more aware of the need to reduce its energy consumption. Since living standards and economic growth are improved along with the increasing population, the demand for cooling technology and thermal energy harvesting systems is expected to increase substantially over the next 30 years. Refrigeration accounts for a substantial portion of global electricity consumption. Therefore, improving energy conversion efficiency is crucial in this branch of technology. The magnetic refrigeration and cryogenic systems based on the magnetocaloric effect(MCE)are a viable alternative to traditional gas-compression refrigeration because of their high thermodynamic performance,low noise,and environmental friendliness.[1,2]Magnetic refrigeration technology around room temperature is important for household refrigeration and air conditioner, but magnetic refrigeration in low-temperature regions is essential for liquefaction of helium,hydrogen,and nitrogen,which is commonly used in lowtemperature physics, superconductors, medicine, and space technology.[3,4]

    The MCE is a magneto-thermodynamic character for magnetic solid materials,which represents the reversible temperature variation or entropy change when it is magnetized or demagnetized under adiabatic or isothermal conditions.[5]The MCE is regarded as an inherent effect in magnetic materials when a magnetic material is exposed to magnetic fields. Up to date,the magnetic properties and magnetocaloric efficiency of a wide range of magnetic materials with various characterization and preparation techniques such as oxides, alloys, amorphous, intermetallic, and composites have been investigated and reviewed in literature.[6–8]

    In recent years, the oxide CaBaCo4O7(CBCO), which belongs to the “114” cobaltite from a new class of geometrically frustrated magnets,has attracted interest due to its complex geometrically frustrated network. The CBCO compound crystallizes in the orthorhombicPbn21symmetry in the entire temperature range from the room temperature to 4 K.[9]The magnetic unit cell of CBCO includes four equivalent Co sites, leading to an alternate stacking of two types of corner shared CoO4tetrahedral: Co1 sits in the triangular layer,while Co2, Co3, and Co4 atoms are in the kagome layer,causing considerable magnetic frustration.[10,11]The geometrical frustration in the kagome and triangular lattice of this compound can be partially lifted due to large orthorhombic structural distortion and charge ordering (the stoichiometric formula),leading to a ferrimagnetic order state below 60 K.[12]

    In this work,the magnetic and magnetocaloric properties of the 114 cobaltite CaBaCo4O7compound are studied with the aims at better understanding the low-temperature physical properties of CBCO and developing new magnetic materials for magnetic refrigeration. We use comprehensive magnetization calculation to describe the magnetic phase transition by applying the Banerjee criterion,as well as recent methods such as universal scaling and a quantitative technique based on the field dependence of the magnetic entropy change to find the order of magnetic phase transition to gain a better understanding of the nature of magnetic transitions and MCE properties of the system.

    2. Experiments

    Polycrystalline samples of CaBaCo4O7were synthesized by the conventional solid-state reaction method. The stoichiometric quantities of all the initial reactants with high-purity,including CaCO3,BaCO3,and Co3O4,were ground in an agate mortar for 2 h, and then heated at 900°C in air for 12 h for decarbonization. After another 1 h grinding process,the mixture was then pressed in the form of cylindrical bars to make pellets, heated in air at 1100°C for 14 h, and finally cooled down to room temperature.

    The temperature-dependent dc magnetization and magnetization versus applied magnetic field up to 7 T were measured by using a Quantum Design magnetic properties measurement system(MPMS).The crucial MCE characteristics,such as-ΔSM(T), refrigerant capacity (RC), and relative cooling power (RCP),were calculated from the magnetization versus applied magnetic fields.

    3. Results and discussions

    3.1. Structural characterization

    The structural properties of the CBCO samples were investigated by using the x-ray diffraction(XRD)at room temperature. Figure 1 shows the diffraction pattern of a CBCO sample and Rietveld refinement analysis using the FullProf program.

    Fig.1.The x-ray diffraction pattern of the prepared CaBaCo4O7 sample at room temperature.

    The results of the refinement demonstrate that the sample crystalizes in the orthorhombic crystal structure with thePbn21space group and the cell parametersa=6.277(1) ?A,b=10.987(9) ?A,c=10.180(9) ?A, andV=702.198(5) ?A3.In comparison to previous work,the value of the volume was decreased.[13]There is also a small extra peak related to BaO2in the XRD pattern. The sintering temperature and annealing time are important factors in the solid-state reaction process. The grain size grows as the annealing time and sintering temperature increase. The variation in annealing time in the process of preparing our sample compared to the work of Dhansekharet al. could explain the decrease in volume cell and observation of inhomogeneity(extra peak)in XRD.[14–16]

    3.1.1 LibQUAL+TM的演變。LibQUAL+TM是基于SERVQUAL提出的一種適用于圖書(shū)館的質(zhì)量評(píng)價(jià)模型[4]。

    3.2. Magnetic characterization

    Figure 2(a) displays the FC magnetization for polycrystalline CBCO measured as a function of temperature in 0.05 T magnetic field over a temperature range of 20–300 K. The FC curve exhibits a sharp increase of magnetization at the Curie temperature (TC) of a ferrimagnetic (FIM) to paramagnetic(PM)transition.[17]The temperature derivative of theM–Tcurve is shown in the inset of Fig. 2(a), which can be used to unambiguously calculateTC. The value ofTCis evaluated to be 60 K, which is close to other reports.[16,17]One of the principal capabilities of the CBCO compound is that the structural distortion lifts exchange-interaction frustration which leads to the unique geometry of the kagome lattice. The exchange interaction in the system would be influenced by the precise Co3+/Co2+=1 ratio, resulting in the appearance of the FIM ordering.[10,12]

    The inverse magnetic susceptibility versus temperature is presented in Fig.2(b). The linear behavior ofχ-1versusTat higher temperatures suggests thatχ-1obeys the Curie–Weiss(CW)law in this region:[18]

    whereθPis the CW temperature,andCis the Curie constant.The black line in Fig.2(b)depicts the fit to the CW law with parametersθP=13.6 K andC=1.1010 K·A·m2/T·kg. The small value of the CW temperature is expected for the ferrimagnetic state.[19]The small value of intercept can be referred to competition between AFM and FM phase interaction before the Griffiths temperatures (TG) and the persistence of inhomogeneity in the PM regime. The assumption thatχ-1does not follow the CW law aboveTCis evident from this diagram. The downturn behavior of inverse susceptibility versus temperature aboveTCis clear from Fig.2(b),which is considered as a sign of Griffiths phase (GP) singularity rather than a pure PM region. The appearance of short-range FM/AFM correlation well aboveTCis signaled by the faster reduction ofχ-1belowTG.

    Fig.2. (a)Magnetization as a function of temperature in the field-cooled mode under a magnetic field of 0.05 T.The inset presents the dM/dT versus T curves. (b)Temperature evolution of inverse magnetic susceptibility. The black solid line indicates the linear fit to the CW law. (c)The T-dependent susceptibility data following Eq.(2),plotted in double logarithmic scale.

    The exponentλ, which can be calculated from the following equation, is commonly used to evaluate the Griffiths phase:[20]

    whereλis a constant to obtain the degree of deviation from the CW behavior andis the critical transition temperature of the random ferromagnetic where susceptibility diverges. The choice of=θPis generally good one because it ensuresλ~0 in the paramagnetic region. The difference betweenTCandθPin the present system makes it reasonable to choose=TC. In Fig. 2(c) the log–log plot shows the power-law behavior inχ-1(T) and the slope of the fitted straight line[Eq. (2)] gives theλGPandλPMvalues. The value ofλPMis estimated to be zero in the pure PM regime.Here,λPMis positive and less than unite,andTC<<TG,which confirm the appearance of GP. Susceptibility measurements were carried out in another magnetic field to establish the feature and to identify the magnetic field limit where the Griffith phase disappeared. Griffith phase is present even in the high magnetic field of 7 T(the results are not shown here).

    Previous research demonstrated that the strong AFM Co–Co interaction facilitated by Co–O–Co super-exchange in kagome and triangular layers generates complex magnetic properties in CBCO.Because of the critical function of significant structural distortion,cobalt valence,and charge ordering in forming a long-range magnetic order, geometrical frustration in CBCO is partially lifted.[21]The partially lifted geometrical frustration phenomenon generates a slight disordering of the cobalt spins in the long-range magnetic order. The presence of GP is attributed to a complicated magnetic interaction,competition between AFM and FM orders,while remaining geometrical frustration,which results in inhomogeneity in CBCO.

    A series of isothermal magnetization curves around the magnetic transition temperature are assessed to examine the magnetic and magnetocaloric properties of materials. Figure 3(a)shows theM–Hcurves of the CBCO aroundTCunder 0 to 7 T. As the temperature rises, the magnetization curves progressively shift from a nonlinear to a linear shape, representing the transition process from FIM to PM. It is worth noting that theM–Hcurves exhibit a nonlinear behavior at a temperature segment higher thanTC(60–70 K)in the PM region,implying that the PM state is incomplete. Moreover,the sudden change in the slope of someM–Hcurves suggests the presence of magnetic inhomogenity in this sample.

    Fig.3. (a)Series of isothermal M–H curves under magnetic field up to 7 T in the temperature range of 40–80 K.(b)The Arrott plots obtained from the M–H curves.

    3.3. Magnetocaloric characterization

    To determine the magnetocaloric properties, the isothermal magnetization was measured as a function of the magnetic field in the range 0–7 T and the temperature range of 20 K around the magnetic phase transition temperature. The magnetic entropy change ΔSM(T), an essential parameter to represent the magnetocaloric effect of a material,can be indirectly evaluated from the total isothermal magnetization using Maxwell’s thermodynamic relation:

    Based on the fact that the isothermalM(H) curve is determined by different changes in the magnetic field and Eq. (4)gives the value of ΔSM(T)at different temperatures and fields,ΔSM(T)can be expressed as

    whereMiandMi+1are the magnetization values measured atTiandTi+1under a magnetic field ofH, respectively. Figure 4(a)shows the magnetic entropy-ΔSM(T)calculated using Eq. (5) against temperature for a magnetic field change up to 7 T with steps of 1 T. The maximum peaks occur nearTC, and the values rise as the magnetic field increases. At the field of 7 T, the maximum-ΔSM(T) is about 3 J/kg·K at~60 K.It is specially essential to mention that the behaviors of-ΔSM(T)below and aboveTCdiffer from each other.A progressive increase in-ΔSM(T) occurs belowTC, which is the signature of the second-order phase transition (SOPT);whereas aboveTC,the rapid change in-ΔSM(T)suggests the first-order phase transition(FOPT)behavior in this region.

    The ΔSM(T)value of CBCO is comparable with those of some potential magnetic refrigerant material in a similar temperature region under a 5 T magnetic field,such as Gd2Ni2Sn(4.6 J/kg·K at 75 K),[23]Tb2Ni2Sn (2.9 J/kg·K at 66 K),[23]Sm2Co2Ga(1.31 J/kg·K at 62 K),[24]Nd6Co2Si3(5.3 J/kg·K at 84.5 K),[25]TbPtMg(5.1 J/kg·K at 58 K),[26]and GdCuMg(5.6 J/kg·K at 78 K).[27]

    Fig.4. (a) The -ΔSM(T) curves versus temperature under different magnetic fields up to 7 T.(b)The corresponding exponent n as a function of temperature for 7 T.

    Dhanasekharet al. reported that the magnetic entropy change of a polycrystalline CBCO sample sintered under various conditions has different values.[16]Compared to the previous report with the decrease in sintering time,a broad peak in magnetic entropy change with the width of half maximum of ΔS–Tcurve about 14 K is observed in our case. Reduced sintering time contributes to increased porosity.The saturation magnetization decreases with reduced sintering times, which can be attributed to the core/shell morphology,lower grain size and the spin structure on the core and surface. The effect of reducing the sintering time on saturation magnetization is consistent with the previous studies.[28,29]

    The Landau theory is a theoretical model which is defined based on the magnetoelastic contribution and electron interaction. This theory is used to determine the nature of the magnetic phase transition in magnetic materials.[30]The Landau theory can verify the nature of the phase transition indicated by other models, as well as explain the magnetic entropy change dependence on temperature variation.The Gibbs free energy for a magnetic system can be described as a function of the magnetic field, magnetization, and temperature in the Landau theory around the Curie temperature transitionTC.TheG(M,T) can be defined in terms of the order parameter of powerM, and the coefficients are smooth functions of temperature:[31]

    where the coefficientsa(T),b(T),andc(T)are known as Landau coefficients,and they describe temperature-dependent parameters. The energyG(M,T) corresponds to the minimum value at the phase transition under the condition of equilibrium energy minimization,(dG/dM)=0,leading to the following magnetic equation of state:

    The temperature-dependent parameters ofa(T),b(T), andc(T)obtained from the polynomial fit of theM–Hdata using Eq.(7)allow us to determine the order of magnetic phase transition as depicted in Figs.5(a)–5(c). It is clear from Fig.5(a)that the parametera(T) changes from negative to positive as the temperature increases, and the temperature corresponding to zero is almost close toTC. According to the Inoue–Shimizu model,[32]the sign of theb(TC)determines the order of the magnetic phase transition, which indicates the FOMT ifb(TC)<0 and the SOPT ifb(TC)≥0. The sign ofb(TC)is positive in the CBCO sample, confirming the SOPT atTC.However, as seen above theTC(near 65 K), the trend of theb(T)is changed. This conclusion matches with the results of the Arrott plots.

    Fig.5. (a)–(c)The temperature dependence of the Landau parameters. (d)Comparison of experimental and calculated values by the Landau theory of the magnetic entropy change under magnetic field of 7 T for the CBCO sample.

    The magnetic entropy change is estimated theoretically using the Landau theory through differentiation of the free energy with regard to temperature:

    Here,a′(T),b′(T), andc′(T) have been obtained from the temperature derivatives of Landau parameters. Figure 5(d)shows the experimental (red symbols) and calculated (black line)-ΔSM(T)versus temperature under 7 T obtained by the Maxwell integration and the Landau theory fromM(T,H),respectively. According to recent studies, the magnetoelastic coupling induced a large change in electrical polarization at the PM to FIM phase transition aroundTC,as well as explaining the temperature dependence of unit-cell characteristics and volume belowTC.[33,34]The good agreement between the two curves for the CBCO sample implies that the magnetic entropy change versus temperature could be described by magnetoelastic coupling and electron interaction. It can be seen that in theT >TCregion, there is a small discrepancy between the two curves. The difference could be explained by the presence of short-range FM interaction in this area.

    Another method for determining the magnetic phase transition order is to obtained powernfrom the function-ΔSM(T)=a(Hn).[35]Figure 4(b) displays the temperature dependence ofnversusTin 7 T.Then(T)was calculated for a high field because the multi-domain state exists in a small field. It is impossible to consider the value ofnfor a small field. According to the CW law,the value of exponentnmust be 2 for SOPT in the PM area, whereas in FOPT-type transition it should ben >2. Around theTC,the minimum ofn(T)is obvious and in the area below theTC, the value ofn(T) is found to be nearly 1. Above theTC(T <~65 K), the curve predicts the second-order phase transition,but there is a significant overshoot in the PM region above 65 K,which indicates the first-order transition.Therefore,it is possible that there is a cross from second-order to first-order transition with increasing temperature.

    Franco and co-workers introduced the phenomenological universal master curve as an additional approach to confirm the magnetic phase transition order.[36,37]According to this process, for material undergoing a SOPT, the universal curve assembled by the normalizing magnetic entropy change(ΔSM/) in various applied fields versus rescaling the temperature axis(θ)below and aboveTCwould converge into a single curve. For the CBCO compound,the universal curve is shown in Fig.6,which is defined as

    whereTr1andTr2are temperatures for each curve corresponding to the reference points below and above theTC, respectively.(ΔSM/)=fis used to evaluate the reference temperature, in whichfcan be selected from 0 to 1, but too large a value and too small a value would cause large numerical errors. In our case,f=0.5 has been selected for all the curves. As is evident from Fig.6, the rescaled curves are not completely collapsed into a single curve(especially forθ <0),confirming the presence of both magnetic transitions.

    Fig.6. Universal scaling plot of normalized magnetic entropy change as a function of rescaled temperature.

    The large magnetic entropy change is not a sufficient tool to determine the suitability of the material used in magnetic refrigeration. There is a figure of merit to identify the cooling capacity of MCE performance of a magnetic refrigeration material named as refrigeration capacity. The physical concept of refrigeration capacity(RC)is the amount of thermal energy transferred between the hot and cold sources in an ideal cooling cycle.[38]The RC value depends on the height and width of the peak on the magnetic entropy change versus the temperature curve. The common and popular methods to calculate the cooling capacity are given as RCP=||·δTFWHM(relative cooling power), whereδTFWHMis the full width at half maximum of the maximum entropy change, while RC=|ΔSM|dT. The RCP and RC values of CBCO at 7 T are 42 J/kg and 32.7 J/kg,respectively,as shown in Fig.7.The large value of RCP obtained for the sample compared to that reported by Dhanasekharet al.[16]because of the border peak can be used to demonstrate the crossover of the first-order to second-order magnetic phase transition, as well as the effect of the preparation condition method. The results give new aspects of the properties of CBCO as potential candidates for such applications.

    Fig.7. The relative cooling power curves of the CBCO sample as a function of temperature under different magnetic fields up to 7 T.

    4. Conclusion

    In summary,we have investigated the magnetic and magnetocaloric features of CBCO,including the type of magnetic transition, the GP-singularity, the universal curve, and power law dependence of magnetic entropy on the magnetic field.The crossover between the first-order and second-order magnetic phase transitions is noticeable in the experimental results and theoretical estimations of the MCE and magnetization of the CBCO compound. The mixed valence of Co, charge ordering, and structural disordering distortion, which generate geometrical frustration, are assumed to govern the physical mechanism. It is worth noting that geometrical frustration has persisted in the PM region, producing inhomogeneity and inducing disordering of the Co spins. The evidence reveals that short-range magnetic clusters occur in the PM region. The presence of the GP in CBCO is also confirmed. The magnetic entropy changes calculated by the experimental data and the Landau theory have a good match, indicating that magnetoelastic coupling and electron interaction are significant in the magnetocaloric properties of this sample.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation(Grant No.Z180009).

    猜你喜歡
    金城圖書(shū)館評(píng)價(jià)
    金城所致 金石為開(kāi)
    金城謎朦
    金城化學(xué)(江蘇)有限公司
    SBR改性瀝青的穩(wěn)定性評(píng)價(jià)
    石油瀝青(2021年4期)2021-10-14 08:50:44
    圖書(shū)館
    金城造紙廠研制成功以草代木的新型紙
    飛躍圖書(shū)館
    基于Moodle的學(xué)習(xí)評(píng)價(jià)
    去圖書(shū)館
    保加利亞轉(zhuǎn)軌20年評(píng)價(jià)
    在线观看一区二区三区| 深夜精品福利| 色综合亚洲欧美另类图片| www日本黄色视频网| 久久久久亚洲av毛片大全| 女同久久另类99精品国产91| 国产精品1区2区在线观看.| 久久国产精品影院| 国产极品精品免费视频能看的| 国产精品久久久久久久电影 | 欧美日韩一级在线毛片| 欧美黄色淫秽网站| 久久热在线av| 特级一级黄色大片| 99视频精品全部免费 在线 | 亚洲成人久久爱视频| xxxwww97欧美| 日韩欧美在线二视频| 国产久久久一区二区三区| 两个人看的免费小视频| 不卡av一区二区三区| 久久国产精品影院| 婷婷精品国产亚洲av在线| 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| a级毛片a级免费在线| 久久久久久久精品吃奶| 五月玫瑰六月丁香| 亚洲18禁久久av| 18禁美女被吸乳视频| 18美女黄网站色大片免费观看| 一进一出抽搐动态| 丰满人妻熟妇乱又伦精品不卡| 可以在线观看毛片的网站| 麻豆一二三区av精品| 国产高清三级在线| 国产久久久一区二区三区| 亚洲专区字幕在线| 欧美一区二区精品小视频在线| 99国产极品粉嫩在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲午夜精品一区,二区,三区| 色综合婷婷激情| 久久国产精品人妻蜜桃| 757午夜福利合集在线观看| 亚洲av五月六月丁香网| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 亚洲狠狠婷婷综合久久图片| 亚洲国产色片| 夜夜躁狠狠躁天天躁| 日韩国内少妇激情av| 欧美日韩黄片免| 亚洲国产精品sss在线观看| 日韩欧美三级三区| 制服丝袜大香蕉在线| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 欧美高清成人免费视频www| 九色国产91popny在线| 又爽又黄无遮挡网站| 久久草成人影院| 免费在线观看日本一区| 黄色日韩在线| 村上凉子中文字幕在线| 欧美黑人欧美精品刺激| 狠狠狠狠99中文字幕| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 免费在线观看视频国产中文字幕亚洲| 神马国产精品三级电影在线观看| 在线免费观看的www视频| 日本 欧美在线| 性欧美人与动物交配| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 日本免费一区二区三区高清不卡| 草草在线视频免费看| 久久久国产精品麻豆| 久久亚洲真实| 99久久精品国产亚洲精品| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 999久久久国产精品视频| 国产精品av视频在线免费观看| 精品久久久久久久毛片微露脸| 这个男人来自地球电影免费观看| 欧美成人免费av一区二区三区| 国产探花在线观看一区二区| 亚洲熟女毛片儿| av中文乱码字幕在线| 97超视频在线观看视频| 欧美成人一区二区免费高清观看 | 搞女人的毛片| av天堂在线播放| 精品国产三级普通话版| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人免费| 欧美极品一区二区三区四区| 香蕉久久夜色| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 少妇人妻一区二区三区视频| 中文字幕人妻丝袜一区二区| 男人的好看免费观看在线视频| 免费看日本二区| 丁香六月欧美| 我的老师免费观看完整版| 国产高清激情床上av| 午夜福利免费观看在线| 最近在线观看免费完整版| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品一区二区三区| 国产精品98久久久久久宅男小说| 91av网一区二区| 亚洲中文av在线| 日本一二三区视频观看| 熟女少妇亚洲综合色aaa.| 看片在线看免费视频| 女同久久另类99精品国产91| 91av网一区二区| 亚洲av电影在线进入| 国产亚洲av嫩草精品影院| 久久久久国产一级毛片高清牌| 国产探花在线观看一区二区| 色哟哟哟哟哟哟| 美女午夜性视频免费| 久久精品综合一区二区三区| 日韩有码中文字幕| 免费观看精品视频网站| 久久国产精品影院| 久久久成人免费电影| 麻豆国产97在线/欧美| 亚洲精品久久国产高清桃花| 欧美极品一区二区三区四区| 亚洲自偷自拍图片 自拍| 不卡一级毛片| 欧美黑人欧美精品刺激| 又大又爽又粗| 欧美大码av| 国产亚洲精品一区二区www| 亚洲欧美日韩东京热| 成人三级黄色视频| 日韩高清综合在线| 99久久成人亚洲精品观看| 国产午夜精品论理片| 午夜福利高清视频| 国产精品日韩av在线免费观看| 亚洲,欧美精品.| 亚洲av熟女| 在线免费观看不下载黄p国产 | 婷婷亚洲欧美| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 99久国产av精品| 麻豆一二三区av精品| 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲欧美98| 亚洲国产欧美网| 一区二区三区高清视频在线| 亚洲精品国产精品久久久不卡| 国产亚洲av嫩草精品影院| 中文字幕最新亚洲高清| 欧美日韩精品网址| 男女下面进入的视频免费午夜| 国产精品一区二区三区四区久久| 午夜福利视频1000在线观看| 亚洲av电影不卡..在线观看| 欧美一区二区精品小视频在线| 亚洲国产欧洲综合997久久,| 国产麻豆成人av免费视频| 精品国产乱子伦一区二区三区| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 丝袜人妻中文字幕| 校园春色视频在线观看| 在线十欧美十亚洲十日本专区| 国产三级在线视频| 亚洲av第一区精品v没综合| 又爽又黄无遮挡网站| 又黄又粗又硬又大视频| 美女大奶头视频| 国产精品香港三级国产av潘金莲| 成人三级黄色视频| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 婷婷精品国产亚洲av在线| 嫩草影院精品99| av女优亚洲男人天堂 | 国产高清三级在线| 18禁观看日本| 久久中文字幕人妻熟女| 久9热在线精品视频| 九色国产91popny在线| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆 | 免费看日本二区| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 97超视频在线观看视频| 久久久久久久精品吃奶| 久久久国产成人精品二区| 免费在线观看日本一区| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 狂野欧美白嫩少妇大欣赏| 国内精品久久久久精免费| 色老头精品视频在线观看| 99re在线观看精品视频| 天天躁日日操中文字幕| 两个人看的免费小视频| 又粗又爽又猛毛片免费看| 国产av不卡久久| 亚洲人与动物交配视频| 中文资源天堂在线| 97碰自拍视频| 日本免费a在线| 成年免费大片在线观看| 免费无遮挡裸体视频| 一a级毛片在线观看| 欧美一级a爱片免费观看看| 久久久久久久久中文| 国产精品影院久久| 黄频高清免费视频| 国产亚洲av嫩草精品影院| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 亚洲国产精品sss在线观看| 在线观看美女被高潮喷水网站 | 91麻豆av在线| 老司机在亚洲福利影院| 美女黄网站色视频| 欧美乱妇无乱码| 中文字幕久久专区| 国产野战对白在线观看| 欧美xxxx黑人xx丫x性爽| 国产av一区在线观看免费| 老熟妇乱子伦视频在线观看| 久久久成人免费电影| 十八禁人妻一区二区| 亚洲av成人精品一区久久| 黄色 视频免费看| 亚洲精品美女久久av网站| 成人性生交大片免费视频hd| 好看av亚洲va欧美ⅴa在| 久久人人精品亚洲av| 免费观看人在逋| 久久草成人影院| 白带黄色成豆腐渣| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 观看美女的网站| 精品99又大又爽又粗少妇毛片 | 十八禁人妻一区二区| 最新在线观看一区二区三区| 男插女下体视频免费在线播放| 男女那种视频在线观看| 欧美一区二区精品小视频在线| 国产三级黄色录像| 久久久国产成人精品二区| 岛国在线观看网站| 久久亚洲精品不卡| 亚洲色图 男人天堂 中文字幕| 免费在线观看日本一区| 2021天堂中文幕一二区在线观| 日韩欧美免费精品| 国产精品久久电影中文字幕| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 久久久久性生活片| 黄色日韩在线| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 全区人妻精品视频| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 一级毛片高清免费大全| www日本黄色视频网| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 亚洲欧美精品综合一区二区三区| 国产av不卡久久| 国产日本99.免费观看| www日本在线高清视频| 好男人电影高清在线观看| 床上黄色一级片| 最近最新免费中文字幕在线| 精品久久久久久久末码| 中国美女看黄片| 狂野欧美激情性xxxx| 国产毛片a区久久久久| 黄色女人牲交| 日本撒尿小便嘘嘘汇集6| 国产黄片美女视频| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| av福利片在线观看| 床上黄色一级片| 欧美黄色淫秽网站| 亚洲国产高清在线一区二区三| 午夜福利免费观看在线| 久久伊人香网站| 人妻夜夜爽99麻豆av| 亚洲av电影在线进入| 99热6这里只有精品| 在线播放国产精品三级| 97碰自拍视频| 免费人成视频x8x8入口观看| 人妻丰满熟妇av一区二区三区| 91字幕亚洲| cao死你这个sao货| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 美女cb高潮喷水在线观看 | 国产精品久久久av美女十八| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 亚洲精品一区av在线观看| 九九热线精品视视频播放| 久久天躁狠狠躁夜夜2o2o| 国产又色又爽无遮挡免费看| 国产欧美日韩精品亚洲av| 极品教师在线免费播放| 嫩草影院入口| 国产亚洲精品久久久com| aaaaa片日本免费| 成人18禁在线播放| 精品国产乱子伦一区二区三区| 国产一级毛片七仙女欲春2| 久久精品影院6| 亚洲18禁久久av| 国产一区二区在线观看日韩 | 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 久久久水蜜桃国产精品网| 久久久久九九精品影院| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美激情综合另类| 国产精品野战在线观看| 亚洲av五月六月丁香网| 男女午夜视频在线观看| 在线观看美女被高潮喷水网站 | 久久精品国产综合久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人免费电影在线观看| 黄片小视频在线播放| 中文字幕精品亚洲无线码一区| h日本视频在线播放| 国产三级黄色录像| 国产激情久久老熟女| 午夜视频精品福利| 色播亚洲综合网| 一级毛片精品| 国产主播在线观看一区二区| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 999精品在线视频| 久久久久久久精品吃奶| 中文资源天堂在线| 床上黄色一级片| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 青草久久国产| 99国产精品一区二区三区| 1024香蕉在线观看| 精品久久蜜臀av无| 12—13女人毛片做爰片一| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| 最近在线观看免费完整版| 日韩精品中文字幕看吧| 琪琪午夜伦伦电影理论片6080| av片东京热男人的天堂| 不卡av一区二区三区| 美女大奶头视频| 久久九九热精品免费| 成人永久免费在线观看视频| 变态另类丝袜制服| 亚洲欧洲精品一区二区精品久久久| 亚洲乱码一区二区免费版| 一本一本综合久久| 黄色成人免费大全| 久久中文字幕一级| 日日夜夜操网爽| 日韩成人在线观看一区二区三区| tocl精华| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 久久久久免费精品人妻一区二区| 亚洲中文av在线| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 女警被强在线播放| 网址你懂的国产日韩在线| 99国产综合亚洲精品| 色视频www国产| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱| av片东京热男人的天堂| 久久久久久九九精品二区国产| 女警被强在线播放| 亚洲国产精品999在线| 亚洲男人的天堂狠狠| 国产伦精品一区二区三区视频9 | 制服人妻中文乱码| 一二三四社区在线视频社区8| 日日夜夜操网爽| 嫩草影院精品99| 日韩国内少妇激情av| 久久亚洲真实| 999久久久精品免费观看国产| 久9热在线精品视频| 中文字幕高清在线视频| 黄片小视频在线播放| 婷婷丁香在线五月| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片| 成人永久免费在线观看视频| 久久精品综合一区二区三区| 天堂网av新在线| 国产伦精品一区二区三区视频9 | 麻豆一二三区av精品| 啦啦啦观看免费观看视频高清| av天堂中文字幕网| 成人午夜高清在线视频| 啦啦啦韩国在线观看视频| 色噜噜av男人的天堂激情| tocl精华| 岛国在线观看网站| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| avwww免费| 女警被强在线播放| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 真人做人爱边吃奶动态| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 久久中文看片网| 精品久久久久久成人av| 成人三级黄色视频| 性欧美人与动物交配| 嫩草影视91久久| 成人av在线播放网站| 不卡一级毛片| 香蕉国产在线看| 熟女电影av网| 最近最新免费中文字幕在线| 婷婷亚洲欧美| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 亚洲中文av在线| 亚洲精品456在线播放app | 国产三级黄色录像| 观看免费一级毛片| 在线永久观看黄色视频| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 亚洲第一欧美日韩一区二区三区| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 日韩人妻高清精品专区| av女优亚洲男人天堂 | 亚洲国产欧洲综合997久久,| 久久久久性生活片| 91老司机精品| 此物有八面人人有两片| 日本免费a在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲电影在线观看av| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看| 成人特级黄色片久久久久久久| 琪琪午夜伦伦电影理论片6080| 精品久久蜜臀av无| 亚洲精品在线美女| 色吧在线观看| 精品无人区乱码1区二区| 免费看光身美女| 国产精品久久久久久精品电影| 成人无遮挡网站| 在线播放国产精品三级| 一区福利在线观看| 成人三级做爰电影| 国产野战对白在线观看| 国内精品久久久久久久电影| 无限看片的www在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 在线a可以看的网站| 亚洲黑人精品在线| 欧美激情久久久久久爽电影| 黄频高清免费视频| 亚洲专区字幕在线| 黄色视频,在线免费观看| 看免费av毛片| 色吧在线观看| 久久午夜综合久久蜜桃| avwww免费| 国产成人av教育| 动漫黄色视频在线观看| 青草久久国产| av在线蜜桃| 精品国产乱码久久久久久男人| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 中文资源天堂在线| 国产精品av久久久久免费| 欧美日本视频| 久久久久久国产a免费观看| 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 黄色视频,在线免费观看| 日韩欧美在线乱码| 亚洲熟妇中文字幕五十中出| 久久热在线av| 国产私拍福利视频在线观看| 在线十欧美十亚洲十日本专区| 久久中文看片网| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 亚洲在线观看片| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| www.999成人在线观看| 欧美一级a爱片免费观看看| 久久久国产欧美日韩av| 俺也久久电影网| 免费av不卡在线播放| 亚洲黑人精品在线| 欧美日韩精品网址| 成在线人永久免费视频| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 国产高清三级在线| 哪里可以看免费的av片| 午夜日韩欧美国产| 99国产综合亚洲精品| 91九色精品人成在线观看| 青草久久国产| 午夜福利高清视频| 热99re8久久精品国产| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 国产极品精品免费视频能看的| av视频在线观看入口| 亚洲国产日韩欧美精品在线观看 | 91久久精品国产一区二区成人 | 日本 av在线| 国产伦精品一区二区三区四那| 老鸭窝网址在线观看| 亚洲精品在线观看二区| 91老司机精品| 亚洲黑人精品在线| 国产男靠女视频免费网站| 国产成人av激情在线播放| cao死你这个sao货| 99国产极品粉嫩在线观看| 日本一本二区三区精品| 99国产精品一区二区蜜桃av| 亚洲av成人不卡在线观看播放网| 两个人看的免费小视频| 69av精品久久久久久| 日韩人妻高清精品专区| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕一二三四区| 男人舔女人的私密视频| 最近最新中文字幕大全电影3| 狠狠狠狠99中文字幕| 男人舔奶头视频| 精品一区二区三区av网在线观看| 成人特级av手机在线观看| 国产熟女xx| 69av精品久久久久久| 日韩中文字幕欧美一区二区| 亚洲色图 男人天堂 中文字幕| 日韩欧美国产一区二区入口| 色尼玛亚洲综合影院| 少妇裸体淫交视频免费看高清| 午夜福利高清视频| 国产又黄又爽又无遮挡在线| а√天堂www在线а√下载| 日韩欧美国产一区二区入口| 夜夜躁狠狠躁天天躁| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品999在线| 中文字幕高清在线视频| 午夜精品在线福利| av欧美777| 中文资源天堂在线|