11%"/>
  • <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of processing additives in non-fullerene organic bulk heterojunction solar cells with ef fi ciency>11%

    2019-02-15 02:28:26ShenkunXieJinqiuWngRongWngDongyngZhngHuiqiongZhouYunZhngDefengZhou
    Chinese Chemical Letters 2019年1期

    Shenkun Xie,Jinqiu Wng,Rong Wng,Dongyng Zhng,Huiqiong Zhou*,Yun Zhng,*,Defeng Zhou,*

    a School of Chemistry and Life Science,Changchun University of Technology,Changchun 130012,China

    b HEEGERBeijing Research&Development Center,School of Chemistry,Beihang University,Beijing 100191,China

    c CASKey Laboratory of Nanosystem and Hierarchical Fabrication,CASCenter for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China

    Key words:Organic solar cell Solvent additive Morphology Recombination Non-fullerene

    ABSTRACT Here we investigate processing additive-dependent photovoltaic performance and charge recombination in organic bulk heterojunction(BHJ)solar cells based on a polymeric donor of PBDB-T blended with a non-fullerene acceptor m-ITIC.We fi nd that PBDB-T:m-ITICsolar cells exhibit good compatibilities with the utilized additives(DIO,CN,DPE,and NMP)in optimal conditions,can have a high charge dissociation probability approaching 100%(with DIO),leading to ultimate ef fi ciency>11%.Regardless of additives,we observe a dominant 1st order monomolecular recombination with insigni fi cant bi-molecular recombination or space-charge effects in these solar cells.Despite of impressive power conversion ef fi ciency(PCE),it is of surprise that Shockley-Read-Hall recombination is identi fied to play a role in device operation.Thus,it points to the necessity to mitigate the influences of traps to further boost the ef fi ciency in non-fullerene based organic solar cells.

    Organic solar cells(OSCs)are among the most promising candidates for sustainable energy resources[1–3].The main advantages in OSCs include their low fabrication cost,light weight,high fl exibility,and large-area processing capabilities using roll-toroll printing etc.In recent years,the power conversion ef fi ciency of polymer solar cells(PSCs),barely 1%fi fteen years ago,hasexceeded 13%[4–13].It is well accepted that utilizing bulk-heterojunction(BHJ)structure in which the donor and acceptor materials are blended to form bi-continuous inter-percolated networks with abundant interfacial regions w arrantsefficient exciton dissociation for desired photoconductivity[13].Despite of recognized disadvantages such as weak absorption in the visible region,high synthetic cost,and limited tunability of energy levels,fullerene derivativeswith largenonplanar sphericalcon fi gurationshavebeen predominant electron-acceptor materials in the past tw o decades[14].Very recently,non-fullerene(NF)acceptors have attracted many attentionsfor OSCapplications.The problemswith fullerenes to largeextend can be circumvented in NF-based OSCs.For example,NFs acceptors have been show n with the high tunability on energetics through chemical modification with potentially low synthetic costs.Through judicious choices or modifications of molecular skeletons and fl exible side chains,the electronic and absorption propertiesarewell tailored[15,16].Among the diversity of NFacceptors,ITICwith the fused ring structure has gained great popularity show ing successes in delivering several record ef fi ciencies in NF-OSCs[17].Another successor ITICderivative IT-M with a very small electron-donating substituent(methyl)has yielded attractive PCEs>12%[18].In addition to PCEs,in some cases ITIC-based devices can exhibit more supreme stability than their analogue fullerene-based OSCs[18].Despite of these accomplishments,so far fundamental know ledge of the influences of processing additives on photovoltaic behaviors with these emerging NF acceptor materials still lacks,which may impede the advances in improving the PCEof NF-OSCs.

    Here,we use low bandgap acceptor meta-alkyl-phenyl-3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:20,30-d0]-s-indaceno[1,2-b:5,6-b0]dithiophene(m-ITIC,Fig.1),inspired by side-chain isomerism engineering on the alkyl-phenyl substituents of ITICreported by Yang et al.[19],to blend with a medium band gap polymeric donor poly[2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b0]d ith iop h en e)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c0]dithiophene-4,8-dione)] (PBDB-T,Fig.1)[20,21]as the test bed to investigate the photovoltaic performance and relevant opto-electrical properties.poly[(9,9-bis(3 0-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fl uorene)-alt-2,7-(9,9-dioctyl fl uorene)]dibromide(PFN-Br,Fig.1)as interlayer.

    Fig.1.Chemical structures of utilized materials.

    Devices were fabricated with conventional structure of ITO/PEDOT:PSS/BHJ layer/PFN-Br/Al.The PEDOT:PSS hole extraction layer(?30 nm)was attained by spin-coating on pre-cleaned glass/ITO substrates and dried at 160?Cfor 10 min in air.BHJsolutions were prepared by solubilizing the PBDB-T:m-ITIC blends in chlorobenzene with a total concentration of 20 mg/m L with adding additives at selected concentrations.The photoactive layers were attained by spin-coating the BHJ solutions on PEDOT:PSS-coated ITO substrates at a spin-rate of 1500 rpm.The thickness of active layers was controlled at around 110 nm.After spin-coating,the BHJ fi lms were thermally annealed on a hot plate at 160?Cfor 10 min.Then the PFN-Br solution(in methanol)at a concentration of 0.5 mg/m Lwas deposited atop the active layers to form a PFN-Br cathode buffer layer with typical thicknessof?5 nm.At last,Al cathode(ca.80 nm)was thermally evaporated on the PFN-Br buffer layer at a pressure of?1.0?10?4Pa.The effective device area was 4 mm2de fined by shadow masks.Based on 4 representative processing additives,including 1,8-diiodoctane(DIO),1-chloronaphthalene(CN),diphenyl ether(DPE),and N-methyl-2-pyrrolidone(NMP),we focused on their impacts on the photovoltaic behaviors and recombination in PBDB-T:m-ITIC BHJ solar cells.Of interest,the devices show a high compatibility with the choice of additives,revealed by the overall enhancements on PCE(compared to cells without additives)with non-substantial differences in device parameters at each condition.Based on optimizing D-A ratio,additives concentration,and processing solvents,the achieve the best PCE exceeding 11%using DIO.The BHJ fi lms with the compared additives exhibit resembling surface morphologies with only slight differences in surface roughness.While visibly changed surface morphology with increased structural sizes and non-uniformity can be observed upon increasing the concentration of additives.These features to some degree reconcile the observed variations on device parameters.Based on irradiation-dependent analysis,all concerned NF-OSCs are identi fied with a dominant monomolecular recombination associated with insigni fi cant bi-molecular recombination or space charge effect.Light-dependent photovoltage measurements suggest that Shockley-Read-Hall(SRH)recombination plays a noble role in operation of studied solar cells,revealed by non-ideality factors>1,which points to the necessity to further reduce the influence of traps.Our results not only provide an effective optimization route to attain satisfactory device characteristics but also enrich fundamental insights into the impacts of additives and relevant processing parameters on the photovoltaic performance in OSCs with emerging NFelectron acceptors.

    Firstly,we examined the impact of D/A ratio of BHJblends on solar cell performance.Fig.2d show s adopted conventional device architecture.To enable efficient electron extraction,a thin layer of PFN-Br was utilized as the cathode buffer layer which was found to dramatically improve the FF(fi ll factor)and ultimate PCE.The improvements are probably due to the present Br?anions that can interfacially dope the electron acceptor,leading to improved charge extraction ef fi ciency at the cathode interface[22],Fig.2b shows representative J–V characteristics of solar cells with different D/A blend ratios(w/w)under standard AM 1.5G solar irradiation(100 m W/cm2).The corresponding EQE spectra are show n in Fig.2a.Table 1 summarizes detailed device parameters with different D/A ratios.All devices compared in Table 1 have an average thicknessof?120 nm determined by a pro fi lometer.Ascan be seen,the best D/A ratio was found at the 1:1 ratio with which the highest PCEof 9.78%was achieved with an open circuit voltage(Voc)of 0.92 V,a short current density(Jsc)of 15.70 m A/cm2,and a fi ll factor(FF)of 69.30%.Fig.2b compares external quantum efficient(EQE)spectra of solar cells at different D/A ratios.The change of the spectral shape of EQEat different D/A ratios can be understood from the thin fi lm absorption of neat donor and acceptor show n in Fig.2c.At a balanced ratio if 1:1(w/w),we attained a relatively high EQEin the spectral range of 620–760 nm.The order in EQE between devices roughly follow s that of Jscshowed in Fig.2b.The deviation between the Jscdetermined based on the integration of EQEand that from J–V curves is less than 5%,assuring the accuracy of extracted device parameters.

    Fig.2.(a)EQEspectra of according devices.(b)Current density versus voltage characteristics of PBDB-T:m-ITICsolar cells at different D/A blend ratios(w/w).(c)Thin fi lm absorption of neat PBDB-T and m-ITIC acceptor.(d)Device architecture of solar cells.

    Table 1 Device parameters of PBDB-T:m-ITICsolar cells with various D/Ablend ratios(w/w)under standard AM 1.5G solar irradiation(100 m W/cm 2).

    Morphology and phase separation of photoactive layers are important concernsfor achieving desirable devicesperformance in OSCs.Next,we examine how the D/A ratio in BHJblends affects resultant fi lm morphology(Fig.3).As seen from the surface topographic images captured by atomic force microscopy(AFM)in[13_TD DIFF]Figs.3a and d,it appears that unbalanced D/A ratios cause an increase in surface roughness with larger structures.At more balanced D/A ratios,the surface smoothness of BHJ fi lms increases(Rq=4.35 nm at 1:1 and 4.61 nm at 1:1.3,[13_TD DIFF]Figs.3b and c),compared to that(Rq=5.58 nm at 1.5:1 and 4.77 nm at 1:1.5)in[13_TD DIFF]Figs.3a and d.Of interest,the roughness determined by AFM can be correlated to the Jscin respective solar cells.The unbalanced ratios show n in[13_TD DIFF]Figs.3a and d tend to result in donor-or electron-rich surfaces that may cause accelerated recombination and thus the reduction in Jsc,consistent with the results in Table 1.However,w hen compared to the evident variation of surface morphology,the Voc,FFand PCEare barely changed(Table 1).This seems to hint that the energetics and diode quality in solar cells(that basically determine the Vocand FF)are likely unchanged at different D/A ratios.

    Now,we examine the effect of solvent additives on solar cell performance and BHJ fi lm morphology.For this purpose,we chose 4 representative solvent additives,namely DIO,CN,DPEand NMP.In the optimal conditions,all applied additives yield satisfactory photovoltaic performance that can be similarly ascribed to the identi fied mechanisms for improving the PCEin fullerene devices[23–26].For simplicity,these additives were compared based on the same D/A ratio(1:1).Detailed solar cell parameters with variations on solvent additives and their concentrations are summarized in Table 2.After adding 0.5%DIO,we achieved the highest PCE of 11.09%with Voc=0.915 V,Jsc=16.98 m A/cm2and FF=0.71.Follow ing the DIOdevice,the cell using NMPalso leads to a PCE reaching 10.8%.

    It is interesting to note that the additives seem to affect the solar cell operation in distinct manners,e.g.,changing the amounts of DIO or NMPwas found to mainly affect FFand Voc,while different DPEdoses result in different Jscin solar cells.Detailed mechanism for this observation is yet not fully understood at this stage.It may be related to the nanoscale phase-separated morphology,phase purity or intermolecular stacking in respective BHJ fi lms.In comparison to the other three additives,the behavior of device using CN is less sensitive to the additive concentration,possibly due to the influence of boiling points.We further examined surface morphology of BHJ fi lms based on the optimal concentrations for these additives(0.5%for DIO,NMP,and 1%for CN,DPE)with corresponding AFM images show n in [13_TD DIFF]Figs.3e–h.The main morphological differences lie in the size of structures and uniformity,which can be correlated to D/A phase segregations inside the BHJwith which charge separation and eventually the Jscare mediated.Despite of the changed solar cell parameters with different additives,resembling surface morphologies the compared BHJ fi lms are observed with slightly changed roughness.Consistently,the Rq values of BHJ fi lms can be correlated to the Jscin according devices.

    To shed light on exciton dissociation and charge collection processes in m-ITICbased devices,we performed light-dependent(Plight)photocurrent/photovoltage measurements.Fig.4a show s photocurrent density(Jph)as a function of effective voltage for solar cells measured under 100 m W/cm2irradiation with the voltage sweep range of?1.5–2 V.Here Jphis de fined as Jph=JL?JD,w here JLand JDare the photocurrent densities under illumination and in the dark condition,respectively.Veffis de fined as Veff=V0?Vbiaswith V0denoting for the voltage at which Jphiszero and Vbiasfor the applied external voltage bias.With this plotting method,the charge dissociation probability Pdisscan be estimated from Jphwith respect to the photocurrent in the saturation regime(Jsat)[27].Under short-circuit condition,Pdissis approximated according to the relation by Pdiss=Jph/Jsat[27].In our case,we chose Jsatat bias=?2 V and Pdissof 96%,94%,94%,and 93%was attained using DIO,CN,DPE,and NMP additives at respective optimal concentrations.This result indicates that the additive-processed solar cells can have a high exciton dissociation rate with efficient charge collection,possibly ascribed to favorable D/A phase segregations with interpenetrated carrier transport pathw ays.This is also in line with the observed large FFs with which strong recombination seems unlikely.From Fig.4b,the EQE spectrum of DIO devices is well distinguished from those of remaining solar cells,which may be correlated to the used lower amount of DIO additive and resultant differences in absorbance and photoconductivity.The highest PCEwith DIO is mainly ascribed to the gain of FFwith the excellent diode characteristics.Besides,the champion performance with DIO may also be linked to the highest Pdiss,which can originate from the optimal balance between phase segregation,domain purity,molecular ordering and carrier mobility,eventually leading to minimizing the recombination losses[28–31].

    Fig.3.AFM topographic images of PBDB-T:m-ITICBHJ fi lmsat various D/Ablend ratios(w/w)of(a)1.5:1,(b)1:1(c)1:1.3,and(d)1:1.5./Ablend ratio:1:1 added with various solvent additives at respective optimal conditions.(e)DIO,0.5%.(f)CN,1%.(g)DPE,1%,and(h)NMP,0.5%.

    Table 2 Device parameters of solar cells using various solvent additives and their concentrations under standard AM 1.5G solar irradiation(100 m W/cm2).

    To further clarify the impact of additives,we investigated Plightdependent Jscand Vocto gain insights into charge recombination propertieswithin the devices.Fig.4c show s Jscof OSCs with various additives as a function Plight.a slope equaling 1 indicates a dominant monomolecular recombination and the deviation from the power of unity can arise from a couple of reasons including bimolecular recombination,space-charge effect,or variations in mobility between the tw o carriers etc.[32].We note that in all cases,the power is less than unity,indicative of the presence of bimolecular recombination or even space-charges[33,34].While the slope in the DIO and NMPprocessed devices approaches more to the unique,which may implying the decrease on bimolecular recombination with these tw o additives.The characteristics of Jscversus Plightcan be affected by the balance between charge carrier transport in BHJ fi lms.

    In Plight-dependent photovoltage measurements,a slope equal to thermal voltage(kT/q with k being the Boltzmann constant and q being the elementary charge)or larger than kT/q in the BHJsolar cell can respectively indicate the dominant trap-free recombination or the influence of SRH recombination[30].Fig.4d show s characteristics of the determined Vocagainst Plightfor various solar cells.The slopes are 1.46 kT/q,1.42 kT/q,1.36 kT/q,and 1.46 kT/q for devices with DIO,CN,DPE,and NMPrespectively.To our surprise,the SRH recombination tends to be present in all these devices,indicative of the influences of traps even at the optimal conditions.It can be foreseen that further boosting of PCEs may be attained through fine materials puri fi cation or device engineering with mitigated SRH recombination.At this stage,we have no clear clues if these trapsare in the bulk of BHJ fi lmsor at the cathode interface with the presence of PFN-Br buffer layer.Further investigations may be required to elaborate.

    In summary,we investigate the impact of solvent additives on photovoltaic characteristics in non-fullerene PTDB-T:m-ITIC BHJ solar cells.Based judiciousoptimizations,we attain the best PCEof 11.1%with using DIO additives.The attractive performance can be mainly attributed to the complementary absorption with favorable fi lm morphology that enables to achieve high photo-harvesting and satisfactory diode characteristics(or FF).The concerned BHJ solar cells show a good compatibility with respect to the choice of additives and in the optimal conditions,high charge dissociation probabilities>93%can be achieved,possibly due to pertinent phase segregation and interpercolated transport pathw ays.The surface roughness of BHJ fi lms can be tuned by the D/A ratio.Of interest,balanced D/A ratios are found to be associated with enhanced surface smoothness,which somehow correlates to the increased Jscin solar cells.Based on comparing the effects of four representative additives,we found that the recombination in operational devices is dominated by the monomolecular type along with minor bi-molecular recombination and/or space charge effects.Of note,in these optimized solar cells,pronounced SRH recombination is still observable,indicating the role of trapsunder device operation.The presented study not only provides a systematic route to attain satisfactory photovoltaic performance but also point to the necessity to mitigate the influence of traps to further boost the PCE in organic non-fullerene solar cells.

    Acknow ledgm ents

    D.Zhou thanks the National Natural Science Foundation of China(No.21471022).Y.Zhang thanksthe National Natural Science Foundation of China(No.21674006).H.Zhou thanks the Chinese Academy of Science(100 Top Young Scientists Program,No.QYZDB-SSW-SLH033)and the National Key Research and Development Program of China(No.2017YFA0206600).

    Fig.4.(a)Photocurrent(J ph)as a function of effective bias(see de fi nitions in text)of solar cells using various solvent additives at their optimal concentrations.(b)Corresponding EQEspectra of BHJsolar cells.(c)Light-dependentJ sc and(d)V oc of additive-processed solar cells.

    97在线人人人人妻| 白带黄色成豆腐渣| 三级经典国产精品| freevideosex欧美| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 欧美潮喷喷水| 制服丝袜香蕉在线| 亚洲av福利一区| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说 | 色综合色国产| 亚洲色图av天堂| 一区二区三区精品91| 亚洲精品色激情综合| 女人十人毛片免费观看3o分钟| 免费黄色在线免费观看| av专区在线播放| 一级毛片黄色毛片免费观看视频| 99热国产这里只有精品6| 国产精品爽爽va在线观看网站| 禁无遮挡网站| 一级爰片在线观看| 亚洲第一区二区三区不卡| 最新中文字幕久久久久| 亚洲色图综合在线观看| 极品教师在线视频| 精品少妇黑人巨大在线播放| 国产精品无大码| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 在线观看人妻少妇| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 一级a做视频免费观看| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩一区二区三区在线 | 色播亚洲综合网| 欧美3d第一页| 亚洲无线观看免费| 哪个播放器可以免费观看大片| 舔av片在线| 亚洲国产色片| 亚洲在线观看片| 在线a可以看的网站| 日本午夜av视频| 我要看日韩黄色一级片| 97精品久久久久久久久久精品| 男人添女人高潮全过程视频| 午夜福利高清视频| 亚洲欧洲日产国产| 秋霞在线观看毛片| 亚洲无线观看免费| 哪个播放器可以免费观看大片| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| av专区在线播放| 在线看a的网站| 爱豆传媒免费全集在线观看| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 制服丝袜香蕉在线| 亚洲欧洲日产国产| 国产视频内射| 亚洲国产日韩一区二区| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 成人鲁丝片一二三区免费| 男人添女人高潮全过程视频| 天天一区二区日本电影三级| 国产69精品久久久久777片| 毛片一级片免费看久久久久| 亚洲最大成人手机在线| 久久午夜福利片| 亚洲av免费高清在线观看| 91在线精品国自产拍蜜月| 免费观看无遮挡的男女| 久久午夜福利片| 国语对白做爰xxxⅹ性视频网站| 精品久久久精品久久久| 成年人午夜在线观看视频| a级毛色黄片| 亚洲三级黄色毛片| 91久久精品电影网| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站 | 国产 一区 欧美 日韩| 欧美人与善性xxx| 蜜臀久久99精品久久宅男| 男女边吃奶边做爰视频| 国产视频内射| 成人免费观看视频高清| 黄片无遮挡物在线观看| 免费电影在线观看免费观看| 97超视频在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产色婷婷99| 国产午夜精品一二区理论片| 亚洲最大成人中文| 国产男女超爽视频在线观看| 身体一侧抽搐| 男女边摸边吃奶| 免费播放大片免费观看视频在线观看| 久久久久久久久大av| 精品久久久精品久久久| 午夜亚洲福利在线播放| 91久久精品国产一区二区成人| 18禁在线播放成人免费| 日日摸夜夜添夜夜爱| 91精品伊人久久大香线蕉| 国产黄色视频一区二区在线观看| 香蕉精品网在线| 国产久久久一区二区三区| 亚洲精品中文字幕在线视频 | 91久久精品电影网| 黄色日韩在线| 日韩,欧美,国产一区二区三区| 久热这里只有精品99| 嘟嘟电影网在线观看| 91久久精品国产一区二区成人| 国产欧美另类精品又又久久亚洲欧美| 一级a做视频免费观看| 精品久久久久久久久av| 亚洲精品久久午夜乱码| 国产av国产精品国产| 禁无遮挡网站| 干丝袜人妻中文字幕| videos熟女内射| 人人妻人人爽人人添夜夜欢视频 | 色网站视频免费| 22中文网久久字幕| 高清日韩中文字幕在线| av女优亚洲男人天堂| 真实男女啪啪啪动态图| 久久久久久久久久久免费av| 深夜a级毛片| 免费av毛片视频| 亚洲精品久久午夜乱码| 国产美女午夜福利| 国产精品久久久久久久久免| 国产色爽女视频免费观看| 在线观看人妻少妇| 国产成人一区二区在线| 成人亚洲欧美一区二区av| 亚洲欧美精品自产自拍| 亚洲av欧美aⅴ国产| 精品人妻视频免费看| 七月丁香在线播放| av一本久久久久| av国产久精品久网站免费入址| 99热这里只有是精品在线观看| 另类亚洲欧美激情| 91aial.com中文字幕在线观看| 色哟哟·www| 一二三四中文在线观看免费高清| 免费观看的影片在线观看| 国产黄色视频一区二区在线观看| 高清毛片免费看| 久久久久国产网址| 天天一区二区日本电影三级| 永久免费av网站大全| 五月伊人婷婷丁香| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 神马国产精品三级电影在线观看| 久久久午夜欧美精品| 精品熟女少妇av免费看| 亚洲精品久久久久久婷婷小说| 日产精品乱码卡一卡2卡三| av.在线天堂| 亚洲av福利一区| 成人无遮挡网站| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 春色校园在线视频观看| 91狼人影院| 国产极品天堂在线| 噜噜噜噜噜久久久久久91| 国产黄色视频一区二区在线观看| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久| av又黄又爽大尺度在线免费看| 插阴视频在线观看视频| 波多野结衣巨乳人妻| 国产精品一区二区性色av| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡 | 亚洲精品中文字幕在线视频 | 欧美xxⅹ黑人| 日韩在线高清观看一区二区三区| 人妻一区二区av| 久久精品国产亚洲av涩爱| 午夜视频国产福利| www.av在线官网国产| 国产乱人视频| 成人漫画全彩无遮挡| 在线免费十八禁| 国产亚洲av片在线观看秒播厂| 高清视频免费观看一区二区| 亚洲一区二区三区欧美精品 | 亚洲性久久影院| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 欧美3d第一页| 可以在线观看毛片的网站| 久久久欧美国产精品| 白带黄色成豆腐渣| 亚洲激情五月婷婷啪啪| 中文欧美无线码| www.色视频.com| 搡老乐熟女国产| 男插女下体视频免费在线播放| 亚洲天堂国产精品一区在线| 99re6热这里在线精品视频| 婷婷色麻豆天堂久久| 国产精品人妻久久久影院| 美女xxoo啪啪120秒动态图| 国语对白做爰xxxⅹ性视频网站| 在现免费观看毛片| 中文字幕亚洲精品专区| 少妇高潮的动态图| 一区二区av电影网| 91精品国产九色| 欧美一级a爱片免费观看看| 看免费成人av毛片| 欧美亚洲 丝袜 人妻 在线| 亚洲美女视频黄频| 亚洲国产精品成人久久小说| 国产淫语在线视频| 精品久久久久久电影网| 久久久色成人| 熟女av电影| 日产精品乱码卡一卡2卡三| 各种免费的搞黄视频| 天堂俺去俺来也www色官网| 国产探花极品一区二区| 97超视频在线观看视频| 日韩一区二区三区影片| 久久亚洲国产成人精品v| av免费在线看不卡| 国产精品99久久99久久久不卡 | 日韩一区二区视频免费看| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 99热6这里只有精品| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 国产高清国产精品国产三级 | 亚洲真实伦在线观看| 国产成人91sexporn| 日韩三级伦理在线观看| 大片电影免费在线观看免费| 久久精品综合一区二区三区| 在线观看国产h片| 亚洲高清免费不卡视频| 国产老妇伦熟女老妇高清| 亚洲av不卡在线观看| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 狂野欧美激情性bbbbbb| 99热6这里只有精品| 美女高潮的动态| 亚洲av不卡在线观看| 日本一本二区三区精品| 亚洲av中文字字幕乱码综合| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 亚洲av男天堂| 国产精品精品国产色婷婷| 久久久久网色| 免费黄网站久久成人精品| 一级毛片aaaaaa免费看小| 久久鲁丝午夜福利片| 男女边摸边吃奶| 日日撸夜夜添| 青春草亚洲视频在线观看| 18禁在线无遮挡免费观看视频| 国产精品99久久99久久久不卡 | 哪个播放器可以免费观看大片| 久久久国产一区二区| 欧美成人一区二区免费高清观看| 亚洲最大成人手机在线| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 亚洲人成网站在线观看播放| 亚洲电影在线观看av| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 欧美xxxx性猛交bbbb| 老师上课跳d突然被开到最大视频| 中文字幕久久专区| 欧美区成人在线视频| 2022亚洲国产成人精品| 国产欧美另类精品又又久久亚洲欧美| 免费黄色在线免费观看| 18+在线观看网站| 精华霜和精华液先用哪个| 丝袜美腿在线中文| 国产v大片淫在线免费观看| 日韩欧美一区视频在线观看 | 老师上课跳d突然被开到最大视频| 亚洲精品久久久久久婷婷小说| 欧美zozozo另类| av在线老鸭窝| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 成人一区二区视频在线观看| 欧美日韩精品成人综合77777| 搡老乐熟女国产| 男男h啪啪无遮挡| 国产91av在线免费观看| 亚洲国产精品国产精品| 人人妻人人爽人人添夜夜欢视频 | 天天躁日日操中文字幕| 免费在线观看成人毛片| 色综合色国产| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 成人亚洲欧美一区二区av| 有码 亚洲区| 美女高潮的动态| 最近中文字幕2019免费版| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 噜噜噜噜噜久久久久久91| 欧美日韩亚洲高清精品| 免费观看在线日韩| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 18禁在线无遮挡免费观看视频| 亚洲三级黄色毛片| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 搡女人真爽免费视频火全软件| 久久久久网色| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 欧美+日韩+精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在线一区二区三区精| 交换朋友夫妻互换小说| 国产精品久久久久久av不卡| 99久久精品一区二区三区| 97人妻精品一区二区三区麻豆| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 欧美性感艳星| 99热全是精品| 成人一区二区视频在线观看| 亚洲av欧美aⅴ国产| 欧美一区二区亚洲| av在线app专区| 中文天堂在线官网| 亚洲高清免费不卡视频| 午夜视频国产福利| 激情 狠狠 欧美| av黄色大香蕉| 欧美日韩视频精品一区| 五月天丁香电影| 亚洲欧美日韩东京热| 18禁裸乳无遮挡动漫免费视频 | 国产精品不卡视频一区二区| www.色视频.com| 午夜激情福利司机影院| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 欧美高清成人免费视频www| 免费av毛片视频| 又爽又黄无遮挡网站| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 国产视频内射| 成年女人在线观看亚洲视频 | 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 伦精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 欧美三级亚洲精品| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 成人国产av品久久久| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 国产大屁股一区二区在线视频| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| av在线亚洲专区| 国产欧美另类精品又又久久亚洲欧美| 成年女人在线观看亚洲视频 | 女人被狂操c到高潮| 亚洲欧美一区二区三区黑人 | 熟女人妻精品中文字幕| 大陆偷拍与自拍| 在线观看国产h片| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 男人狂女人下面高潮的视频| 午夜日本视频在线| 午夜爱爱视频在线播放| 高清午夜精品一区二区三区| 国精品久久久久久国模美| 黄色欧美视频在线观看| 久久99热这里只有精品18| 女人被狂操c到高潮| 久久久亚洲精品成人影院| 久久久久性生活片| 你懂的网址亚洲精品在线观看| 亚洲av一区综合| 老女人水多毛片| 亚洲成人精品中文字幕电影| 成年人午夜在线观看视频| 久久久精品免费免费高清| 国产精品人妻久久久影院| 久久久色成人| 男人添女人高潮全过程视频| 99精国产麻豆久久婷婷| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品精品国产色婷婷| 下体分泌物呈黄色| 联通29元200g的流量卡| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 丝袜脚勾引网站| 夜夜爽夜夜爽视频| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 久久精品久久久久久久性| 日本免费在线观看一区| 三级经典国产精品| 亚洲怡红院男人天堂| 韩国av在线不卡| av播播在线观看一区| 少妇人妻 视频| 国产乱来视频区| 亚洲电影在线观看av| 在线免费十八禁| 高清午夜精品一区二区三区| 简卡轻食公司| 亚洲av二区三区四区| 黑人高潮一二区| 国产成人a区在线观看| 国产精品秋霞免费鲁丝片| 禁无遮挡网站| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 搞女人的毛片| 亚洲国产精品成人综合色| 国产亚洲av片在线观看秒播厂| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 青青草视频在线视频观看| 日日啪夜夜爽| 亚洲精品自拍成人| 国内精品宾馆在线| 国产成人一区二区在线| 成人国产麻豆网| 18禁动态无遮挡网站| 精品人妻视频免费看| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 国产精品久久久久久久电影| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 一本一本综合久久| 91久久精品电影网| 一本一本综合久久| 国产精品成人在线| 一级黄片播放器| 国产高潮美女av| 成年人午夜在线观看视频| 高清午夜精品一区二区三区| 少妇人妻精品综合一区二区| 中文字幕av成人在线电影| 国产淫片久久久久久久久| 免费观看在线日韩| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 五月天丁香电影| 成人亚洲欧美一区二区av| 王馨瑶露胸无遮挡在线观看| 中文天堂在线官网| 亚洲成人久久爱视频| 午夜福利网站1000一区二区三区| 亚洲精品日本国产第一区| 亚洲自拍偷在线| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频 | 亚洲av成人精品一二三区| 久久99蜜桃精品久久| 国模一区二区三区四区视频| 99热这里只有精品一区| 国产黄色免费在线视频| 好男人视频免费观看在线| 联通29元200g的流量卡| 国产爱豆传媒在线观看| 国产精品三级大全| 蜜桃亚洲精品一区二区三区| 女人久久www免费人成看片| 国产成人91sexporn| 久久久久精品性色| 精品视频人人做人人爽| 99热这里只有是精品50| 人妻制服诱惑在线中文字幕| 亚洲成人中文字幕在线播放| 国产免费一区二区三区四区乱码| 最近最新中文字幕大全电影3| 国产永久视频网站| 性色avwww在线观看| 久久亚洲国产成人精品v| 亚州av有码| 国产69精品久久久久777片| 久久女婷五月综合色啪小说 | 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 亚洲精品国产av蜜桃| 91久久精品电影网| 黄色怎么调成土黄色| 国产综合懂色| 亚洲精品视频女| 国产精品久久久久久av不卡| 联通29元200g的流量卡| 日韩伦理黄色片| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花 | 久久精品综合一区二区三区| 国产免费又黄又爽又色| 久久久成人免费电影| 免费看不卡的av| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 欧美性感艳星| 国产精品国产三级国产专区5o| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区| 91精品伊人久久大香线蕉| 乱码一卡2卡4卡精品| 2022亚洲国产成人精品| 亚洲综合精品二区| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 久久6这里有精品| 午夜免费观看性视频| av网站免费在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 老司机影院毛片| 视频中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产av在线观看| 色视频www国产| 亚洲在久久综合| 菩萨蛮人人尽说江南好唐韦庄| 禁无遮挡网站| 九九爱精品视频在线观看| 日本与韩国留学比较| 亚洲va在线va天堂va国产| 91狼人影院| 97在线视频观看| 午夜视频国产福利| 激情 狠狠 欧美| 中文资源天堂在线| 亚洲高清免费不卡视频| 人人妻人人爽人人添夜夜欢视频 | 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 美女高潮的动态| 国产伦精品一区二区三区视频9| 久久精品国产a三级三级三级| 七月丁香在线播放| 日韩国内少妇激情av| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 一个人观看的视频www高清免费观看| 欧美xxⅹ黑人| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 亚洲最大成人手机在线| 插逼视频在线观看| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 日日啪夜夜爽| 日本色播在线视频| 韩国av在线不卡| 黄色日韩在线| 一级毛片电影观看| 亚洲精品国产av蜜桃| 三级经典国产精品| 校园人妻丝袜中文字幕| 80岁老熟妇乱子伦牲交| 综合色丁香网| h日本视频在线播放| 国产高清有码在线观看视频| 亚洲三级黄色毛片| 成人国产av品久久久|