• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic,optical,and charge transport properties of A-p-A electron acceptors for organic solar cells:Impact of anti-aromatic p structures

    2019-02-15 02:28:22YanZengRuihongDuanYuanGuoGuangchaoHanQingxuLiYuanpingYi
    Chinese Chemical Letters 2019年1期

    Yan Zeng,Ruihong Duan,Yuan Guo,Guangchao Han,Qingxu Li*,Yuanping Yi,*

    a School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    b CASKey Laboratory of Organic Solids,CASResearch/Education Center for Excellence in Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    Key words:A-p-A electron acceptor Anti-aromatic structure Strong absorption Reorganization energy Organic solar cells

    ABSTRACT Organic solar cells based on acceptor-p-acceptor(A-p-A)electron acceptors have attracted intensive attention due to their increasing and record power conversion ef fi ciencies.To date,almost all of the reported A-p-A electron acceptors are based on aromatic p structures.Here,we have investigated the impact of anti-aromatization of the p-bridges on the optoelectronic properties of A-p-A electron acceptors by(time-dependent)density functional theory.Our calculationsshow that besidesthe frontier molecular orbitals corresponding to the aromatic p-bridge based acceptors(“aromatic”acceptors),additional and unique occupied and unoccupied frontier orbitals are found for the acceptors based on the anti-aromatic p-bridges(“anti-aromatic”acceptors).Moreover,by tuning isomeric structures of the p-bridges(e.g.,fusion orientations or linking positions of thiophene moieties),the optical excitation energies for the transition between the additional occupied and unoccupied levels turn to be close to or substantially lower with respect to those for the transition between the “aromatic”frontier orbitals.The optical absorption of the “anti-aromatic”acceptorsisthus either stronger or broader than the “aromatic”acceptors.Finally,the reorganization energies for electron transport are tunable and dependent on the p-bridge structures.These results indicate a great potential of “anti-aromatic”electron acceptors in organic photovoltaics.

    Organic solar cells(OSCs)are regarded as a potential photovoltaic technology to convert sunlight into electricity due to their advantages of fl exibility,light weight,large-area capability,and easy fabrication[1–6].Typically,the active layer of an organic solar cell is a bulk-or bilayer-heterojunction consisting of tw o components,an electron-donating and an electron-accepting material[7–12].Ow ing to the design of new active materials and optimization of processing conditions,great advances have achieved in the power conversion ef fi ciencies(PCEs)of OSCs[13–29].Over the past twenty years,fullerene derivatives(e.g.,PCBM and ICBA)were dominantly used as electron acceptors due to their superior electron af fi nity and high electron mobility[30–34].However,these acceptor materials have some intrinsic limitations,including weak optical absorption,untunable energy levels,and high costs[35,36].

    In recent years,non-fullerene small-molecule acceptors have attracted increasing attention due to their strong and broad absorption and highly tunable electronic energy levels[35,37–39].A large number of electron acceptors were developed on the base of fused or non-fused aromatics.Most strikingly,the indacenodithiophene(IDT)-based A-p-A electron acceptors,such as ITIC and IEIC[40,41],have achieved remarkable breakthrough in organic photovoltaics(OPVs).To date,the most efficient binary non-fullerene OPV devices using IEICand ITICas electron acceptor have gained PCEs up to 10%and 13.1%[29,42],respectively.The PCEs can be further improved by fabricating ternary or tandem OPV devices[42–45].

    Relative to aromatic systems,anti-aromatics are characteristic of smaller energy gap and deeper electron af fi nity[46–53],which is bene fi cial for broadening optical absorption and increasing electron-accepting ability.For instance,quinoidal indeno fl uorenes(IFs)based on the s-indacene anti-aromatic framework exhibit electron af fi nity higher than PCBM[54–56].What is more,IFs possess broad absorption with the absorption edge extending to the near infrared[57–60].In addition,good and ambipolar charge transport properties have been found in the IFs based fi eld-effect transistors[61–63].Despite of these desirable properties,very few work was reported on the OPVs based on “anti-aromatic”electron acceptors[64–66].

    In this contribution,we have designed a series of A-p-A smallmolecule electron acceptors,which consist of anti-aromatic sindacene based p-bridges and the electron-withdraw ing groups of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile(INCN).In order to assess the potential of the “anti-aromatic”acceptors in OPVs,we have calculated their electronic,optical,and charge transport properties in comparison with the corresponding“aromatic” electron acceptors by (time-dependent)density functional theory(the computational details see Supporting information).

    The chemical structures of the anti-aromatic and aromatic fused p-units are show n in Scheme 1.All the aromatic polycyclic p-units(1-4 and 40)contain a core of 1,5-dihydro-s-indacene(in blue).When the core is fused with tw o thiophene or benzene moieties,we get units 1(indacenodithiophene,IDT)or 2(indacenodibenzene,IDB).Further fusion of tw o thiophenes onto units 1 or 2 w ill return units 3(indacenodithienothiophene,IDTT)or 4/40(indacenodibenzothiophene).Isomers 4 and 40are different in sulfur orientations of the fused thiophenes.Units 1(IDT)and 3(IDTT)have been reported as the backbone components of IEICand ITIC,respectively.Correspondingly,the anti-aromatic polycyclic p-units(1a-4a and 40a)are designed by replacing the aromatic 1,5-dihydro-s-indacene core with the anti-aromatic s-indacene(in red),as show n in Scheme 1.The bond lengths of the optimized geometries for the p-units are show n in Fig.S1(Supporting information).The bond length alternations are signi fi cant in the sindacene core.Overall,the C??Cbonds of benzene are longer in the anti-aromatic indacene than in the aromatic indacene;in contrast,the C??C bonds of cyclopentene are much shorter in the antiaromatic indacene than the aromatic indacene(Fig.S2 in Supporting information).

    The calculated frontier orbital energy diagram and pictorial representation of these p-units are displayed in Fig.1.The HOMOs(centrosymmetric,g)and LUMOs(anti-centrosymmetric,u)of all the aromatic p-units are delocalized over the w hole backbones while the LUMO of 40show s relatively weak distribution on the lateral atoms of the fused thiophenes.When replacing thiophene with benzene fused onto the aromatic indencene core,the HOMO level w ill descend appreciably by 0.31eV but the LUMO level w ill ascend slightly by 0.11eV,leading to an increment of 0.42eVin the LUMO-HOMOenergy gap(Egap)from 1 to 2.Similar energy changes are found from 3 to 4,but more apparent from 3 to 40;particularly,the increase of the LUMOenergy from 4 to 40even reaches 0.24eV due to the relatively weakened delocalization.As expected,extension of the p conjugation from 1(2)to 3(4/40)results in lower LUMO and higher HOMO levels and smaller gaps.

    Interestingly,the anti-aromatic p-units 1a-4a and 40a have tw o pairs of important frontier molecular orbitals.One pair of the frontier orbitals correspond to the HOMO and LUMO of the aromatic units 1-4 and 40,which we name as “aromatic”orbitals.Compared with 1-4 and 40,the “aromatic”unoccupied orbital energiesare significantly up-shifted while the“aromatic”occupied orbital energies are hardly changed for 1a-4a and 40a.The other pair of frontier orbitals of 1a-4a and 40a originate from the antiaromatic s-indacene,which are named as“anti-aromatic”orbitals.These “anti-aromatic”orbitals display a quinoidal p-conjugation character dictated by the signi fi cant bond length alternation in the s-indacene core.The “anti-aromatic”unoccupied orbital levels(centrosymmetric,g)are lower than the “aromatic”unoccupied orbitals by ca.1.3–2.0eV.As a result,the LUMO energies are substantially(at least 1.2eV)decreased for the anti-aromatic units relative to the aromatic units,indicating that introducing antiaromatic structurescan enhance electron-accepting abilitiesof the p-units.In contrast,the energy differences are much smaller between the “anti-aromatic”and “aromatic”occupied orbitals,ca.0.6–0.7eV for 2a,4a and 40a and even only 0.07eV and 0.16 eV for 1a and 3a,respectively.Both the occupied and unoccupied“antiaromatic”orbitals are mainly localized on the s-indacene core for 1a and 3a,but more extended for 2a,4a and 40a.Also,the electron distributions of the “anti-aromatic”orbitals can be modulated by the fused thiophene orientations;higher electron densities are found on the peripheral atoms of the fused thiophenes for 40a relative to 4a.

    The UV–vis absorption spectra of all the p-units are show n in Fig.S3(Supporting information),and the electronic transition properties of the lowest excited singlet states(S1)are summarized in Table S1(Supporting information).For the aromatic p-units,only a single absorption peak appears in the UV region,corresponding to the S1excitation dominated by the HOMO!LUMO transition.Consistent with the ordering of Egap,the w avelength at the maximum absorption is red-shifted as follow s 2<1 and 40<4<3.For the anti-aromatic p-units,the absorption from the transition between the “aromatic” occupied and unoccupied frontier orbitals is significantly blue-shifted and much stronger due to larger energy gap with respect to the aromatic p-units.Besides,an additional weaker absorption appears in the visible region ow ing to the lower-energy transition between the“anti-aromatic”occupied and unoccupied frontier orbitals.It should be noticed that the S1excitation for the anti-aromatic units is dominated by the transition between the “aromatic”occupied orbital and “anti-aromatic”unoccupied orbital and is symmetry forbidden.To summarize,both isomerization and antiaromatization have important impact on the electronic and optical properties of the p-units.

    The chemical structures of all the A-p-Aacceptor molecules are show n in Scheme 2.For the acceptors containing the short fusedring units(A1/A1a,A2/A2a,and A20/A20a),the p-units are extended by linking tw o additional thiophene moieties.The structure difference between A2 and A20or A2a and A20a is the linking positions on the fused-ring units.Most of those molecules show a completely fl at backbone(Figs.S4 and S5 in Supporting information).In the case of A2/A20and A2a/A20a,the fused-ring core and the thiophene moieties exhibit a tw isted angle of22.4?/26.6?for the aromatic molecules and[79_TD DIFF]22.7?/21.3?for the antiaromatic molecules.

    Scheme 1.Chemical structures of the aromatic fused p-units(top)and corresponding anti-aromatic fused p-units(bottom).

    Fig.1.Energy diagram and pictorial representation for the frontier orbitals of the aromatic 1-4/40 and anti-aromatic 1a-4a/40a p-units.

    Fig.2 and Fig.S6(Supporting information)show the frontier molecular orbitals and corresponding energies for the acceptors based on the short and long fused units,respectively.As seen from Fig.S7(Supporting information),the HOMO/LUMO energies of INCN (?9.00eV/?1.65 eV)are substantially lower than the“aromatic”frontier levels of the p-units,especially for the HOMO.As a result,the HOMO(g-symmetry)of the “aromatic”acceptors is determined by the p-bridges.Consistent with the trends in the p-units,the HOMO levels of the acceptors are successively decreased as follow s:A1[83_TD DIFF]>A2>A20and A3>A4>A40(Fig.3).In contrast,the LUMO(u-symmetry)and LUMO +1(g-symmetry)of the “aromatic”acceptors are dominated by the tw o terminal INCN units.Compared with A1(IEIC)or A3(ITIC),the LUMO electron densities are more localized on the INCN groups for A2/A20or A4/A40,in particular for A20and A40.Because of the reduced electronic delocalization,the LUMOlevel isgradually up-shifted by nearly 0.3 eV(A1

    Scheme 2.Chemical structures of the “aromatic”and “anti-aromatic”acceptors.

    Fig.2.Frontier orbital energies and pictorial representation for the A-p-A acceptors based on(a)the aromatic(A1,A2 and A20)and(b)the anti-aromatic s-indacene cores(A1a,A2a,and A20a).

    Compared to the “aromatic”acceptors,the “anti-aromatic”acceptors have one more anti-centrosymmetric occupied frontier orbital and one more centrosymmetric unoccupied frontier orbital(Fig.2 and Fig.S6),which are brought about by the antiaromaticity of the s-indacene core.The “aromatic”occupied frontier orbitals of the “anti-aromatic”acceptors are similar to the HOMOs of the “aromatic”acceptors;except A4a,the orbital energies are slightly higher(Fig.3).The “anti-aromatic”occupied frontier orbitals are localized on the fused-ring cores for A1a/A2a and A3a/A4a while extended to the INCN groups for A20a and A40a due to effective couplings of the fused-ring units with the rest moieties caused by the large electron densities on the linking atoms;the energy change trend appears to be opposite to the“aromatic”occupied frontier orbitals.Consequently,the HOMO is“aromatic”for A1a and A3a but“anti-aromatic”for A2a/A20a and A4a/A40a.The anti-centrosymmetric unoccupied frontier orbitals are similar to those of the “aromatic”acceptors while their energies are a bit lower.In the case of the centrosymmetric unoccupied frontier orbitals,the “anti-aromatic”orbitals are concentrated on the s-indacene core and isolated from the INCN-dominant ones for A1a and A3a;on the contrary,the“anti-aromatic”and INCN-dominant components are hybridized for A2a/A20a and A4a/A40a.Especially for A20a and A40a,large energy splitting(>0.6eV)is found between these tw o centrosymmetric unoccupied orbitals due to strong electronic interaction;hence the LUMO becomes to be of g-symmetry.The remarkable changes in the frontier molecular levels are expected to have profound influence on the optical absorption properties of the electron acceptors.

    Fig.3.Frontier orbital energies of the A-p-A acceptors based on(a)the aromatic and(b)the anti-aromatic s-indacene cores(red:u-symmetry,black:g-symmetry).

    The UV–vis absorption spectra of all the A-p-A acceptors are show n in Fig.4 and corresponding excitation properties are summarized in Table 1.All the acceptorshave similar and moderate absorption in the UV range of 250–350nm,which is composed of many high-energy excitations.Here we focus on the absorption spectra at the long wavelengths above 350nm.As seen from Fig.4a,the “aromatic”acceptors A1,A2,and A20exhibit a single absorption peak,which is attributed to the S1excitation.From A1 to A2 and A20,the contribution to the S1excitation is decreased for the HOMO!LUMO transition while increased for the other higher-energy transitions(Table 1);along with the enlarged energy gap(Fig.3),the absorption peak is then obviously blueshifted with decreased intensity.Similar trend in the absorption is found from A3 to A4 and A40.We noticed that the absorption of A40arises from both S1and S3excitations,which have close energies and consist of the same main transitions with different percentages.

    Fig.4.UV–vis absorption spectra and oscillator strengths of the excited states for the A-p-A acceptors.

    Because of additional“anti-aromatic”frontier molecular levels,more excitations can contribute to the absorption spectra of the“anti-aromatic”acceptors.For A1a,A2a,A3a,and A4a,the optically allowed transitionshave similar energy gaps between the occupied and unoccupied orbitals(Fig.3),so the corresponding excitation energies show small variation and are located near the S1excitation of the “aromatic”acceptors.Hence the pro files of the absorption spectra for these “anti-aromatic”acceptors are similar to the related “aromatic”acceptors.However,ow ing to the additional contributions of the excitations from the“antiaromatic”levels,the absorption intensities are enhanced.Interestingly,for A20a and A40a,the energy gap is much smaller for the“anti-aromatic”HOMO!LUMOtransition with respect to the other optically allowed transitions,arising from strong electronic coupling between the fused-ring units and the rest moieties for the “anti-aromatic”frontier orbitals.Consequently,besides the absorption at the w avelengths similar to A20and A40,an extra absorption appears at much longer w avelengths;thus A20a and A40a are hopeful to be a panchromatic sunlight absorber.

    For organic solar cells,high charge carrier mobility w ill facilitate charge separation to improve short-circuit current,fi ll factor,and hence power conversion ef fi ciency.Reorganization energy is one of the key parameters to determine charge transport performance in organic semiconductors;small reorganization energy isbene fi cial for achieving high mobility.Here,we are interested in the reorganization energiesfor electron transport in the A-p-Aacceptors.The calculated results are show n in Fig.5.The reorganization energies of A1(IEIC)and A3(ITIC)are ca.0.14eV and 0.16 eV;these values are similar to those of fullerenes and tw ice smaller than those of perylenediimides[67].When the fused thiophene on s-indacene isreplaced by benzene,the reorganization energies are decreased for A2/A20and A4/A40.Moreover,the decrease dependson the linking positions or fusion orientations of thiophene onto indacenodibenzene,and the A20and A40acceptors exhibit the smallest reorganization energies of<0.1eV.As seen in Fig.S8(Supporting information),the reorganization energy decrease can be attributed to reduced variation of the bond lengths in the w hole backbone upon charge.

    Compared withA1 and A3,the reorganization energies for the“anti-aromatic”counterparts(A1a and A3a)are about twice increased,reaching ca.0.3eV.This can be due to big changes of the bond lengths in the anti-aromatic s-indacene core(Fig.S9 in Supporting information)since the electron accepting LUMO/degenerate LUMO +1 is completely localized on the s-indacenecore for A1a/A3a(Fig.2 and Fig.S6).Relatively,the(undegenerate)LUMO is more extended for A20a and A40a,so the reorganization energies are slightly decreased.In the case of A2a and A4a,the LUMO or degenerate LUMO +1 is delocalized over the electronwithdraw ing INCN groups,leading to similar reorganization energies as the “aromatic”acceptors A2 and A4.

    Table 1 Excitation wavelengths(l,nm),oscillator strengths(f),and main electronic transitions and corresponding weights for the excited states of the A-p-A acceptors.

    Fig.5.Reorganization energies of electron transport for the A-p-A acceptors.

    To summarize,we have theoretically studied the impact of p-bridge structures on optoelectronic properties of the A-p-A electron acceptors.In the case of the “aromatic”acceptors,incorporation of benzene instead of thiophene in the fused p-units w ill result in much deeper HOMO(dominated by the p-bridges)and slightly higher unoccupied frontier levels(dominated by the tw o terminal electron-withdraw ing groups);thus the long-w avelength absorption,corresponding to the HOMO!LUMO transition,is significantly blue-shifted.At the same time,the reorganization energy for electron transport is decreased,which w ould be bene fi cial for improving the electron mobility.The calculations show that these optoelectronic properties are also very dependent on isomerization of the p-bridges,such asmodification of linking or fusion modes of thiophene moieties.We underline that,antiaromatization of the p-bridges w ill lead to additional and unique frontier levels for the“anti-aromatic”acceptorscompared with the“aromatic”acceptors(Fig.3).The multiplication of unoccupied frontier levels w ould be bene fi cial for achieving ultrafast “hot”charge separation[68,69].Moreover,the optical excitation energy for the transition between these additional“anti-aromatic”levelsis in the proximity of or much smaller than that for the transition between the“aromatic”frontier levelsfor the different isomers.The optical absorption of the A-p-A acceptors is hence enhanced or broadened by anti-aromatization of the p-bridges.Our theoretical resultspoint out theimportance of p-bridgeengineering,especially isomerization and anti-aromatization on tuning the electronic,optical,and electron transport properties of A-p-A electron acceptors.This w ould be very useful for the development of newelectron acceptors for organic solar cells.

    Acknow ledgments

    This work was fi nancially supported by the National Natural Science Foundation of China(No.51773208),the Ministry of Science and Technology of China(No.2014CB643506),and the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB12020200).

    Appendix A.Supp lementary data

    Supplementary materialrelated to thisarticlecan befound,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.05.029.

    av网站免费在线观看视频| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频| 母亲3免费完整高清在线观看| 如日韩欧美国产精品一区二区三区| 桃花免费在线播放| 亚洲欧美日韩高清在线视频 | 午夜精品国产一区二区电影| 悠悠久久av| av天堂在线播放| 欧美老熟妇乱子伦牲交| 麻豆av在线久日| 在线观看免费日韩欧美大片| 亚洲综合色网址| 国产精品一区二区在线不卡| 欧美精品亚洲一区二区| 搡老岳熟女国产| 黄色视频不卡| 男女下面插进去视频免费观看| 啪啪无遮挡十八禁网站| 黄片大片在线免费观看| 中文字幕人妻熟女乱码| 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 亚洲精品久久午夜乱码| 亚洲中文字幕日韩| 少妇被粗大的猛进出69影院| 深夜精品福利| 亚洲黑人精品在线| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 国产亚洲精品第一综合不卡| 在线天堂中文资源库| a级毛片在线看网站| 亚洲国产av新网站| 黄色毛片三级朝国网站| 亚洲精品中文字幕在线视频| 色在线成人网| cao死你这个sao货| 大码成人一级视频| 窝窝影院91人妻| 欧美日韩精品网址| 精品视频人人做人人爽| 国产福利在线免费观看视频| 亚洲精品乱久久久久久| 香蕉久久夜色| 国产男靠女视频免费网站| 日韩欧美三级三区| 一级片免费观看大全| 热99re8久久精品国产| 中文字幕最新亚洲高清| 黄色怎么调成土黄色| 精品国内亚洲2022精品成人 | 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 欧美乱码精品一区二区三区| 男人舔女人的私密视频| 十八禁网站免费在线| 亚洲av日韩在线播放| bbb黄色大片| 欧美精品av麻豆av| 曰老女人黄片| 亚洲第一av免费看| 欧美日韩亚洲综合一区二区三区_| 亚洲五月婷婷丁香| 高清在线国产一区| 高清欧美精品videossex| 欧美 日韩 精品 国产| 另类亚洲欧美激情| 日韩人妻精品一区2区三区| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| 免费在线观看完整版高清| 夜夜爽天天搞| 国产成人啪精品午夜网站| 久久精品亚洲精品国产色婷小说| videos熟女内射| 大香蕉久久网| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 99国产极品粉嫩在线观看| 国产一区二区三区综合在线观看| 午夜精品久久久久久毛片777| 免费女性裸体啪啪无遮挡网站| 视频在线观看一区二区三区| 久久国产精品人妻蜜桃| 亚洲三区欧美一区| 女性生殖器流出的白浆| 99久久国产精品久久久| 免费黄频网站在线观看国产| 亚洲精品一二三| 国产精品成人在线| 黄色a级毛片大全视频| 午夜两性在线视频| 91精品三级在线观看| 久久精品91无色码中文字幕| 欧美精品av麻豆av| 久热爱精品视频在线9| 亚洲第一av免费看| 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 91字幕亚洲| 日韩三级视频一区二区三区| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| 超碰97精品在线观看| 他把我摸到了高潮在线观看 | 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 97在线人人人人妻| 久久国产精品大桥未久av| 亚洲天堂av无毛| 最新美女视频免费是黄的| 丰满少妇做爰视频| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 亚洲精品自拍成人| 青青草视频在线视频观看| 亚洲专区字幕在线| av线在线观看网站| 久久精品人人爽人人爽视色| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 色在线成人网| 大型av网站在线播放| 一本—道久久a久久精品蜜桃钙片| 亚洲精品av麻豆狂野| 婷婷成人精品国产| 露出奶头的视频| 国产欧美日韩综合在线一区二区| 黄色毛片三级朝国网站| 午夜福利视频在线观看免费| 露出奶头的视频| 热99re8久久精品国产| 在线观看免费高清a一片| 老司机靠b影院| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 亚洲色图综合在线观看| 精品亚洲成国产av| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| av电影中文网址| 丝袜喷水一区| 交换朋友夫妻互换小说| 亚洲情色 制服丝袜| 亚洲全国av大片| 欧美激情高清一区二区三区| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| av不卡在线播放| tube8黄色片| 男女免费视频国产| 久久午夜综合久久蜜桃| 午夜两性在线视频| av有码第一页| 日本撒尿小便嘘嘘汇集6| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 成人免费观看视频高清| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 桃花免费在线播放| 久热爱精品视频在线9| 一进一出好大好爽视频| 一区二区三区精品91| 色视频在线一区二区三区| 亚洲一区中文字幕在线| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频精品| 无遮挡黄片免费观看| 精品免费久久久久久久清纯 | 精品欧美一区二区三区在线| 麻豆成人av在线观看| kizo精华| 午夜老司机福利片| 亚洲专区字幕在线| 日韩视频在线欧美| 纵有疾风起免费观看全集完整版| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| 免费女性裸体啪啪无遮挡网站| 久久久久视频综合| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 三上悠亚av全集在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 精品亚洲成国产av| 一级片免费观看大全| av天堂久久9| 欧美日韩黄片免| 成年人免费黄色播放视频| 最黄视频免费看| 成人精品一区二区免费| 丁香六月天网| 最新的欧美精品一区二区| 最新美女视频免费是黄的| 妹子高潮喷水视频| 国产一区二区三区综合在线观看| 亚洲国产av影院在线观看| 亚洲自偷自拍图片 自拍| 国产成人欧美| 久久久水蜜桃国产精品网| 中国美女看黄片| av又黄又爽大尺度在线免费看| 9热在线视频观看99| 久久av网站| 久久香蕉激情| 久久精品亚洲熟妇少妇任你| 日韩欧美三级三区| 欧美国产精品一级二级三级| 精品亚洲成国产av| 人人妻人人澡人人看| 成年版毛片免费区| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 人人澡人人妻人| 少妇精品久久久久久久| 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久亚洲精品国产蜜桃av| 变态另类成人亚洲欧美熟女 | 久久精品91无色码中文字幕| 啦啦啦视频在线资源免费观看| 91字幕亚洲| 十八禁网站网址无遮挡| 国产午夜精品久久久久久| 亚洲精品国产区一区二| 成年动漫av网址| 一夜夜www| 精品久久久久久电影网| 亚洲成人手机| 日韩制服丝袜自拍偷拍| 夫妻午夜视频| 午夜日韩欧美国产| 国产高清视频在线播放一区| 宅男免费午夜| 91麻豆av在线| 伦理电影免费视频| 国产精品1区2区在线观看. | 亚洲天堂av无毛| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 欧美激情久久久久久爽电影 | 亚洲精品久久午夜乱码| 久久久精品区二区三区| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 亚洲人成伊人成综合网2020| 日日夜夜操网爽| av免费在线观看网站| 国产又爽黄色视频| 免费观看av网站的网址| 一本色道久久久久久精品综合| 久久精品亚洲精品国产色婷小说| 丁香六月天网| 日本黄色日本黄色录像| 精品午夜福利视频在线观看一区 | 亚洲av美国av| 成年女人毛片免费观看观看9 | 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 欧美乱妇无乱码| 久久精品亚洲精品国产色婷小说| 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 人妻久久中文字幕网| 日本黄色视频三级网站网址 | 国产成人影院久久av| 中文字幕av电影在线播放| av欧美777| 一进一出抽搐动态| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 黑人猛操日本美女一级片| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区大全| 色播在线永久视频| 男女床上黄色一级片免费看| 日韩中文字幕视频在线看片| 日本黄色视频三级网站网址 | 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 大片免费播放器 马上看| 另类亚洲欧美激情| 久久久国产一区二区| 亚洲精品国产区一区二| 一级,二级,三级黄色视频| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看 | 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 国产精品免费视频内射| 国产成人精品在线电影| 久久久国产一区二区| 女性被躁到高潮视频| 亚洲精品久久成人aⅴ小说| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 麻豆成人av在线观看| 黄片小视频在线播放| 一区二区三区精品91| 精品一区二区三区av网在线观看 | 波多野结衣av一区二区av| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频| 欧美精品av麻豆av| 日韩视频在线欧美| 热99re8久久精品国产| 亚洲欧美激情在线| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 日韩成人在线观看一区二区三区| 99热国产这里只有精品6| 亚洲精品一卡2卡三卡4卡5卡| 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 一个人免费在线观看的高清视频| 怎么达到女性高潮| 精品人妻在线不人妻| 亚洲伊人久久精品综合| 国产欧美日韩一区二区三区在线| 肉色欧美久久久久久久蜜桃| 怎么达到女性高潮| 亚洲欧美色中文字幕在线| 后天国语完整版免费观看| 久久精品亚洲熟妇少妇任你| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 99精品在免费线老司机午夜| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色 | 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| av一本久久久久| 美女视频免费永久观看网站| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 黄片大片在线免费观看| 国产精品一区二区精品视频观看| 国产伦人伦偷精品视频| 久久精品国产综合久久久| 他把我摸到了高潮在线观看 | 日韩一区二区三区影片| cao死你这个sao货| 色综合婷婷激情| 久久毛片免费看一区二区三区| 狂野欧美激情性xxxx| 999精品在线视频| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 在线观看免费日韩欧美大片| 大码成人一级视频| 免费看a级黄色片| 亚洲天堂av无毛| 久久久久久人人人人人| 三级毛片av免费| 99国产极品粉嫩在线观看| aaaaa片日本免费| 色在线成人网| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 99久久精品国产亚洲精品| 久久久国产欧美日韩av| 老司机福利观看| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| 色94色欧美一区二区| 精品高清国产在线一区| 国产av精品麻豆| 不卡av一区二区三区| 交换朋友夫妻互换小说| 建设人人有责人人尽责人人享有的| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 亚洲欧美色中文字幕在线| 高清av免费在线| 久久毛片免费看一区二区三区| 久久国产精品人妻蜜桃| 女人久久www免费人成看片| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 99九九在线精品视频| 一夜夜www| 水蜜桃什么品种好| 久久午夜亚洲精品久久| 国产精品影院久久| 欧美成人免费av一区二区三区 | 一进一出好大好爽视频| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 97人妻天天添夜夜摸| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 亚洲国产av新网站| 男女无遮挡免费网站观看| 国产人伦9x9x在线观看| 亚洲精品国产精品久久久不卡| 午夜日韩欧美国产| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 男人操女人黄网站| 涩涩av久久男人的天堂| 国产精品 欧美亚洲| 黄片小视频在线播放| 窝窝影院91人妻| 国产精品自产拍在线观看55亚洲 | 在线观看一区二区三区激情| 欧美精品av麻豆av| 国产亚洲欧美在线一区二区| 欧美国产精品va在线观看不卡| 亚洲第一欧美日韩一区二区三区 | 女警被强在线播放| 午夜免费成人在线视频| 一级片'在线观看视频| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 国产精品久久久久久人妻精品电影 | 欧美激情高清一区二区三区| 国产精品免费视频内射| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区蜜桃| 老司机福利观看| 久久中文看片网| 国精品久久久久久国模美| 久久中文字幕人妻熟女| 久热爱精品视频在线9| 中文欧美无线码| 亚洲全国av大片| 老司机午夜福利在线观看视频 | 狂野欧美激情性xxxx| 考比视频在线观看| 久久国产亚洲av麻豆专区| 性色av乱码一区二区三区2| 国产精品1区2区在线观看. | 人妻久久中文字幕网| 亚洲第一青青草原| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 一进一出抽搐动态| 成年动漫av网址| 黄色a级毛片大全视频| 国产男女超爽视频在线观看| 水蜜桃什么品种好| 免费在线观看黄色视频的| 91成人精品电影| 国产精品久久电影中文字幕 | 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| a在线观看视频网站| 日韩制服丝袜自拍偷拍| 亚洲欧洲日产国产| 美女高潮到喷水免费观看| 在线十欧美十亚洲十日本专区| 桃红色精品国产亚洲av| 男女午夜视频在线观看| 成人三级做爰电影| 中文字幕人妻丝袜一区二区| 天天躁日日躁夜夜躁夜夜| 久久免费观看电影| 自线自在国产av| av网站在线播放免费| 99re6热这里在线精品视频| 国产亚洲精品一区二区www | 亚洲第一欧美日韩一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| 黑人操中国人逼视频| 久久精品91无色码中文字幕| 自线自在国产av| 国产成人啪精品午夜网站| 啦啦啦 在线观看视频| 免费日韩欧美在线观看| 久久精品亚洲av国产电影网| 国产男靠女视频免费网站| 欧美精品av麻豆av| 精品久久久久久久毛片微露脸| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡 | 黑人欧美特级aaaaaa片| www.999成人在线观看| 精品国内亚洲2022精品成人 | 99re在线观看精品视频| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美亚洲二区| 男女高潮啪啪啪动态图| 视频区欧美日本亚洲| 水蜜桃什么品种好| 日本wwww免费看| 久久亚洲精品不卡| 亚洲 欧美一区二区三区| 久久99一区二区三区| 欧美 日韩 精品 国产| 成人三级做爰电影| 亚洲精品国产精品久久久不卡| 色老头精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 免费少妇av软件| 午夜免费鲁丝| 国产成人精品无人区| 纯流量卡能插随身wifi吗| 欧美成人免费av一区二区三区 | 日本a在线网址| 国产精品久久久久久精品古装| 夜夜夜夜夜久久久久| 日韩欧美三级三区| 99国产精品一区二区三区| 麻豆国产av国片精品| av在线播放免费不卡| 黄色毛片三级朝国网站| 纵有疾风起免费观看全集完整版| 18禁观看日本| 夫妻午夜视频| 亚洲性夜色夜夜综合| 黑人巨大精品欧美一区二区mp4| 操美女的视频在线观看| 一本一本久久a久久精品综合妖精| 午夜福利影视在线免费观看| 欧美日韩视频精品一区| 丁香欧美五月| 日日摸夜夜添夜夜添小说| 18在线观看网站| 免费看a级黄色片| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 国产成人欧美| 国产亚洲午夜精品一区二区久久| 国产三级黄色录像| 777久久人妻少妇嫩草av网站| 日本一区二区免费在线视频| av视频免费观看在线观看| 大片免费播放器 马上看| 18在线观看网站| 国产精品麻豆人妻色哟哟久久| 精品国内亚洲2022精品成人 | 美女主播在线视频| avwww免费| 亚洲av片天天在线观看| 中国美女看黄片| 丁香六月天网| 午夜免费鲁丝| 久久亚洲真实| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 视频区欧美日本亚洲| 亚洲中文字幕日韩| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品.久久久| 亚洲熟女毛片儿| 自拍欧美九色日韩亚洲蝌蚪91| 女性生殖器流出的白浆| 精品少妇一区二区三区视频日本电影| 18禁裸乳无遮挡动漫免费视频| 在线天堂中文资源库| 一级黄色大片毛片| 国产97色在线日韩免费| 日韩三级视频一区二区三区| 一级黄色大片毛片| 成年女人毛片免费观看观看9 | 人成视频在线观看免费观看| 亚洲av成人不卡在线观看播放网| 丰满迷人的少妇在线观看| 国产成人精品无人区| av天堂在线播放| 一级毛片女人18水好多| 老鸭窝网址在线观看| 色在线成人网| 一级毛片精品| 免费人妻精品一区二区三区视频| 精品一区二区三卡| 久久精品国产综合久久久| 免费观看a级毛片全部| 日韩欧美一区二区三区在线观看 | 国产无遮挡羞羞视频在线观看| 法律面前人人平等表现在哪些方面|