• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability

    2019-02-15 02:28:14FengChenLongWuZepingZhouJijunJuZhengpingZhoMingqingZhongTirongKung
    Chinese Chemical Letters 2019年1期

    Feng Chen,Long Wu,Zeping Zhou,Jijun Ju,Zhengping Zho,Mingqing Zhong,*,Tirong Kung,*

    a College of Material Science and Engineering,Zhejiang University of Technology,Hangzhou 310014,China

    b The Key Laboratory of Polymer Processing Engineering of Ministry of Education,South China University of Technology,Guangzhou 510640,China

    c Zhijiang College,Zhejiang University of Technology,Hangzhou 310014,China

    Key words:Lignin MoS2 Porous carbon nanosphere Electrochemical performance Excellent cycle stability

    ABSTRACT Lignin is the most abundant and important macromolecule in organic matter and its yield is second only to cellulose.Lignin is abundant in source,low in price,and has a large number of active groups such as methoxy group and carboxyl group,so it has great utilization value.We used lignin as a carbon source to prepare porous carbon nanosphere(PCN)materials,and in-situ synthesized the Mo S2 on its surface.The high specific surface area[38_TD DIFF](?462.8 m 2/g),large pore volume and good electron conductivity of the porous carbon scaffold facilitated the reversible electro-chemical reaction of Stowards metallic Li,and thus the nano-hybrid showed a high specific energy and excellent cycle stability which still remained 520[49_TD DIFF]m Ah/g after 50 cycles.

    As the energy crisis and environmental pollution become more serious,environmentally friendly energy has attracted w ide attention from researchers.Lithium-ion batteries,one of the most important eco-friendly energy sources,have gained focus of current research,especially considering the increasing demand for energy storage equipment caused by the rapid grow th of electronic equipment(mobile phones,computers,etc.)[1–5].Moreover,today[39_TD DIFF]’s lithium-ion batteries are difficult to meet the high performance requirements of products such as electric vehicles.

    Most anode materials of lithium ion batteries used in practical applications are carbon materials,such as carbon fiber,natural graphite,and Artificially modified graphite.Lignin,a heterogeneous and amorphous polymer that constitutes a large portion of the cell w alls of vascular plants,is one of the amplest biomass just after cellulose on earth[6–9].It can be obtained from a variety of low-cost w oody plants and even from papermaking wastew ater[10].Lignin is of great application value for it containing a large number of reactive groups,such as methoxy,hydroxyl[40_TD DIFF]6].Its specific structure is not clear yet,we only know it composed of macromolecular structure with benzene and methoxy[11].The estimated natural production of lignin on earth is in the range of[41_TD DIFF]5?108–36?108tons annually and annual production of commercial lignin is more than 70 million tons[12,13].So lignin has attracted great interests in developing value-added products such as sorbents of exhaust gas CO2and electrode materials of supercapacitors and lithium-ion batteries[14–22].Sodium lignosulfonate with relative molecular weight 1000–20000 can be obtained by attaching a sulfonate-containing group such as–SO3Na to lignin[23].Since lignosulfonate contains hydrophilic groups such as sulfonate,carboxylate,and phenolic hydroxyl,it is soluble in various aqueous solutions,as a result,the application of lignosulfonate become w idely.

    Molybdenum disul fi de(MoS2)is a typical representative of transition metal sul fi de materials[24,25].The crystal of MoS2belongs to the hexagonal system,and the lamellar MoS2with single sheet composed of three layers of atomic layers.The middle layer molybdenum atoms are bonded to sulfur atoms of upper and lower layers by Mo-S covalent bonds[26].When the MoS2monolayer accumulates in ABAB,we get the most stable lamellar MoS2with a 0.62 nm distance of tw o MoS2layers[26].This distance facilitates the insertion and extraction of lithium ions,so MoS2has a high specific capacity and charge and discharge ef fi ciency[27–31].However,the main draw back with MoS2as the electrode material of lithium ion battery is the poor cycle stability due to the insuperable expansion of MoS2nanoparticles.

    On the other hand,carbon materials,such as activated carbon,porous carbon,carbon nanotubes,nano fibers,carbon aerogels,graphene and other carbon materials,especially mesoporous carbon,can improve the dispersion and conductivity of metal nanoparticles[32–36].Meanwhile,the carbon scaffold with high graphitization could endure the volume expansion during the charging-discharging process[37].When lignin is carbonized at high temperature,porous carbon spheres are formed,which exhibits the electrochemical properties of typical carbon materials.Since lignin is derived from biomass and usually discarded as waste,it is promising to use lignin as a cheap alternative material in w oody materials.On the other hand,few studies have investigated the fabrication of lignin-derived LPN and their potential usage in high-performance electrode materials[32,38].

    To overcome the unstable specific capacity of common MoS2anode material,we prepared lignin and MoS2as core-shell composites MoS2@porous carbon nanospheres(MoS2@PCN),in which PCN working as both the carbon source and the matrix with layered MoS2binding to the surface of PCN.Ow ing to the unique hierarchical structure,this composite not only reserved all advantages of the spherical structure,but also increased the reversible capacity and the cycling performance.In addition,the graphitized carbon skeleton in PCN acts as a buffer to alleviate the volume expansion of MoS2during charge-discharge.At the same time,the graphitized carbon skeleton in PCN also increases conductivity and acts as a conduit for electron transfer.The experimental details are as follow s.

    Lignosulphonate,isopropanol,sodium molybdate hexahydrate,thiourea were purchased from Aladdin Reagents.Porous carbon Nanosphere(PCN)was prepared using a combined carbonization/activation method and a typical process was show n as below.First,0.5 g lignosulphonate was dissolved into 10 m L deionized w ater and then the solution was slow ly dripped into 100 m L isopropyl alcohol.The product was separated by centrifugation and was dried at 60?C for 24 h to obtain LPN.Porous carbon nanosphere(PCN)was obtained by carbonization of LPN at 800?C for 2 h.Secondly,PCN,thiourea,Sodium molybdate hexahydrate were added into 60 m L isopropanol,then the mixture was transferred into a high pressure reactor and the reaction took place at high temperatures and pressures.The resulting product was heated to 800?Cin a nitrogen atmosphere and carbonized for 2 h to obtain MoS2@PCN.The major process steps employed in this work are illustrated in Scheme 1.

    Schem e 1.Schematic procedure for the preparation of MoS2@PCN derived from lignosulfonate.

    In order to understand the material properties,we chose the follow ing test methods for characterization.

    Fourier transform infrared spectroscopy(FTIR)data were collected on a Nicolet 6700(Thermo Nicolet Corporation)with a measuring range 4000 cm?1to 400 cm?1and a resolution of 0.4 cm?1.DLS data were collected on a BI-200SM(American Brookhaven)with w ater as the solvent.Thermogravimetry(TG)test was performed using a TA Instrument SDT Q600 under a N2atmosphere with 10?C/min ramp rate from room temperature to 1000?C.X-ray diffraction(XRD)data were collected on an X’Pert PRO(Malvern Panalytical).Raman spectra were recorded on a LabRam HRUV(HORIBA Jobin Yvon).Scanning electron microscopy(SEM)was carried out with S-4700(HITACHI),and the accelerate voltage was 10 k V and the working distance was 8 mm.Transmission electron microscopy(TEM)was carried out with JEM-100CXII(JEOL)fi eld emission electron microscope at an accelerate voltage of 300 k V.Brunauer-Emmet-Teller(BET)isotherms and specific surface area(i.e.,BET surface area)were performed on an ASAP 2020(Micromeritics).X-ray photoelectron spectroscopy(XPS)analysis was performed on a Kratos AXIS(Shimadzu)employing a monochromatic Al KαX-Ray.Raman spectrum was taken with a Lab RAM HR UV800 Raman spectrometer(JOBIN YVON)using an excitation w avelength of 632.81 nm at room temperature.

    The electrodes for LIBs were prepared according to the follow ing steps.Poly[42_TD DIFF](vinylidene fl uoride)andN-methyl pyrrolidone(mass ratio,1:10)were mixed to obtain a conductive gel.A small amount ofN-methyl pyrrolidone was added to evenly mixed MoS2@PCN,acetylene black and conductive gel(mass ratio 8:1:1)and the mixture was stirred for 3 h to form a uniform slurry.The slurry was applied on copper and then dried in a vacuum oven at 60?Cfor 3 h.The dried electrodes were then pressed(15 MPa)and placed in a vacuum oven for an over-night dry at 60?C.Finally,the half cells were assembled in an Ar fi lled glove-box,using 1 mol/L LiPF6solution in a 1:1(v/v)mixture of ethylene carbonate(EC)and dimethyl carbonate(DMC)as electrolyte and Li foil as counter electrode to form a CR2025 button battery.

    The adhesive was prepared withPTFE and deionized w ater(1:20 mass ratio).Then MoS2@PCN composite,acetylene black and PTFEbinder were mixed at a weight ratio of 8:1:1,and the resulting slurry waspasted onto an graphite sheet(1 cm?2 cm)and dried at 80?C for 12 h.

    Athree-electrode battery system wasbuilt for cyclic voltammogram(CV)testing.The graphite sheet with mixture is the working electrode with Ag/AgCl electrode as a reference electrode,Pt w afer as the counter electrode and KOH(6 mol/L)as the electrolyte[37,39].

    Galvanostatic cycling tests were conducted on a New are battery system in the voltage range of 1.0–3.0 V(vs.Li+/Li)at 30?C in a thermostatic desiccator.Cyclic voltammetry(CV)tests were performed on a CHI660D electrochemical work-station at 0.1 m V/s in the voltage range of 1.0–3.0 V.The specific capacitance of the electrode was calculated by the follow ing formula.

    w here Cwas the specific capacitance(F/g),I was the current(A),V was the potential w indow(V),v was the scan rate(m V/s),and m was the mass of the sample used for the electrochemical test(g).

    The characterization results and discussion are as follow s.

    Fig.1.(a)FTIR spectrum of LPN;(b)TG curves in N2 atmosphere of LPN and MoS2@PCN;(c)DLS result of LPN;(d)N2 absorption-desorption isotherms and pore size distribution curves(inner plot)of MoS2@PCN;(e)N2 absorption-desorption isotherms and pore size distribution curves(inner plot)of PCN;(f)The Raman spectra for representative PCN;(g,[30_TD DIFF]h)The XPSspectra of PCN.

    Lignosulfonates are rich in reactive groups such as sulfonic acid groups and phenolic hydroxyl groups,and various chemical reactions can be carried out to obtain lignin derivatives[6].In order to understand the functional groups of LPN,LPN wastested by FTIR.The FTIRspectrum of LPNisshow n in Fig.1a.The absorption peak at 3432 cm?1is broad and strong,indicating that the lignin contains hydroxyl groups.The phenolic hydroxyl groups in lignin directly affect the physical and chemical properties.The peak at 1650 cm?1wasattributed to thevibration of thebenzenering C?Cdoublebond.The band at 1250 cm?1assigned to sulfonic acid group wasstrong.In general,lignosulfate containslarge amountsof reactive groupssuch as sulfonic acid groups,hydroxyl groups and the like.Fig.1b show s the weight loss curves of the LPN and MoS2@PCN during the high temperature calcination process in N2atmosphere.In the 0–150?C region,mainly small molecules,e.g.,H2Oand dispersant vaporized.

    The residue content is 67.9 w t%.And the weight of the nanocomposite decreased by about 4%w hen the temperature increased to 800?C.This result indicates that the porous structure of the material did not collapse along with the adsorption effect above 800?C.Fig.1c shows DLS results of LPN.We can see that the diameter is between 500–600 nm,slightly larger than the results obtained in SEM.That[46_TD DIFF]is because DLSmeasures the diameter of the hydrated particles.Figs.1d and e show the N2absorptiondesorption isotherms and pore size distribution curves(inner plot)of MoS2@PCN and PCN sample.The detailed porous structure data are summarized in Table 1.The rise in the fi rst stage of Fig.1d indicates that monolayer physisorption formed.With increasing pressure,a straight line appearson the isotherm,which re fl ectsthe establishment of multilayer adsorption.Further pressure increase leads to capillary condensation.The observation of hysteresisloops indicated that the material has a certain pore structure.The BET surfaceareaof PCNis867.6 m2/g(Table1),higher than 462.8 m2/gof MoS2@PCN.This is because MoS2blocked some holes of PCN.With the addition of MoS2,the volume content of mesopores and macropores increase,while the volume content of micropores decreases.A porous structure is essential with incorporation of macropores and mesopores to minimize ion diffusion distance for fast charge transport and increase surface area for promoting electrolyte/electrode contact[39,40].Fig.1f is the Raman spectrum of PCN.The D peak at 1317 cm?1represents the degree of disorder and defects in the carbon material,and the G peak at 1608 cm-1represents the graphite carbon material.The peak area ratio,i.e.,ID/IG=1.07 suggested the degree of graphitization of the material was high.From the above data,it can be seen that after the hightemperature calcination of the LPN,the formed porous carbon spheres have a high degree of graphitization,favoring the electron transport and thus improves the electrochemical performance.Figs.1g and h present the XPSspectra of PCN.The three peaks in Fig.1g represent C?C??C(284.7 eV),C–O(286.1 eV),O??C?C(288.7 eV)respectively.The contents of C–Oand O??C?Care 25.4%and 3.58%,respectively.This indicates that the surface of the PCN contains more oxygen-containing functional groups and LPN is not completely carbonized after high temperature calcination.Oxygencontaining functional groups caused by this incomplete carbonization enhance electrochemical capacitive properties.The four peaks in Fig.1g represent thiophene(164 eV),R-O-S-S-R(165 eV),sulfone(169.4 eV)and inorganic sulfur(170.6 eV).According to semiquantitative analysis by XPS,the relative contents of S and Mo element in the material are 10.22%(atom%)and 14.81%(atom%),respectively.The mass ratio of Mo and Sis about 3:2,in accordance with the composition of MoS2.

    Fig.2.(a)SEM of LPN without ultrasonic;(b)SEM of LPN with ultrasonic;(c)SEM of carbonized LPN;(d)SEM of MoS2@PCN;(e, f)TEM of MoS2@PCN.

    SEM observation(Fig.2)show s that the surface morphology and structure of LPN,porous carbon spheres and their composites.Figs.2a and b are the LPNs without and with ultrasonic treatment,respectively.Large differences in sizes of LPN can be observed in Fig.2a while uniform size distribution was seen in Fig.2b.That means ultrasonic can reduce the size difference between microspheres.From the Fig.2c,we can be seen that after heating at 800?C,the structure of carbonized LPNremains unchanged.Fig.2d is SEM of MoS2;we can see that the sheet-like MoS2is attached to the surface of carbonized LPN.The diameters of the microspheres are calculated in a range of 200 nm–300 nm.Figs.2e and f show the TEM of the MoS2@PCN.Large amount of pores can be observed in the carbonized LPN,which greatly increases the specific surface area of the carbon spheres and facilitates the transport of ions.From Fig.2e,we can see that the MoS2is grow ing on the surface of the LPN.And the LPN has a large number of pore structures that con fi rms the result of BET results.The sheet-like MoS2on the surface of the material grow s outw ard,and the length is about 70 nm.The distance between the sheetsisabout 100 nm.As show n in Fig.2f,it is calculated that the lamellar distance between the MoS2layers is 0.62 nm,which is almost the same as the general MoS2layer spacing.This distance facilitates the insertion and extraction of lithium ions during charging and discharging.

    Fig.S1(Supporting information)showed XRD patterns of MoS2@PCN.All observed diffraction peaks can be systematically indexed to those of the hexagonal phase of MoS2,which are in good agreement with the values of standard card(JCPDSNo.37-1492).The diffraction peak at 14?corresponding to the crystal surface(002)representsa distinct single-layer structure.The peak at 29?is the crystal surface(112)of MoS2.The strength of these tw o peaksis very high,which means that the crystallinity of MoS2with these tw o structures is relatively perfect.Clearly,diffraction peaks of elemental Mo were not detected in the XRDpattern,indicating that no carbon thermal reduction occurs during the second calcinationof MoS2@PCN.The higher peak intensities indicate that the MoS2nanostructures are of high crystallinity.

    Table 1 The specific surface area,pore volume,pore size of four samples.

    Fig.3.(a)Comparative cycling performance at a current density of 0.1 A/g of PCN,MoS2 and MoS2@PCN;(b)Charge-discharge voltage pro files of MoS2@PCN;(c, d)CV curves of PCN and MoS2@PCN with various scan rates.

    Fig.3a show s the cycling performance of three materials at low current charge and discharge conditions.The theoretical specific capacity of graphite is 355[49_TD DIFF]m Ah/g and the specific capacity of PCN used in this work is about 300[49_TD DIFF]m Ah/g.It show s the typical characteristics of carbon materials(good cycle stability).In the fi rst few cycles the specific capacity of Mo S2is high,but after several cycling it falls rapidly.In contrast,MoS2@PCN has a stable cycling performance while the specific capacity is 519[49_TD DIFF]m Ah/g after 50 cycles.Fig.3b is the voltage capacitance curve of MoS2@PCN.During the charging process there is a platform at a voltage of 2100 m V,w here lithium ions embedding in the anode material;and during the discharge process,there are 2 platforms at voltages of 2000 m V and 1100 m V,w here lithium ions escape from the anode material.The electrochemical properties of PCN and MoS2@PCN are measured by using cyclic voltammetry(CV)over the potential w indow of 0-0.7 V in a 6 mol/LKOH aqueous solution with a three-electrode cell system.Figs.3c and d show the CV curve of PCN and MoS2@PCN at different sweep rate of 0.01-0.1 V/s.InFigs.3c and d,the obtained CV curve is symmetrical with the curve of the reducing w ave,indicating that the electron transfer is reversible while this material is as an electrode reaction.The area around the CV curve increases with increasing scan rate,however,the shape of the CVcurves does not change distinctly,re fl ecting the good capacitive performance and good power performance of MoS2@PCN electrode material.And the calculated specific capacitances at different scanning rate are presented in Fig.S2(Supporting information).As scanning rate increases,specific capacitance decreases.Compare the specific capacitances of PCN,the specific capacitances MoS2@PCN is higher.This is also con fi rmed by the above conclusions.

    In summary,we have developed a feasible self-assembly and carbonization method to prepare lignin-derived PCN and its efficient embedment of MoS2without any additives.The system is eco-friendly,as it using natural lignosulfonate as the carbon precursor in w ater solution.The obtained Mo-based PCN intermediate can be simply converted to highly crystalline MoS2@PCN via thermal annealing without signi fi cant changes in morphology.The annealed product is phase-pure MoS2and highly graphitized carbon with a high surface area.The hybrid structure hasa high specific surface area(462.8 m2/g)and hierarchical pores,which can enhance Li-ion transportation in the electrode,increase the conductivity,and suppress the deformation of MoS2.More importantly,the hybrid nanosphere anode exhibited and retained a high discharging capacity of 519[49_TD DIFF]m Ah/g at 0.1 A/g after 50 cycles for a Li-ion battery.We think this hybrid nanocomposite may provide a new route to develop high performance Li-ion battery from natural biomass or organizational structures.

    Acknow ledgm ents

    T.Kuang w ould like to acknow ledge the fi nancial support of National Natural Science Foundation of China(No.51803062),National Natural Science Foundation of Guangdong Province(No.2018A030310379),National Postdoctoral Program for Innovation Talents(No.BX201700079),China Postdoctoral Science Foundation Funded Project(No.2017M620371),and Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(No.2017KQNCX001).F.Chen thanks the fi nancial support of Natural Science Foundation of China(No.51673175),and Natural Science Foundation of Zhejiang Province(Nos.LY16E030012,LY17E030006 and LY18E030009).

    Appendix A.Supp lementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2018.10.007.

    日韩欧美精品v在线| 精品乱码久久久久久99久播| 极品教师在线免费播放| 很黄的视频免费| 国产在线精品亚洲第一网站| 成年版毛片免费区| 欧美日本亚洲视频在线播放| 亚洲内射少妇av| 久久6这里有精品| 麻豆国产av国片精品| 中出人妻视频一区二区| 中文字幕高清在线视频| 国产精品综合久久久久久久免费| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 精品人妻一区二区三区麻豆 | 午夜两性在线视频| 热99在线观看视频| 91久久精品国产一区二区成人 | 精品不卡国产一区二区三区| 国产高清激情床上av| 深爱激情五月婷婷| 国产97色在线日韩免费| 国产亚洲精品综合一区在线观看| av在线蜜桃| 欧美午夜高清在线| 日韩高清综合在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品亚洲精品国产色婷小说| 亚洲成人精品中文字幕电影| 天美传媒精品一区二区| 又爽又黄无遮挡网站| 看片在线看免费视频| 久久精品91蜜桃| 亚洲美女视频黄频| 欧美黑人巨大hd| 婷婷丁香在线五月| 欧美日韩精品网址| 草草在线视频免费看| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 欧美日韩中文字幕国产精品一区二区三区| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| 亚洲男人的天堂狠狠| 国产精品99久久久久久久久| 国产野战对白在线观看| 51午夜福利影视在线观看| 国产亚洲欧美98| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 最近在线观看免费完整版| 国产综合懂色| 久久精品91蜜桃| 97超视频在线观看视频| 久99久视频精品免费| 午夜精品一区二区三区免费看| 亚洲中文字幕日韩| 国产av不卡久久| 1024手机看黄色片| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇中文字幕五十中出| 国产美女午夜福利| 欧美乱码精品一区二区三区| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 中文字幕人妻丝袜一区二区| 可以在线观看的亚洲视频| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| 久久久成人免费电影| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 无人区码免费观看不卡| 免费观看精品视频网站| 脱女人内裤的视频| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 乱人视频在线观看| 国产欧美日韩一区二区精品| 久久久国产成人精品二区| 国产熟女xx| 成年女人看的毛片在线观看| eeuss影院久久| 亚洲七黄色美女视频| 亚洲国产色片| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久久毛片| 欧美日韩亚洲国产一区二区在线观看| 国产av麻豆久久久久久久| 岛国在线观看网站| 午夜福利在线在线| 精品免费久久久久久久清纯| xxxwww97欧美| 免费一级毛片在线播放高清视频| 精品一区二区三区视频在线观看免费| 在线视频色国产色| 天堂动漫精品| 中亚洲国语对白在线视频| bbb黄色大片| 国产精品 欧美亚洲| 99久久99久久久精品蜜桃| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆| 12—13女人毛片做爰片一| 91av网一区二区| 午夜福利18| 久久久久久久久久黄片| 一区二区三区免费毛片| 成人一区二区视频在线观看| 亚洲精品在线美女| 免费电影在线观看免费观看| 一区二区三区免费毛片| 一卡2卡三卡四卡精品乱码亚洲| xxx96com| 女同久久另类99精品国产91| 身体一侧抽搐| 国产免费一级a男人的天堂| eeuss影院久久| 最近视频中文字幕2019在线8| 美女cb高潮喷水在线观看| 精品久久久久久久末码| 国产高清三级在线| 成人国产综合亚洲| 三级国产精品欧美在线观看| 在线免费观看的www视频| 69人妻影院| 老司机午夜十八禁免费视频| 一区二区三区国产精品乱码| 国产乱人视频| 久久香蕉国产精品| 十八禁人妻一区二区| 成人无遮挡网站| 美女高潮的动态| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 九色成人免费人妻av| 久久久久国内视频| 精品日产1卡2卡| 亚洲国产欧美网| 日本黄大片高清| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 国产又黄又爽又无遮挡在线| 日韩中文字幕欧美一区二区| 天堂动漫精品| tocl精华| 中文字幕人妻熟人妻熟丝袜美 | 特级一级黄色大片| 午夜影院日韩av| 亚洲精品国产精品久久久不卡| 最后的刺客免费高清国语| 色综合欧美亚洲国产小说| 91在线观看av| 亚洲美女黄片视频| 久久久国产精品麻豆| 国产成人欧美在线观看| 搞女人的毛片| 狂野欧美白嫩少妇大欣赏| 久久久久久久亚洲中文字幕 | 白带黄色成豆腐渣| 国产一区二区在线观看日韩 | 亚洲人与动物交配视频| 免费人成在线观看视频色| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| 欧美成人性av电影在线观看| 亚洲avbb在线观看| h日本视频在线播放| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 婷婷亚洲欧美| 国产不卡一卡二| 欧美激情在线99| 99久国产av精品| 欧美乱码精品一区二区三区| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 看黄色毛片网站| 日韩人妻高清精品专区| 少妇的逼好多水| 欧美乱妇无乱码| 久久久精品大字幕| 成年女人看的毛片在线观看| 国产亚洲欧美在线一区二区| 久久久久久久精品吃奶| 成年免费大片在线观看| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 免费看日本二区| 亚洲欧美日韩东京热| 一级a爱片免费观看的视频| 免费观看人在逋| 欧美中文日本在线观看视频| 欧美高清成人免费视频www| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| a级一级毛片免费在线观看| 热99在线观看视频| 十八禁网站免费在线| 男插女下体视频免费在线播放| 国产中年淑女户外野战色| 久久久国产成人精品二区| 中文资源天堂在线| 精华霜和精华液先用哪个| 嫩草影院精品99| 亚洲欧美激情综合另类| 又黄又爽又免费观看的视频| 国产免费av片在线观看野外av| 久久久色成人| 脱女人内裤的视频| 久久精品人妻少妇| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 午夜视频国产福利| 91av网一区二区| 嫩草影院精品99| 国产淫片久久久久久久久 | 亚洲成a人片在线一区二区| 午夜精品一区二区三区免费看| 91久久精品电影网| 叶爱在线成人免费视频播放| 亚洲人成网站高清观看| 99久久九九国产精品国产免费| 村上凉子中文字幕在线| 久久6这里有精品| 亚洲精品乱码久久久v下载方式 | 一区二区三区免费毛片| 真实男女啪啪啪动态图| av在线蜜桃| 国产黄a三级三级三级人| 日日干狠狠操夜夜爽| 一级黄片播放器| 一区二区三区国产精品乱码| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 日韩欧美精品v在线| 国产黄a三级三级三级人| 国产精品永久免费网站| 人妻夜夜爽99麻豆av| 国产成人福利小说| 性欧美人与动物交配| 国产探花极品一区二区| 亚洲片人在线观看| 一级作爱视频免费观看| 亚洲国产欧美网| av中文乱码字幕在线| 在线观看美女被高潮喷水网站 | 天堂动漫精品| 国产淫片久久久久久久久 | 欧美最黄视频在线播放免费| 午夜福利18| 欧美日韩一级在线毛片| 韩国av一区二区三区四区| 国产野战对白在线观看| 亚洲精华国产精华精| 国产成人av激情在线播放| 亚洲 欧美 日韩 在线 免费| 丰满人妻一区二区三区视频av | 又黄又爽又免费观看的视频| 丰满人妻一区二区三区视频av | 免费看日本二区| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 国产私拍福利视频在线观看| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 性色av乱码一区二区三区2| 麻豆一二三区av精品| 日本与韩国留学比较| av在线天堂中文字幕| 国产成人欧美在线观看| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 免费看日本二区| 日本成人三级电影网站| 免费电影在线观看免费观看| 日韩有码中文字幕| 搞女人的毛片| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 国产高潮美女av| 午夜福利免费观看在线| 99久久综合精品五月天人人| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品国产精品久久久不卡| 又爽又黄无遮挡网站| 99国产精品一区二区三区| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 法律面前人人平等表现在哪些方面| 小说图片视频综合网站| 99在线人妻在线中文字幕| xxxwww97欧美| 女同久久另类99精品国产91| 99国产综合亚洲精品| 内地一区二区视频在线| av天堂在线播放| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 老汉色av国产亚洲站长工具| 欧美大码av| 久久欧美精品欧美久久欧美| 深爱激情五月婷婷| 久久精品国产综合久久久| 国产不卡一卡二| www国产在线视频色| av福利片在线观看| 欧美性猛交黑人性爽| 夜夜躁狠狠躁天天躁| 99国产极品粉嫩在线观看| 日韩av在线大香蕉| 特级一级黄色大片| 18禁国产床啪视频网站| a在线观看视频网站| 最新美女视频免费是黄的| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久末码| 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 特大巨黑吊av在线直播| 无限看片的www在线观看| 一进一出好大好爽视频| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 欧美区成人在线视频| 少妇的逼好多水| 国产成人欧美在线观看| 免费av不卡在线播放| 深夜精品福利| 狂野欧美激情性xxxx| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 国产av在哪里看| bbb黄色大片| 黄色成人免费大全| 欧美午夜高清在线| 中文字幕人妻熟人妻熟丝袜美 | 国产精品嫩草影院av在线观看 | 九色成人免费人妻av| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 精品久久久久久,| 久久精品91无色码中文字幕| 婷婷亚洲欧美| 综合色av麻豆| 精品久久久久久久久久免费视频| 免费av毛片视频| 99热6这里只有精品| 婷婷精品国产亚洲av| 91久久精品国产一区二区成人 | 一级黄色大片毛片| 俄罗斯特黄特色一大片| 人人妻人人看人人澡| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 三级男女做爰猛烈吃奶摸视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 亚洲av成人不卡在线观看播放网| 免费在线观看亚洲国产| 久久精品91蜜桃| tocl精华| 一级黄色大片毛片| 禁无遮挡网站| h日本视频在线播放| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 久久精品国产清高在天天线| www国产在线视频色| 美女免费视频网站| 国产成人aa在线观看| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 91九色精品人成在线观看| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 成人午夜高清在线视频| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 国产成人a区在线观看| 国产高清视频在线观看网站| www.熟女人妻精品国产| 中文字幕人成人乱码亚洲影| 丰满人妻熟妇乱又伦精品不卡| 午夜福利18| 男插女下体视频免费在线播放| 日本黄大片高清| 欧美黑人巨大hd| 精品99又大又爽又粗少妇毛片 | 俺也久久电影网| 夜夜躁狠狠躁天天躁| 色综合亚洲欧美另类图片| 色视频www国产| 人人妻人人澡欧美一区二区| 国产中年淑女户外野战色| 国产精品国产高清国产av| 久久亚洲真实| 亚洲欧美日韩东京热| 男女视频在线观看网站免费| 日本熟妇午夜| 久久精品国产自在天天线| 黄色丝袜av网址大全| 91av网一区二区| 欧美国产日韩亚洲一区| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 国产乱人视频| 成年人黄色毛片网站| 中文字幕av成人在线电影| www.www免费av| 搡老熟女国产l中国老女人| 欧美成人性av电影在线观看| netflix在线观看网站| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 色视频www国产| 精品电影一区二区在线| 十八禁人妻一区二区| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 91九色精品人成在线观看| www.999成人在线观看| 99热这里只有精品一区| 亚洲av美国av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看免费午夜福利视频| 九九在线视频观看精品| 国产三级黄色录像| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 怎么达到女性高潮| 国产免费av片在线观看野外av| 99久久成人亚洲精品观看| 搡女人真爽免费视频火全软件 | 亚洲av第一区精品v没综合| 成年版毛片免费区| 久久6这里有精品| 亚洲中文字幕日韩| 嫩草影院入口| 小蜜桃在线观看免费完整版高清| 69av精品久久久久久| 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 亚洲国产精品合色在线| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 欧美激情在线99| 国产极品精品免费视频能看的| 中国美女看黄片| 久久久久久九九精品二区国产| 午夜免费激情av| 激情在线观看视频在线高清| 青草久久国产| 久久精品91蜜桃| 免费在线观看亚洲国产| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 亚洲美女黄片视频| e午夜精品久久久久久久| 国产爱豆传媒在线观看| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| 欧美色欧美亚洲另类二区| 一a级毛片在线观看| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 天堂网av新在线| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 欧美黑人巨大hd| 免费人成在线观看视频色| 有码 亚洲区| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| svipshipincom国产片| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 久久精品国产亚洲av香蕉五月| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片 | 真实男女啪啪啪动态图| 欧美午夜高清在线| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 88av欧美| 亚洲va日本ⅴa欧美va伊人久久| 听说在线观看完整版免费高清| 少妇的逼水好多| 九九热线精品视视频播放| 亚洲av二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 一级毛片高清免费大全| 99国产精品一区二区蜜桃av| 成年版毛片免费区| 18美女黄网站色大片免费观看| 国产精品国产高清国产av| 在线观看日韩欧美| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 免费av不卡在线播放| 很黄的视频免费| 伊人久久大香线蕉亚洲五| 国产黄色小视频在线观看| 久久精品国产亚洲av涩爱 | 日本在线视频免费播放| 草草在线视频免费看| 亚洲avbb在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区国产精品乱码| 中文字幕熟女人妻在线| 两个人看的免费小视频| 免费看美女性在线毛片视频| 天天一区二区日本电影三级| 欧美性感艳星| 国产欧美日韩精品一区二区| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 母亲3免费完整高清在线观看| 国产三级中文精品| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 色在线成人网| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 国产黄片美女视频| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 性欧美人与动物交配| 午夜福利欧美成人| 亚洲第一电影网av| 午夜福利欧美成人| 国产综合懂色| 亚洲18禁久久av| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 欧美日韩精品网址| 欧美性感艳星| 久久久久免费精品人妻一区二区| 男女做爰动态图高潮gif福利片| 国产aⅴ精品一区二区三区波| 天堂动漫精品| 真人做人爱边吃奶动态| 99国产精品一区二区蜜桃av| a级一级毛片免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 麻豆一二三区av精品| 草草在线视频免费看| 日韩欧美国产在线观看| 国产一区二区在线观看日韩 | 国产中年淑女户外野战色| 老熟妇仑乱视频hdxx| 人妻久久中文字幕网| 国产高清激情床上av| 两个人看的免费小视频| 久久亚洲精品不卡| 一本综合久久免费| 两个人视频免费观看高清| 国产精品99久久99久久久不卡|