• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra fine molybdenum carbide nanoparticles supported on nitrogen doped carbon nanosheets for hydrogen evolution reaction

    2019-02-15 02:28:12KedongXiaJunpoGuoCuijuanXuanTingHuangZhipingDengLingxuanChenDeliWang
    Chinese Chemical Letters 2019年1期

    Kedong Xia,Junpo Guo,Cuijuan Xuan,Ting Huang,Zhiping Deng,Lingxuan Chen,Deli Wang*

    Key laboratory of Material Chemistry for Energy Conversion and Storage(Huazhong University of Science and Technology),Ministry of Education,Hubei Key Laboratory of Material Chemistry and Service Failure,School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords:Molybdenum carbides Ultra fine nanoparticles Nitrogen doping Carbon naonosheets Hydrogen evolution reaction

    ABSTRACT Molybdenum carbides(Mox C)/nitrogen doped carbon nanosheets(NCS)composites are synthesized via simple mixing melamine and ammonia molybdate,followed by a high-temperature treatment.Metal carbide nanoparticles with ultra-small size(13nm)are uniformly supported on nitrogen doped carbon nanosheets.The hydrogen evolution reaction(HER)is investigated in both 0.5mol/LH2SO4 and 1 mol/L KOH media.Mo2C/NCS-10(melamine/ammonia molybdate weight ratio of 10:1)exhibits excellent performance with a low overpotential of130 m V in 0.5 mol/LH2SO4 solution and 108 m V in 1 mol/LKOH solution at the current density of 10[46_TD DIFF]m A/cm 2.The better electrocatalytic activity could be ascribed to N-doped carbon nanosheets,small particle size,mesoporous structure,and large specific surface area,which could provide the large electrochemical active surface area and facilitate mass transport.

    Hydrogen as an environmental-friendly renew able energy source,has become one of the promising alternatives for fossil fuels due to its high gravimetric energy density[1–3].Electrochemical w ater splitting is one of most attractive approach for hydrogen production.Although Pt-group noble metals exhibit the predominant HERperformance with small overpotential and large current density,the high cost and limited reservation seriously hinder their ranges of applications[4].Tremendous efforts have been made to develop high-ef fi ciency and noble-metal free catalysts,and many 3d-transition metal based materials(such as nickel[5–7],iron[8–10],cobalt[11–13],molybdenum[14–26])are w idely investigated.However,the HER performance on most of these materials is disappointing in comparison to Pt-group electrocatalysts.

    Molybdenum carbides(MoC or Mo2C)have attracted great interest since the fi rst report by Huet al.[27]ow ing to their low cost,unique d-band electronic structure,chemical stability and similar catalytic properties to Pt-group metals[28,29].However,poor conductivity and readily fall off MoxC nanoparticles from supports is still a challenge to maintain their activity and stability during cycles.Thus,considerable efforts have been made to improve the electrochemical properties of MoxC.Decreasing particle size to nanoscale or ultrasmall size and construction of different nanostructure(e.g.,nanow ires,nanoparticles)are effecive methods to improve HERactivity for the enhanced exposure of active sites to electrolyte[17,30,31].Creating porous structure in MoxCis favorable for increase the specific surface areas of carbides[32–34].A porous Mo2C nanow ires were developed by Liaoet al.showed better HERactivity and stability in acidic electrolyte[35].To improve the electronic conductivity of MoxC,by coupling it with carbon materials(e.g.,graphene and carbon nanotubes)is another promising route[21,36,37].Chenet al.reported that nanotubesupported Mo2C catalysts exhibit an overpotential of 63m V at 1 m A/cm2of current density[17].Besides,chemical doping of carbon materials by heteroatom(e.g.,N,S and P)can not only provide large numbers of active sites,but also improve the electronic conductivity and wettability of material surface[19,38].

    As compared with bulk carbon materials,synthesis of carbon nanosheet is an effective method to increase the specific surface area and relieve the aggregation of carbides during the carburization process,making more active sites exposed and utilized.Herein,a simple method is developed to synthesize the tw odimensional MoxC/N-doped carbon nanosheet hybrids(Mo2C/NCS and MoC/NCS)for the HER.The different structured MoxC/NCS composites were prepared by tuning the proportion of melamine and ammonium molybdate precursors.The HER performance of these composites was conducted both in 0.5mol/L H2SO4and 1 mol/L KOH media.The relationship between structure and electrochemical properties was also discussed.

    The synthesis process of MoxC/NCSis schematically depicted in Fig.1.Melamine is fi rst transformed into yellow graphitic carbon nitride(g-C3N4)at 550[49_TD DIFF]?C,which could be veri fied by the X-ray diffraction(XRD)pattern described in Fig.2a.Tw o obvious diffraction peaks at 13.7?and 27.4?are detected which are consistent with previously reported g-C3N4[39].However,the mixed melamine/ammonium molybdate precursors were transformed into g-C3N4supported MoOxspecies(MoOx/g-C3N4)at 550[49_TD DIFF]?C.This MoOx/g-C3N4intermediate phase is converted into black pow der with increasing the heat treated temperature,indicating the formation of carbon and/or MoxC at 800[50_TD DIFF]?C.XRD patterns of the resulting products are show n in Fig.2b.The different cystal structure of MoxC-based materials is obtained by adjusting the mass ratio of melamine to ammonium molybdate to be 5:1,10:1,15:1 and 20:1,respectively.For the mass ratio of melamine to ammonia molybdate is 5:1 and 10:1,diffraction peaks located at 34.4?,37.8?,39.4?,52.1?,61.5?,69.6?,72.4?,and 74.6?is detected,which is indexed to the(100),(002),(101),(102),(110),(103),(200)and(112)lattice planes of Mo2C(JCPDSNo.01-071-242).However,w hen the mass ratio is increased to 15:1 and 20:1,XRD show s the gradually conversion of Mo2Cto MoC,which is due to the suf fi cient carbon source.The diffraction peaksat 36.4?,42.3?,61.4?and 73.5?are corresponding to the characteristic(111),(200),(220)and(311)lattice planes of MoC(JCPDSNo.01-089-2868).By calculating from Scherrer equation,the average particle size of Mo2Cand MoCin these composites is calculated to be 6.3,2.5,2.1 and 1.6 nm,respectively,which is estimated from the highest intensity diffraction peaks of the prepared four catalysts(Table S1 in Supporting information),indicating the fact that massive melamine is favorable to reduce the particle size of MoxC.

    Fig.1.Schematic illustration of the synthetic procedure for Mox C/NCScomposites.

    Fig.2.(a)XRD patterns of g-C3N4 and MoOx/g-C3N4.(b)XRD patterns,(c)XPSC 1s and(d)Mo 3d spectra of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 catalysts.

    X-ray photoelectron spectroscopy(XPS)was performed to analysis the electronic structures of the catalysts.The full scan XPS spectra suggested that the Mo,O,C and N as main elements are presented on the surface of catalysts(Fig.S1 in Supporting information).The relative atomic content is given in Table S2 in Supporting information.The Mo,N and O content decreased with increasing the ratio of melamine and ammonium molybdate.However,the C content increased obviously with increasing of melamine content,and thus resulting in the improvement of electronic conductivity and the conversion of MoxC.The existence of N element implies the doping of C with N atom,which is favorable for improving the interaction of active sites with H+[21].The fi tting C 1s spectra are show n in Fig.2c.The peaks located at 284.6[51_TD DIFF]eV,285.1 eV,286.3 eV and 288.8 eV are attributed to C??C bond,C?N bond,C??O bond and O?C??O bond[40],respectively.The existence of C?N bonding indicates that the N atoms is incorporated into carbon substrate,which plays a vital role for HER.In addition,the C-Mo bonding is identi fied in fi tting C1s spectra of obtained catalysts which demonstrates the existence of MoxC.The fi tting Mo 3d spectra is given in Fig.2d,and there are four valence states(+2,+3,+4 and+6)of Mo on the surface.The oxidation states of Mo6+are likely attributed to surface oxidation(MoO3)on the surfacesof catalystsduring the measurement[41],and the MoO3is thought to be inactive for HER.Meanwhile,the peaksof Mo2+,Mo3+and Mo4+are recorded at 228.0–229.0 eV,231.0–232.0 eV and 233.0–235.0 eV,which can be attributed to Mo2C,Mo N and Mo C[42,43],respectively.The XPSanalysis suggeststhat melamine canact as both carbon source and nitrogen source to obtain N doped carbon and MoxC.Thus,the obtained catalysts are denoted as Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,respectively.Additionally,Mo2+and Mo3+species are considered to be active sites for electrocatalytic HER,and the Mo3+/Mo2+ratio on the MoxCsurface could provide useful information to acquire the nature of the active-sites[43].The relative amount of Mo2+and Mo3+species is estimated by the fi tted peak area.As depicted in Table S3 in Supporting information,the Mo3+/Mo2+ratios in Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15,and MoC/NCS-20 are calculated to be 0.28,0.54,0.91 and 1.55,respectively,which suggests the fact that Mo2+isdominant in Mo2C/NCS-5 and Mo2C/NCS-10 while Mo3+is prevailing in MoC/NCS-15 and MoC/NCS-20.Thus,the variation of the Mo3+/Mo2+ratio w ill result in different HER activity,which is attributed to the different electron densities around Mo3+and Mo2+.

    Fig.3.TEM and HRTEM imagesof Mox C/NCScatalysts.(a,b)Mo2C/NCS-5,(c,d)Mo2C/NCS-10,(e,f)MoC/NCS-15 and(g,h)MoC/NCS-20.The inset in(a)show s a typical SAED pattern of Mo2C/NCS-5.The inset in(d),(f)and(h)are corresponding to the particle size distribution of Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,respectively.

    TEM measurements were performed to observe the microstructure of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,asshow n in Fig.3.The particle size of Mo2C/NCS-5 islarger and accumulated obviously,which is due to the reaction of melamine derived carbon with Mo Ox,and only few amount of carbon remains.The selected area electron diffraction(SAED)pattern inserted in Fig.3a illustrates the presence of Mo2C nanoparticles.The bright diffraction rings indicate the nanostructure is polycrystalline.It is observed from high resolution transmission electron microscopy(HRTEM)image of an individual particle that the inter-planar spacing between adjacent fringes for Mo2C/NCS-5 are measured to be 0.26[54_TD DIFF]nm and 0.24 nm(Fig.3b),which are corresponding to the(100)and(101)planes of Mo2C,and the result is consistent the SAED pattern.The exposed(101)lattice plane of Mo2C is coordinatively unsaturated and have negative H2adsorption energies[44],which plays a signi fi cant role for the HERperformance.Ultra-thin carbon sheets supported MoxC particles are oberved clearly with increasing the weight ratio of melamine to ammonium molybdate up to 10:1,15:1 and 20:1.TEM images of Mo2C/NCS-10,MoC/NCS-15,and MoC/NCS-20 show the uniform distribution of MoxC nanoparticles on the carbon nanosheets,as given inFigs.3c–h.The average particle size is estimated to be 2.7 nm,2.0 nm and 1.4 nm for Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,respectively.The decrease of particle size may attribute to the more decentralization of amorphous molybdenum precursor with increasing the amount of melamine,which is also consistent with the result calculated from Scherrer equation in XRD patterns.Furthermore,Fig.3h show s the inter-planar spacing of MoC/NCS-20 to be 0.25 nm,which is corresponding to(111)plane of MoC phase[16].The lattice fringe measured in HRTEM image is in consistence with the theoretical inter-planar spacing calculated from the XRD patterns(Fig.2b),and which also con fi rmed the phase transformation from Mo2C to MoC as well.The unique nitrogen doped carbon nanosheets and tiny MoxC nanoparticles could provide more active sites and higher electrochemically active surface area for HER.

    Brunauer-Emmett-Teller(BET)was applied to analyze the specific surface area of MoxC/NCScomposites.Fig.S2(Supporting information)show s that the specific aurface area is determined to be 53.4[57_TD DIFF]m2/g,79.2 m2/g,91.7 m2/g and 110.8 m2/g for Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,respectively.The increase of specific surface area could provide more reaction interfaces for the HER,and higher carbon content facilitates the electron transport to active sites[21].The similar pore-size distribution is obtained for MoxC/NCSsamples.Micropores peaks at about 1.5[58_TD DIFF]nm and 1.7 nm,and the main mesoporespeak at 3.2[59_TD DIFF]nm is detected.The mesoporous structure enable the fast diffusion of electrolyte and promote mass transfer during the HER process.

    Fig.4.(a)HERpolarization curves of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 in 0.5 mol/LH2SO4 solution.(b)Tafel plots of the corresponding catalysts.(c)Capacitive current at 0.3[38_TD DIFF]V as a function of scan rate for Mox C/NCS.(d)HERpolarization curves of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 before and after 3000 potential cycles in 0.5 mol/LH2SO4 solution.(e)HERpolarization curves of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 in 1 mol/LKOH solution.(f)Tafel plots of the corresponding catalysts.(g)HER polarization curves of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 before and after 3000 potential cycles in 1 mol/LKOH solution.(h)[39_TD DIFF]Current density versus time curves(at a constant potential of 130 m V and 108 m V,respectively)on Mo2C/NCS-10 in 0.5 mol/LH2SO4 and 1[40_TD DIFF]mol/LKOH solution.

    The electrocatalytic performance of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 catalysts for HER was investigated in 0.5 mol/LH2SO4solution.As show n from the polarization curves in Fig.4a,Pt/Cexhibits perfect catalytic performance with nearly zero onset overpotential,and Mo2C/NCS-10 exhibits a higher HERactivity as compared with the other three molybdenum carbides catalysts.The overpotential obtained at the current density of 10 m A/cm2is an important parameter for comparison catalysts in solar hydrogen production[36].The corresponding overpotentials at a current density of 10[46_TD DIFF]m A/cm2for Mo2C/NCS-5,Mo2C/NCS-10,Mo C/NCS-15 and Mo C/NCS-20 are 155[60_TD DIFF]m V,130 m V,172 m V and 197 m V,respectively,indicating a faster hydrogen evolution rate on Mo2C/NCS-10 electrode,although it is higher than that of Pt/C(46[61_TD DIFF]m V).Such prominent HER activity of Mo2C/NCS-10 in acid media is better in the list among the current noble metal-free HERcatalysts(Table S4 in Supporting information).The Tafel plot was gained by plotting the logarithm of the kinetic current density obtained from the corresponding HERpolarization curves(Fig.4b).The Tafel slope of Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20 is calculated to be 80[62_TD DIFF]m V/dec,71 m V/dec,103 m V/dec and 118 m V/dec respectively,indicating a Volmer-Heyrovsky mechanism for HER,and the HER rate is determined by the electrochemical desorption of H and H+from the catalyst surface to form hydrogen[16].In addition,the lowest value of Tafel slope for Mo2C/NCS-10 means the excellent HER catalytic activity with increasing potential as compared with other MoxC based catalysts.

    The nitrogen doped carbon nanosheets and fine MoxC nanoparticles could provide more active sites for HER.Besides,the enhanced HERperformance of Mo2C/NCS-10 could be attributed to the large electrochemically active surface area(ECSA),which can be derived by calculating the double-layer capacitances(Cdl).The double-layer capacitances were obtained using cyclic voltammograms between 0.2[63_TD DIFF]V and 0.4 V at scan rates ranging from 20m V/s to 180[64_TD DIFF]m V/s(Fig.S3 in Supporting information).The measured Cdlis 30.4,32.1,29.2 and 22.4[65_TD DIFF]m F/cm2for Mo2C/NCS-5,Mo2C/NCS-10,MoC/NCS-15 and MoC/NCS-20,respectively(Fig.4c).It can be seen that the Cdlvalue of Mo2C/NCS-10 is 1.06,1.10 and 1.44 timeshigher than that of Mo2C/NCS-5,MoC/NCS-15 and MoC/NCS-20,indicating a relative more quantitive of active sites.The result show s that the larger the specific surface area,the smaller the electrochemical active surface area,which is due to the different N content.Although the specific surface area increased,the N/C ratio decreased with the increase of melamine content(Table S2).The Ncontent w ould affect the double-layer capacitances.Ahigher Ncontent could increase the electrochemical active area and active sites.Therefore,N-doped carbon nanosheets,ultra fine Mox C nanocrystallites,mesoporous structure and large electrochemical active surface area work together for the better electrocatalytic HERperformance.By comparing the electrochemical property and physical characterization,it is found that Mo2C/NCS catalysts possess superior HERactivity to Mo C/NCScomposites.The stability of MoxC/NCScatalysts were measured by potential cycling for 3000 cycles at a sweep rate of 100[66_TD DIFF]m V/s in 0.5 mol/LH2SO4solution,as illustrated in Fig.4d.There is negligible current decay for all asprepared materials,suggesting the excellent electrochemical stability of these catalysts in acid solution.

    The HERactivity of MoxC/NCScatalysts was also conducted in basic media(1[67_TD DIFF]mol/L KOH).The Mo2C/NCS-10 exhibits better electrocatalytic HER activity in 1 mol/L KOH solution,with an smaller overpotential of 108m V at the current density of 10[46_TD DIFF]m A/cm2,compared with Mo2C/NCS-5(125m V),MoC/NCS-15(147 m V)and MoC/NCS-20(194m V),as show n in Fig.4e,demonstrating a faster hydrogen evolution rate on Mo2C/NCS-10 in alkaline.The Tafel slope of Mo2C/NCS-10 in Fig.4f is calculated to be 83m V/dec,which is comparable to Pt/C(60m V/dec),much lower than that of Mo2C/NCS-5(91m V/dec),MoC/NCS-15(107m V/dec)and MoC/NCS-20(133m V/dec),respectively,indicating a Volmer-Heyrovsky mechanism process.Besides,by comparing the HERperformance of recent reported MoxC-based composites in alkaline media,it is also con fi rmed the good HERactivity of the obtained Mo2C/NCS-10(Table S4).The stability of MoxC/NCScatalysts in alkaline medium was evaluated by potential cycling(3000 cycles)at a sweep rate of 100m V/s.Ascan be seen from the polarization curvesin Fig.4g,the Mo2C/NCS-10 catalyst exhibits about 8m V decay after the 3000 potential cyclesin alkaline condition,which issmaller ascompared with Mo2C/NCS-5,Mo C/NCS-15 and Mo C/NCS-20.Furthermore,[39_TD DIFF]Current density versus time curves for Mo2C/NCS-10 in both 0.5 mol/LH2SO4and 1[40_TD DIFF]mol/LKOH solution was conducted at constant potentials of 130 and 108m V for 20 h,respectively.There is a negligible current decay in 0.5[79_TD DIFF]mol/Lh2SO4,while a slight current decrease in 1mol/L KOH during 20 h testing (Fig.4h).The electrochemical stability of Mo2C/NCS-10 catalyst in KOH solution is inferior to that in H2SO4,which is probably attributed to the corrosion of carbon support in KOH solution,and the active sites w ould be detached from the carbon support[45].

    In summary,MoxC/NCS catalysts were synthesized through a facile mechanical mixing and subsequent high-temperature treatment strategy.The different structure and grain size of molybdenum carbides are obtained by adjusting the mass ratio of melamine and ammonium molybdate precursors.Mo2C is gradually converted to MoC with increasing the amount of melamine.The electrochemical performance for HER of these MoxC/NCScomposites is investigated in both 0.5mol/LH2SO4and 1 mol/L KOH media.The Mo2C/NCS-10 presents a good HER activity,and exhibits a small overpotential of 130 m V in 0.5[79_TD DIFF]mol/L H2SO4and 108m V in 1 mol/LKOH for delivering current density of 10[46_TD DIFF]m A/cm2,respectively.The superior HERactivity is attributed to the N-doped carbon nanosheets,ultra fine Mo2C nanoparticles,moderate surface area and mesoporous structure.

    Acknow ledgm ents

    This work was supported by the National Natural Science Foundation(No.21706086),1000 Young Talent(to Deli Wang).The authors thank the Analytical and Testing Center of HUST for allow ing use its facilities.

    Appendix A.Supplem entary data

    Supplementary materialrelated to thisarticlecan befound,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.05.009.

    黑丝袜美女国产一区| 欧美激情极品国产一区二区三区 | 极品人妻少妇av视频| 极品人妻少妇av视频| 一本—道久久a久久精品蜜桃钙片| 久久人人爽人人爽人人片va| 看免费成人av毛片| 成年av动漫网址| av在线老鸭窝| a级片在线免费高清观看视频| 国产伦理片在线播放av一区| 我的老师免费观看完整版| 国产精品一区二区性色av| 国产黄片美女视频| 男的添女的下面高潮视频| 国产精品成人在线| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 嫩草影院入口| 少妇熟女欧美另类| 免费黄频网站在线观看国产| 色94色欧美一区二区| 久久久久久久久久人人人人人人| 婷婷色麻豆天堂久久| 日本与韩国留学比较| 久久精品久久久久久噜噜老黄| 青春草亚洲视频在线观看| 久久 成人 亚洲| 日韩亚洲欧美综合| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 日本色播在线视频| 有码 亚洲区| 最近手机中文字幕大全| 丝袜在线中文字幕| 久久这里有精品视频免费| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人 | 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 丰满迷人的少妇在线观看| 18禁在线无遮挡免费观看视频| 日韩免费高清中文字幕av| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 国产毛片在线视频| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 国产深夜福利视频在线观看| 日韩在线高清观看一区二区三区| 老司机影院毛片| 亚洲av中文av极速乱| 一级,二级,三级黄色视频| av免费观看日本| 成人国产av品久久久| 国产女主播在线喷水免费视频网站| 欧美成人午夜免费资源| 亚洲经典国产精华液单| 色吧在线观看| 高清不卡的av网站| 在线免费观看不下载黄p国产| 老女人水多毛片| 久久久久久久久久成人| 寂寞人妻少妇视频99o| 久久久午夜欧美精品| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品第二区| 日韩电影二区| 九九在线视频观看精品| 最新中文字幕久久久久| 偷拍熟女少妇极品色| 国产日韩欧美视频二区| 久久精品熟女亚洲av麻豆精品| 久久鲁丝午夜福利片| 我的老师免费观看完整版| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 啦啦啦啦在线视频资源| 国产乱人偷精品视频| 欧美变态另类bdsm刘玥| 国产男女超爽视频在线观看| 欧美日韩视频精品一区| 噜噜噜噜噜久久久久久91| 成年人午夜在线观看视频| 在线亚洲精品国产二区图片欧美 | 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 国产精品福利在线免费观看| xxx大片免费视频| 美女cb高潮喷水在线观看| 成人二区视频| 国产精品不卡视频一区二区| 欧美精品一区二区免费开放| 丰满乱子伦码专区| 亚洲人与动物交配视频| 熟女av电影| 亚洲电影在线观看av| 国产精品无大码| 又粗又硬又长又爽又黄的视频| 99久国产av精品国产电影| 如何舔出高潮| 国产成人一区二区在线| 老司机影院毛片| 国产成人免费观看mmmm| 久久国产亚洲av麻豆专区| 亚洲精品日本国产第一区| 国产黄色视频一区二区在线观看| 亚洲国产精品999| 尾随美女入室| 美女脱内裤让男人舔精品视频| 免费大片黄手机在线观看| 成年人免费黄色播放视频 | 国产精品欧美亚洲77777| 搡老乐熟女国产| av不卡在线播放| 国产精品99久久99久久久不卡 | 久久久国产精品麻豆| 黄色一级大片看看| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 亚洲不卡免费看| 久久国产精品男人的天堂亚洲 | 国产精品一区二区在线不卡| 午夜91福利影院| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 国产在视频线精品| 99久久人妻综合| 久久精品国产亚洲av涩爱| 日本与韩国留学比较| 欧美另类一区| 建设人人有责人人尽责人人享有的| 又爽又黄a免费视频| 久久av网站| 中文资源天堂在线| 日本黄色日本黄色录像| 人妻夜夜爽99麻豆av| 99久久精品热视频| 六月丁香七月| 日韩精品免费视频一区二区三区 | 精品一区二区三区视频在线| av在线老鸭窝| 亚洲第一区二区三区不卡| 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| 免费黄色在线免费观看| 亚洲国产精品国产精品| 免费av不卡在线播放| 国产一区二区在线观看av| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线 | 午夜福利网站1000一区二区三区| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 女人久久www免费人成看片| 日日啪夜夜撸| 久久精品久久精品一区二区三区| 极品教师在线视频| 色5月婷婷丁香| 这个男人来自地球电影免费观看 | 国产伦在线观看视频一区| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 一级av片app| 亚洲欧美日韩东京热| 亚洲熟女精品中文字幕| 观看美女的网站| 麻豆乱淫一区二区| 久久久国产精品麻豆| 最新中文字幕久久久久| 久久 成人 亚洲| 欧美成人精品欧美一级黄| 人妻一区二区av| 日韩一本色道免费dvd| av免费在线看不卡| 日韩免费高清中文字幕av| 高清毛片免费看| 精品人妻熟女毛片av久久网站| 成人国产麻豆网| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 免费观看av网站的网址| 久久综合国产亚洲精品| 国产高清三级在线| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 又爽又黄a免费视频| 黄色日韩在线| 午夜久久久在线观看| 性色avwww在线观看| 自线自在国产av| av有码第一页| 深夜a级毛片| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 蜜桃在线观看..| 免费观看在线日韩| 九色成人免费人妻av| 国产淫片久久久久久久久| a级片在线免费高清观看视频| 亚洲精品,欧美精品| 午夜久久久在线观看| 亚洲精品国产av蜜桃| 精品酒店卫生间| 视频区图区小说| 18禁裸乳无遮挡动漫免费视频| videossex国产| 久久精品国产亚洲av天美| 高清视频免费观看一区二区| 一本色道久久久久久精品综合| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 国产精品国产av在线观看| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 视频中文字幕在线观看| 亚洲欧美清纯卡通| 在线亚洲精品国产二区图片欧美 | a级片在线免费高清观看视频| 亚洲欧洲国产日韩| 韩国av在线不卡| h视频一区二区三区| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 亚洲精品456在线播放app| 97超碰精品成人国产| 在线天堂最新版资源| 精品久久久久久久久av| 国产乱来视频区| 一个人看视频在线观看www免费| 边亲边吃奶的免费视频| 精品一区在线观看国产| 久久亚洲国产成人精品v| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 多毛熟女@视频| 久久精品国产亚洲av天美| 久久女婷五月综合色啪小说| 一区二区av电影网| 51国产日韩欧美| 久久这里有精品视频免费| 在线观看av片永久免费下载| 日韩成人av中文字幕在线观看| 日韩一区二区三区影片| 新久久久久国产一级毛片| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费大片| 国产精品伦人一区二区| 成人美女网站在线观看视频| 三级国产精品欧美在线观看| 最近中文字幕高清免费大全6| 男人和女人高潮做爰伦理| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 综合色丁香网| 国产色婷婷99| 国产 一区精品| 中国国产av一级| 欧美成人午夜免费资源| 欧美精品一区二区大全| 99九九在线精品视频 | 国产成人精品婷婷| av在线app专区| 国产探花极品一区二区| 男女边吃奶边做爰视频| 青春草国产在线视频| 一级毛片aaaaaa免费看小| 欧美bdsm另类| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 一级片'在线观看视频| 麻豆成人午夜福利视频| 午夜视频国产福利| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 极品教师在线视频| 欧美激情国产日韩精品一区| 成人影院久久| 成年女人在线观看亚洲视频| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 国产精品99久久久久久久久| 亚洲精品国产成人久久av| 国产精品一区www在线观看| 亚洲av在线观看美女高潮| 亚洲中文av在线| 中文欧美无线码| 9色porny在线观看| 日日摸夜夜添夜夜爱| 自线自在国产av| 国产有黄有色有爽视频| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 国产在线男女| av在线观看视频网站免费| 18禁在线无遮挡免费观看视频| 国产亚洲av片在线观看秒播厂| 国产免费福利视频在线观看| 精品一区在线观看国产| 国产一级毛片在线| 99视频精品全部免费 在线| 日韩不卡一区二区三区视频在线| 亚洲婷婷狠狠爱综合网| 青春草视频在线免费观看| 亚洲精品视频女| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 国产av精品麻豆| 久久ye,这里只有精品| 嘟嘟电影网在线观看| 免费av不卡在线播放| 精品午夜福利在线看| 熟女人妻精品中文字幕| 亚洲成色77777| av又黄又爽大尺度在线免费看| 熟女人妻精品中文字幕| 在线观看免费高清a一片| 久久99热6这里只有精品| 亚洲成色77777| 亚洲精品乱码久久久v下载方式| 一本—道久久a久久精品蜜桃钙片| 日本欧美视频一区| 精品少妇久久久久久888优播| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频 | 两个人的视频大全免费| 在线观看免费高清a一片| 久久99一区二区三区| 纯流量卡能插随身wifi吗| 少妇的逼好多水| 日本-黄色视频高清免费观看| 秋霞在线观看毛片| 黑人猛操日本美女一级片| 永久网站在线| 99热网站在线观看| 国产精品久久久久成人av| 在线观看免费视频网站a站| 亚洲精品,欧美精品| 日日撸夜夜添| 黄色怎么调成土黄色| 国产黄色视频一区二区在线观看| 国产精品成人在线| av不卡在线播放| 欧美区成人在线视频| 最近的中文字幕免费完整| 美女主播在线视频| 午夜久久久在线观看| 在线看a的网站| 国产欧美日韩精品一区二区| 亚洲国产精品一区三区| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 亚洲一区二区三区欧美精品| 午夜老司机福利剧场| 久久婷婷青草| 日韩中字成人| 亚洲国产色片| 精品国产露脸久久av麻豆| 在线观看一区二区三区激情| 欧美三级亚洲精品| 日韩制服骚丝袜av| 欧美日本中文国产一区发布| 国产日韩欧美视频二区| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 成人18禁高潮啪啪吃奶动态图 | 丁香六月天网| 国产精品久久久久久av不卡| 日韩大片免费观看网站| 十八禁网站网址无遮挡 | 人人妻人人看人人澡| 波野结衣二区三区在线| 你懂的网址亚洲精品在线观看| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 99久久综合免费| 久久婷婷青草| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 午夜福利,免费看| 我的女老师完整版在线观看| av不卡在线播放| a级片在线免费高清观看视频| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 午夜福利视频精品| 两个人免费观看高清视频 | 日韩欧美精品免费久久| 国产精品国产av在线观看| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 久久国产精品大桥未久av | 精品视频人人做人人爽| 精品久久久久久久久亚洲| 中文字幕av电影在线播放| 插阴视频在线观看视频| 赤兔流量卡办理| 日本vs欧美在线观看视频 | 极品少妇高潮喷水抽搐| 蜜桃在线观看..| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 青春草亚洲视频在线观看| 少妇熟女欧美另类| 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 美女视频免费永久观看网站| 美女大奶头黄色视频| 嫩草影院入口| 午夜影院在线不卡| 亚洲欧洲国产日韩| 另类精品久久| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| kizo精华| 精品午夜福利在线看| 一级av片app| 天天躁夜夜躁狠狠久久av| 春色校园在线视频观看| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 中国美白少妇内射xxxbb| 国产极品粉嫩免费观看在线 | 一二三四中文在线观看免费高清| 五月玫瑰六月丁香| 精品少妇久久久久久888优播| 国产精品久久久久久av不卡| 夜夜骑夜夜射夜夜干| 国产乱来视频区| 国产色爽女视频免费观看| 十八禁网站网址无遮挡 | 午夜久久久在线观看| 老司机亚洲免费影院| 丝袜喷水一区| 国产欧美亚洲国产| 国产熟女午夜一区二区三区 | 水蜜桃什么品种好| 国产高清三级在线| 精品久久久噜噜| 国产亚洲午夜精品一区二区久久| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| av.在线天堂| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 亚洲精品国产成人久久av| 如何舔出高潮| 最新的欧美精品一区二区| 国产精品一二三区在线看| 91久久精品电影网| 人妻系列 视频| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站| 精品国产一区二区久久| 在线亚洲精品国产二区图片欧美 | 午夜精品国产一区二区电影| 亚洲成人av在线免费| 国产淫片久久久久久久久| 久久毛片免费看一区二区三区| 一级片'在线观看视频| 久久国产精品男人的天堂亚洲 | 精品久久久噜噜| 国产精品国产三级国产av玫瑰| av线在线观看网站| 哪个播放器可以免费观看大片| 又爽又黄a免费视频| 全区人妻精品视频| 在线免费观看不下载黄p国产| 永久免费av网站大全| 女性被躁到高潮视频| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 插逼视频在线观看| 91久久精品国产一区二区成人| 亚洲中文av在线| 91精品伊人久久大香线蕉| 五月开心婷婷网| 人人澡人人妻人| 高清视频免费观看一区二区| 好男人视频免费观看在线| 久久国产精品大桥未久av | 亚洲经典国产精华液单| 我的女老师完整版在线观看| 久久久久久久亚洲中文字幕| a级毛片免费高清观看在线播放| 日韩欧美一区视频在线观看 | 国产日韩欧美亚洲二区| 十分钟在线观看高清视频www | 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频 | 高清欧美精品videossex| 国产午夜精品一二区理论片| 少妇人妻久久综合中文| av卡一久久| av福利片在线观看| 国产精品免费大片| 国产亚洲最大av| 国产欧美日韩一区二区三区在线 | 日韩免费高清中文字幕av| 国产精品99久久99久久久不卡 | videos熟女内射| 制服丝袜香蕉在线| 久久国产乱子免费精品| 日韩免费高清中文字幕av| 国产成人午夜福利电影在线观看| 成年人免费黄色播放视频 | 国产日韩欧美视频二区| 久久狼人影院| 欧美日韩精品成人综合77777| 黄色毛片三级朝国网站 | 黄色欧美视频在线观看| 国产精品无大码| 99九九在线精品视频 | 91成人精品电影| 各种免费的搞黄视频| 亚洲精品456在线播放app| 免费人妻精品一区二区三区视频| 自线自在国产av| 色5月婷婷丁香| 久久综合国产亚洲精品| 看免费成人av毛片| 性高湖久久久久久久久免费观看| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 国产欧美日韩一区二区三区在线 | 国产精品一区二区三区四区免费观看| 一个人免费看片子| 亚洲精品亚洲一区二区| 国产成人精品婷婷| 久久精品夜色国产| 免费看光身美女| 国产成人精品婷婷| 国产69精品久久久久777片| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| av在线app专区| 亚洲av中文av极速乱| 国产免费视频播放在线视频| 伊人久久国产一区二区| 国产精品三级大全| 精品人妻一区二区三区麻豆| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 精品少妇黑人巨大在线播放| 久久影院123| www.av在线官网国产| 中文字幕av电影在线播放| 精品少妇黑人巨大在线播放| 亚洲精品日本国产第一区| 午夜日本视频在线| 免费观看的影片在线观看| 丝袜脚勾引网站| 日韩av不卡免费在线播放| 看非洲黑人一级黄片| 免费观看在线日韩| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 久久午夜综合久久蜜桃| 女人久久www免费人成看片| 久久影院123| 日本黄色片子视频| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 成人亚洲精品一区在线观看| 日韩免费高清中文字幕av| 美女大奶头黄色视频| 亚洲精品中文字幕在线视频 | 高清午夜精品一区二区三区| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 欧美3d第一页| 九九久久精品国产亚洲av麻豆| 丝袜脚勾引网站| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 午夜av观看不卡| 丝袜在线中文字幕| 国产国拍精品亚洲av在线观看| 久久久久久久久久成人| 王馨瑶露胸无遮挡在线观看| 日韩欧美 国产精品| 欧美成人午夜免费资源| 大香蕉久久网| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| 99久久人妻综合| 日本猛色少妇xxxxx猛交久久| 精品人妻熟女毛片av久久网站| 日韩免费高清中文字幕av| 午夜日本视频在线| 伦理电影免费视频| www.av在线官网国产| 少妇熟女欧美另类| 久久99蜜桃精品久久| av黄色大香蕉| 99久久精品热视频| 新久久久久国产一级毛片| 久久青草综合色| 欧美最新免费一区二区三区|