• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multiple coupling approach to produce high-performance SERS substrates

    2019-02-15 02:28:04XianpengYinHaoDongShiqiangWangYunLiangNingGaoWanlinZhangLiTianFuweiSunGuangtaoLi
    Chinese Chemical Letters 2019年1期

    Xianpeng Yin,Hao Dong,Shiqiang Wang,Yun Liang,Ning Gao,Wanlin Zhang,Li Tian,Fuwei Sun,Guangtao Li*

    Department of Chemistry,Key Lab of Organic Optoelectronics and Molecular Engineering,Tsinghua University,Beijing 100084,China

    Key words:Hotspots Electromagnetic Nanoparticles Cluster array SERS

    ABSTRACT Creating hotspots with significantly enhanced electromagnetic(EF)fi eld,efficiently placing target molecules in hotspot region,and achieving uniform and reproducible Raman signals are three critical issues for developing high-performance SERSsubstrates.In thiswork,large area gold nanoparticle cluster pillar array with a gold mirror at bottom was facilely fabricated by combined use of nanosphere lithography and self-assembly approach.It is both theoretically and experimentally found that through multiple coupling interactions,the electromagnetic fields at interparticle gaps within the gold clusters were significantly enhanced in our three-dimentional(3D)pillar array substrates,which can result in one order of magnitude stronger as compared with random gold clusters on a two-dimentional planar case.Due to the periodic stucture,our substrates also possess the capbility of producing highly uniform and reproducible SERS signals.Attractively,in our case,a photoresponsive polymer was used for the formation of pillar array structure.Its unique photoinduced deformation makes it possible to reversibly open and close the gaps of the closely packed Au NP array,thus enabling efficient placement or entrapment of probe molecules into hotspot sites between adjacent nanoparticles.

    Noble metal nanoparticles(NPs)have unique localized surface plasmon resonance(LSPR)due to the collective oscillation of free electrons in the NPs under light irradiation,which lead to a high electromagnetic fi eld(EF)in the vicinity of the NPs surface[1–3].The resonance properties of metal NPs depend on their size,shape,composition as well as environment[4,5].In particular,w hen noble metal NPs are assembled in closely packed cluster,a giant EF enhancement can be generated due to the near-fi eld plasmon coupling of individual NPs at the interparticle junctions,know n as the “hotspots”,which makes the NPcluster very attractive for SERS sensors[6–10].It has been theoretically and experimentally demonstrated that the EFenhancement is concentrated mainly in the nanometer gap junction of adjacent particles and can be orders of magnitude stronger than on the individual particle surface[11,12].In this regard,due to the lack of efficient control on packing structure the random NPclusters as SERSsubstrate generally show limited uniformity and reproducibility in signal acquisition[13,14].By contrast,regular NP clusters with well-de fined geometries exhibit reliable SERSsensing and detection[15].

    Recently,the NP clusters were used as building blocks to construct periodic nanoparticle cluster arrays(NCAs)with the expectation of developing high performance SERSsubstrates[15–17].For examples,Reinhard’s group described a series of periodic Au NCAs with variable nanoparticle diameter and intercluster separation assembled on fl at glass substrate.It was found that the multiscale structural feature could lead to a multiplicative EF enhancement effect in NCAs.The combination of the near-fi eld EF enhancement given by nanoscale feature(individual clusters)with a periodical microscale structure capable of far-fi eld electromagnetic coupling could generate an additional enhancement in hotspot region,thus leading to a signi fi cant improvement of SERS ef fi ciency.Besides the size and shape of the NPs,the parameters of the array such as array size and intercluster distance could be further used as efficient means for modulating SERS substrate performance[15,16].Additionally,the periodic structure endow s the substrate with the ability of producing a highly uniform and reproducible SERS signals.All of the results indicate that the array strategy is a promising approach to achieve high performance SERS substrates.Over past years,various methods,including top-dow n,bottom-up approach as well as the combined strategies,are employed for producing periodic array SERS systems with well-controlled features[15–24].Although great progress has been made in recent years,the creation of new array SERS substrate or architecture with further improved performance is still a research hotspot.

    Creating hotspots with significantly enhanced EF,efficiently placing target molecules in hotspot sites,and reliably achieving uniform and reproducible Raman signals are three critical issues for developing high-performance SERS substrates[15,16,24].In this work,we report a new SERSarray architecture,namely 3D Au nanoparticle cluster nanopillar array with a gold mirror(Au-NCPAGM)(Fig.1d),which can address these key issues.Compared with the reported tw o-dimensional(2D)NCAon a planar substrate,this 3D periodic hierarchical architecture can generate more coupling modes,including near-fi eld plasmon coupling of neighbouring Au nanoparticles,far-fi eld coupling between clusters as well as farfi eld coupling between clusters and gold mirror.By employing the nanosphere lithography(NSL)and self-assembly approach[25],it is possible to precisely control and modulate the parameters of the created periodic array structure,which ensure the uniformity and reproducibility of the SERSsignals.Attractively,in our case we used a photoresponsive polymer for the formation of pillar array structure.Its unique photoinduced deformation makes it possible to reversibly open and close the gaps of the closely packed Au NP arrays,thus enabling efficient placement or entrapment of probe molecules into hotspot sites between adjacent nanoparticles.Our results clearly indicate that this new active Au-NCPA-GM structure described here could be used as a new type of high-performance SERSsubstrates.

    Fig.S1(Supporting information)outlined the fabrication procedure of the Au-NCPA-GM structure with controlled parameters.First the photoresponsive polymer fi lm was coated onto a fl at glass substrate through photo initiated polymerization of the acrylate monomers and cross-linker(Fig.S1),and utilized to fabricate the desired photoactive nanopillar arrays using NSL method.By employing the NSL,it is possible to precisely control the geometrical parameters of the resulting pillar structure by varying the experiment conditions.Then a gold fi lm with a thickness of about 30 nm was further deposited on the etched substrate using an electron beam evaporation deposition system.The subsequent removal of all templates affords the polymer nanopillar array with a gold mirror at bottom.Finally,the gold cluster monolayer was assembled on the top of the prepared nanopillar array by peel-off transferring of the Au NPs monolayer deposited on PDMSsubstrate.The TEM images and UV–vis spectra of the prepared Au NPs with diameter of 20 nm,35 nm,and 50 nm were given in Fig.S2 in Supporting information.Fig.S3(Supporting information)show s the SEM images of the close packed uniform monolayers of the Au NPs with different sizes on a PDMAsubstrate.To evaluate the influence of structural parameters on the electromagnetic fi eld enhancement in the prepared substrates,both theoretical simulations and experiments were carried out in our work.

    Fig.1.Comparison of the simulated EFintensity distributions of four different gold cluster structures.

    To reveal the different near-fi eld and far-fi eld coupling interactions of Au-NCPA-GM compared to 2D random unpatterned gold NPcluster(Au-NC),2Dgold NPcluster array(Au-NCA)as well as gold NP nanopillar array without gold mirror(Au-NCPA),FDTD simulations were carried out to study the EF intensity distribution of the four different structures.In thiswork,the EF is set as|E|2,and the incident light has|E|2=1 in all simulations.The colour scale bar in Fig.1 represents the EF in liner scale.Thus,the EF value of each point can be obtained by referring to the scale bar.In the case of Au-NC(Fig.1a),only the near-fi eld surface plasmon coupling exists between adjacent Au NPs.It is obvious that the EF intensity in hotspot sites is relative weak in this structure.In the case of NCAs(Fig.1b),however,it is found that the periodic array structure has an additional EF enhancement effect mainly due to the combine the electromagnetic near-fi eld coupling with far-fi eld coupling of clusters.It can be seen that the fi eld intensity is stronger than that of the unpatterned random Au NPs cluster(Au-NC).Clearly,the far-fi eld coupling interaction plays an important role in the NCA structure.The Au-NCPA(Fig.1c)is a structure derived from expansion of the NCAs from tw o-dimension to three-dimension.We found that due to the longer propagation pathw ay of light in the third dimension the Au NPs close-packed on the top of pillars have a higher EF enhancement effect as compared with 2D planar counterparts.In particular,w hen gold fi lm with a thickness of 30 nm was deposited on the bottom of pillars(Fig.1d),further farfi eld coupling between the gold fi lm and Au NPs was introduced.As the gold fi lm acts as a mirror and re fl ects light,the strong coupling interaction between the gold fi lm and Au NPs occurs in Au-NCPA-GM structure.As a result,the EF intensity between adjacent NPs in Au-NCPA-GM structure was significantly enhanced(Fig.1d).These results indicate that the rational design of the multiscale periodic structure could make it possible to realize more abundant coupling interactions,thus leading to higher EF enhancement.

    Certainly,the structural parameters of the Au-NCPA-GM architecture,including the Au NP size(d),the pillar array size(D)as well as the height of pillar(H),have a big influence on the EF intensity distribution in gold NP clusters.The FDTD simulations were carried out to study the influence of the different structural parameterson the electromagnetic fi eld intensity.The resultswere show n in Fig.S4 in Supporting information.

    Three surface structures prepared in our work,namely Au-NC,Au-NCPA and Au-NCPA-GM,were used as SERS substrates to con fi rm the FDTD simulation results.The SERSprobe molecule,4-mercaptophenol,was used in our case to assess the SERS performance of these substrates with the exciting light at 633 nm wavelength.Fig.2d show s the comparison of SERSspectra collected on three different substrates under identical measurement conditions.Obviously,the periodic hierarchical Au-NCPA-GM substrate exhibits excellent SERSperform ance.Its SERSenhancement factor is one order of magnitude stronger as compared with the Au-CN.If we consider the tw o structures have the same number of the nanoparticles,the 3D Au-NCPA-GM structure w ill exhibit even more higher SERSenhancement than the 2D random structure.Notably,the introduction of gold mirror at the bottom of pillar array could further realize more coupling interactions,generating fi ve times stronger SERSenhancement than Au-NCPA.These results are in consistent with the FDTD simulation,indicating that the multiple coupling strategy is an efficient approach to achieve the SERS substrate with improved SERS performance.In order to show the universality,another tw o probe molecules(4-mercaptobenzoic acid and 4-mercaptopyridine)were analyzed using our SERS substrates.As show n in Fig.S5(Supporting information),our substrates is still suitable for analysis of more different compounds with high SERS enhancement.

    Fig.2.SEM images of the three different substrates:(a)unpatterned Au-NCs;(b)Au-NCPAs;(c)Au-NCPAs-GM;(d)comparison of the SERSspectra performed on the three different substrates.Scale bars are 500 nm.

    According to the simulation the NPs size has great influence on the SERSperformance(Fig.S4a).Therefore,the Au NPs with size of 20,35,and 50 nm were separately used to prepare the substrates(Fig.S6 in Supporting information).SEM images show that the uniform and close-packed Au NPs monolayer was assembled on the top of each nanopillar.Fig.S5d show the comparison of SERS spectra on the substrates consisting of different sizes of gold NPs.The experimental results show the SERS enhancement effect increases w hen large NPs were used,which is well consistent with the observation in the reference[26].

    The size(diameter)of pillar is another parameter that can be broadly modulated by simply changing the etching time during the preparation and has an effect on the SERSef fi cacy.By changing the etching time of PSnanospheres,we prepared the nanopillars have diameter of 350,400,460,and 520 nm respectively,while the pillar heights were kept constant at 100 nm.Fig.S7(Supporting information)show s the SEM images of the fabricated four substrates having different pillar sizes.In this case,gold NPs with a diameter of 50 nm were assembled on the top of these pillars to form different Au cluster sizes.Using these substrates the SERS performances were compared,as show n in Fig.3a.In agreement with the simulation results the SERS signal intensity becomes stronger with the increase of the pillar size.

    Fig.3.SERSspectra performed on the substrates with(a)different nanopillar size and(b)nanopillar height;(c)SERSsignals at 1078 cm?1 collected at ten different area on the same substrate;(d)SERSsignals at 1078 cm-1 collected on ten different substrates prepared under identical preparation conditions.

    In our Au-NCPA-GM substrates the height of nanopillars determines the distance between the gold mirror and the Au clusters assembled on the top of pillars.Therefore,it is found that the height of pillars exerts an important influence on the EF coupling,thus the SERSperfermance.In this work,four different nanopillar arrays with the height of 100,200,300,and 400 nm,respectively,were fabricated(Fig.S8 in Supporting information),while the pillar size was kept constant at 460 nm.The crosssectional SEM view s of these Au-NCPA-GM structuresindicate that each of the substrates is highly uniform(Fig.S9 in Supporting information).Indeed,in the case of lower pillar array a stronger and efficient coupling between gold NPclusters and mirror occurs,thus facilitating improvement of SERS performance(Fig.3b).

    A high uniformity and reproducibility of SERS signals are of great importance and prerequisite for the practical application of SERSsubstrates.Fig.3c show s the comparison of the SERSsignals at 1078 cm?1collected randomly at ten different spotson the same substrate.To check the reproducibility,ten substrates were prepared under identical preparation conditions and used for the SERStesting(Fig.3d).We used the relative standard deviation(RSD)of SERSsignal intensity at 1078 cm?1to assessthe uniformity and reproducibility of the fabricated substrates.According to ten measurements,the corresponding RSD values of SERS signal at 1078 cm?1were calculated to be about 5.9%and 8.3%,respectively.Moreover,the SERSsubstrate was measured at intervals of 12 h to demonstrate the stability.Fig.S10(Supporting information)show n the SERSsignal intensity at 1078 cm?1of ten measurements,and the corresponding RSDvalueswascalculated to be about 5%,which indicated that our substrateswith excellent stability.Similar to the observation in literature[23],the 3D ordered structure intrinsically endow s our substrates with excellent signal uniformity and reproducibility.

    Besidescreating highly enhanced EFand achieving uniform and reproducible signals,how to effectively place or entrap target molecules in hotspot region is another crucial issue for the development of high-performance SERSsubstrates.In case of the normal periodic cluster arrays,the nanoparticles were closely packed and the most of probe molecules were absorbed on the surface rather than inside the hotspots.In our work,a cross-linked polymer containing special azobenzene units was used for the formation of nanopillar arrays.The coupling of the photo-induced mass immigration effect and polymer network makes it possible for this polymer to expand the diameter of the created pillars by using circularly polarized light even far below glass temperature and to return its initial state by simple thermal treatment(Fig.S11 in Supporting information)[27].Thisunique deformation property of the photoresponsive polymer implies that the nanogaps of the closely packed Au nanoparticles can be reversibly opened and closed through expanding and contracting the polymer pillars,and then the target molecule could be efficiently entrapped inside nanogaps(hotspots).Indeed,our experiments con fi rmed our concept by using a 532 nm w avelength laser beam with intensity of 10 m W/cm2.Fig.S10a show s the as-prepared Au-NCPA-GM structure,in which the gold nanoparticles are closely packed.It is found that a short illumination on the substrate induced the opening of the gaps of the adjacent nanoparticles(Fig.4b).Interestingly,w hen the treated substrate was immersed into the solution of probe molecule(1?10?6mol/L)for a short time and followed by a simple thermal treatment(Fig.4c),more probe molecules were entrapped in the hotspots.As a result,with this active pillar array a higher SERSsignal enhancement ef fi ciency was achieved(Fig.4d).

    Fig.4.SEM images of(a)as-prepared Au-NCPAs-GM structure,(b)after light irradiation,(c)followed by thermal treatment;(d)comparison of the SERSspectra performed on as-prepared Au-NCPAs-GM structure and Au-NCPAs-GM structure after light illumination followed by thermal treatment.Scale bars are 500 nm.

    In summary,by fabrication of 3D periodic and hierarchical gold nanoparticle cluster pillar arrays,we present a new strategy to address three critical issues for developing high-performance SERS substrates,namely creating hotspots with significantly enhanced EF,efficiently placing target molecules in hotspot region,and achieving uniform and reproducible Raman signals.Compared with 2D nanoparticle cluster array systems,it is theoretically and experimentally found that the rational design of 3D periodic and hierarchical array architecture could generate new opportunity to realize more abundant multiscale coupling interactions,thus affording the substrate with further improved SERSenhancement effect.Combined use of the top-dow n and bottom-up approach provide not only the precise control over the creation of 3D hierarchical array structure for ensuring the uniformity and reproducibility of the SERSsignals,but also more parameters for broadly modulating array SERSperformance.Moreover,the use of the novel photoresponsive polymer to produce nanopillar array endow our SERS substrate with active property.In our case,the unique photoinduced deformation of used polymer was employed to reversibly open and close the gaps of the closely packed Au NP arrays,thus enabling efficient placement or entrapment of probe molecules into hotspot sites between adjacent nanoparticles for further enhancing SERSef fi ciency.With these attractive features,we believe this new active Au-NCPA-GM array structure described here could be used as a new type of high-performance SERS substrates and hold great potential for practical SERS detecting applications.

    Acknow ledgm ents

    The authors gratefully acknow ledge the fi nancial support from the Ministry of Science and Technology of the People's Republic of China(MOST,Nos.2017YFA0204501,2013CB834502),the National Natural Science Foundation of China(NSFC,Nos.21473098,21121004,and 21421064),and the Deutsche Forschungsgemeinschaft DFG(No.TRR61).

    Appendix A.Supplem entary data

    Supplementary materialrelated to thisarticlecan befound,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.06.013.

    999精品在线视频| 午夜影院日韩av| 午夜福利在线观看吧| 午夜福利欧美成人| 精品福利观看| 国产成人啪精品午夜网站| 欧美乱妇无乱码| 丰满人妻一区二区三区视频av | 一级黄色大片毛片| 亚洲国产中文字幕在线视频| 中亚洲国语对白在线视频| 搡老岳熟女国产| 亚洲一区中文字幕在线| 九色国产91popny在线| 人成视频在线观看免费观看| 丁香欧美五月| 国产精品亚洲一级av第二区| 黄色丝袜av网址大全| 欧美色视频一区免费| 久久久精品欧美日韩精品| 亚洲精品一区av在线观看| 真人做人爱边吃奶动态| 欧美3d第一页| av视频在线观看入口| 男女做爰动态图高潮gif福利片| 激情在线观看视频在线高清| 欧美一级毛片孕妇| 亚洲成人中文字幕在线播放| 亚洲最大成人中文| 欧美中文综合在线视频| 在线观看免费午夜福利视频| 亚洲aⅴ乱码一区二区在线播放 | 无人区码免费观看不卡| 大型av网站在线播放| 在线免费观看的www视频| 成人三级黄色视频| 我的老师免费观看完整版| 欧美绝顶高潮抽搐喷水| 国产又黄又爽又无遮挡在线| 国产亚洲欧美98| 久久性视频一级片| 黄频高清免费视频| 中文字幕人妻丝袜一区二区| 无遮挡黄片免费观看| 国产精品亚洲一级av第二区| 国产成人精品久久二区二区免费| 老司机午夜福利在线观看视频| 一本久久中文字幕| 叶爱在线成人免费视频播放| 欧美黑人精品巨大| 国内少妇人妻偷人精品xxx网站 | 最近最新中文字幕大全电影3| 一级作爱视频免费观看| 在线观看美女被高潮喷水网站 | 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx| 精品欧美国产一区二区三| 极品教师在线免费播放| 美女午夜性视频免费| 国产精品久久久久久久电影 | 国产免费av片在线观看野外av| 此物有八面人人有两片| 精品不卡国产一区二区三区| 特级一级黄色大片| 国产精品电影一区二区三区| 亚洲第一欧美日韩一区二区三区| 亚洲色图 男人天堂 中文字幕| videosex国产| 亚洲国产看品久久| 一区二区三区高清视频在线| 91九色精品人成在线观看| 一级毛片女人18水好多| 又爽又黄无遮挡网站| 18美女黄网站色大片免费观看| 欧美性猛交╳xxx乱大交人| 黄片小视频在线播放| 两个人的视频大全免费| 黑人欧美特级aaaaaa片| 欧美成人免费av一区二区三区| 欧美日韩一级在线毛片| 久久精品国产亚洲av高清一级| 黄色视频不卡| 深夜精品福利| 久久99热这里只有精品18| 亚洲成人精品中文字幕电影| 亚洲成人久久性| 日本成人三级电影网站| 亚洲中文日韩欧美视频| 国产精品永久免费网站| 狂野欧美白嫩少妇大欣赏| 亚洲七黄色美女视频| АⅤ资源中文在线天堂| 五月伊人婷婷丁香| 97碰自拍视频| 国产一区二区三区视频了| 岛国在线观看网站| 一级毛片精品| 成人18禁在线播放| 首页视频小说图片口味搜索| 1024手机看黄色片| 99久久无色码亚洲精品果冻| 舔av片在线| 国产精品,欧美在线| 美女免费视频网站| 亚洲真实伦在线观看| 色哟哟哟哟哟哟| av免费在线观看网站| 少妇熟女aⅴ在线视频| 天堂av国产一区二区熟女人妻 | 黑人巨大精品欧美一区二区mp4| 熟妇人妻久久中文字幕3abv| 真人做人爱边吃奶动态| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久电影中文字幕| 成人国语在线视频| bbb黄色大片| 欧美成狂野欧美在线观看| 又大又爽又粗| 国产成人精品无人区| 少妇裸体淫交视频免费看高清 | 十八禁人妻一区二区| 国产高清有码在线观看视频 | 国产av又大| 91国产中文字幕| 母亲3免费完整高清在线观看| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美人成| 99在线人妻在线中文字幕| 一进一出好大好爽视频| 在线永久观看黄色视频| av中文乱码字幕在线| 大型黄色视频在线免费观看| 三级国产精品欧美在线观看 | 欧美乱码精品一区二区三区| 看片在线看免费视频| 国产av麻豆久久久久久久| 怎么达到女性高潮| 亚洲人成网站高清观看| 中文字幕最新亚洲高清| 九色国产91popny在线| 欧美国产日韩亚洲一区| 亚洲精品国产一区二区精华液| 99久久综合精品五月天人人| 中文字幕精品亚洲无线码一区| x7x7x7水蜜桃| 精品国产乱子伦一区二区三区| 久久伊人香网站| 熟女少妇亚洲综合色aaa.| 99久久综合精品五月天人人| 十八禁网站免费在线| 不卡一级毛片| 久久国产精品影院| 在线a可以看的网站| 国产乱人伦免费视频| 精品福利观看| 国产视频一区二区在线看| 妹子高潮喷水视频| 不卡一级毛片| 久久亚洲精品不卡| 婷婷六月久久综合丁香| 国产一区二区在线观看日韩 | 麻豆久久精品国产亚洲av| 亚洲av片天天在线观看| 免费观看精品视频网站| 国产激情欧美一区二区| 成人欧美大片| 国产免费男女视频| 国产精品99久久99久久久不卡| 免费无遮挡裸体视频| 成人特级黄色片久久久久久久| 久久精品91蜜桃| 人妻夜夜爽99麻豆av| 亚洲全国av大片| www.自偷自拍.com| 少妇人妻一区二区三区视频| 人人妻人人澡欧美一区二区| 少妇人妻一区二区三区视频| av在线播放免费不卡| 在线视频色国产色| 午夜a级毛片| 国产精品,欧美在线| 欧美黑人欧美精品刺激| 国产精品一区二区三区四区久久| 亚洲精品美女久久久久99蜜臀| 久久久久久国产a免费观看| 俄罗斯特黄特色一大片| 欧美成人性av电影在线观看| 最近最新免费中文字幕在线| 亚洲精华国产精华精| 十八禁人妻一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久99久视频精品免费| 国产视频内射| 夜夜夜夜夜久久久久| 欧美中文日本在线观看视频| 老司机福利观看| 国产成人av激情在线播放| 黄色毛片三级朝国网站| 亚洲av中文字字幕乱码综合| 美女黄网站色视频| 国产精品香港三级国产av潘金莲| 久久天堂一区二区三区四区| www.999成人在线观看| a级毛片a级免费在线| 最近最新中文字幕大全免费视频| 这个男人来自地球电影免费观看| 两性夫妻黄色片| 九色国产91popny在线| 国产成人av激情在线播放| 免费在线观看日本一区| 99久久99久久久精品蜜桃| 免费在线观看视频国产中文字幕亚洲| 欧美日韩精品网址| 亚洲中文字幕日韩| 在线观看www视频免费| 黄色 视频免费看| 97碰自拍视频| 色噜噜av男人的天堂激情| 香蕉av资源在线| 99在线人妻在线中文字幕| 天天添夜夜摸| 一个人观看的视频www高清免费观看 | 亚洲av电影在线进入| а√天堂www在线а√下载| 久久精品成人免费网站| 国产欧美日韩一区二区精品| 黄色片一级片一级黄色片| 成人国语在线视频| 国产成人欧美在线观看| 欧美丝袜亚洲另类 | 看片在线看免费视频| 亚洲国产欧美网| 婷婷精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产成人精品二区| 国产精品 欧美亚洲| 一级毛片女人18水好多| 一区二区三区高清视频在线| 波多野结衣高清作品| 午夜免费激情av| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 久久久久亚洲av毛片大全| 欧美性猛交黑人性爽| 免费看十八禁软件| 精品日产1卡2卡| 好看av亚洲va欧美ⅴa在| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 欧美一区二区国产精品久久精品 | 婷婷丁香在线五月| 脱女人内裤的视频| 国内少妇人妻偷人精品xxx网站 | 国产一区二区三区视频了| 日韩精品免费视频一区二区三区| 日韩三级视频一区二区三区| 亚洲熟妇中文字幕五十中出| 黄频高清免费视频| 丝袜人妻中文字幕| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 日本三级黄在线观看| 国产av一区在线观看免费| 特级一级黄色大片| 黄色 视频免费看| 日本 av在线| 亚洲中文av在线| 久久久久九九精品影院| 久久久国产成人精品二区| 久久热在线av| 一本大道久久a久久精品| 精品国产超薄肉色丝袜足j| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 天堂√8在线中文| 一个人免费在线观看电影 | 90打野战视频偷拍视频| 禁无遮挡网站| 亚洲男人的天堂狠狠| 一本综合久久免费| 伊人久久大香线蕉亚洲五| 宅男免费午夜| 日韩av在线大香蕉| xxxwww97欧美| 精品久久久久久久人妻蜜臀av| 变态另类成人亚洲欧美熟女| 最好的美女福利视频网| 日韩三级视频一区二区三区| 国产精品久久久久久人妻精品电影| 首页视频小说图片口味搜索| 日日摸夜夜添夜夜添小说| 999精品在线视频| 岛国视频午夜一区免费看| cao死你这个sao货| 毛片女人毛片| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 叶爱在线成人免费视频播放| 中国美女看黄片| 精品久久久久久成人av| 国产精品乱码一区二三区的特点| 亚洲成人久久性| 免费在线观看完整版高清| av超薄肉色丝袜交足视频| 欧美一级毛片孕妇| 国产av麻豆久久久久久久| 国产精品亚洲一级av第二区| av欧美777| 大型av网站在线播放| 成人国语在线视频| 国产免费男女视频| 国产亚洲精品第一综合不卡| 麻豆国产97在线/欧美 | 日本撒尿小便嘘嘘汇集6| 怎么达到女性高潮| ponron亚洲| 欧美一区二区国产精品久久精品 | 国内精品久久久久精免费| 亚洲av五月六月丁香网| 国产一区在线观看成人免费| 欧美zozozo另类| 少妇的丰满在线观看| 欧美乱码精品一区二区三区| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 一本久久中文字幕| 中文在线观看免费www的网站 | 欧美成人性av电影在线观看| 成年免费大片在线观看| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 国产高清激情床上av| 免费人成视频x8x8入口观看| 国产精品久久电影中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 男人的好看免费观看在线视频 | 久久亚洲精品不卡| 久久亚洲真实| √禁漫天堂资源中文www| 国产精品免费视频内射| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 怎么达到女性高潮| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 午夜福利视频1000在线观看| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 亚洲男人天堂网一区| 午夜福利视频1000在线观看| 精品国产乱子伦一区二区三区| 一二三四在线观看免费中文在| 草草在线视频免费看| 国产精品 国内视频| 国产久久久一区二区三区| 一级毛片高清免费大全| 久久婷婷成人综合色麻豆| 亚洲,欧美精品.| 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 这个男人来自地球电影免费观看| 91大片在线观看| 亚洲精品在线美女| 国产精品九九99| 亚洲人成伊人成综合网2020| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 色播亚洲综合网| 精品欧美一区二区三区在线| 香蕉久久夜色| 国产av在哪里看| 一夜夜www| 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 成人三级黄色视频| 免费人成视频x8x8入口观看| bbb黄色大片| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 变态另类丝袜制服| aaaaa片日本免费| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 身体一侧抽搐| 91成年电影在线观看| 久久久久性生活片| 色综合婷婷激情| 欧美日本亚洲视频在线播放| 变态另类丝袜制服| 国产av又大| 又黄又粗又硬又大视频| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 色综合婷婷激情| av天堂在线播放| 男女之事视频高清在线观看| 国产精品永久免费网站| 精品福利观看| 精品乱码久久久久久99久播| 国产av又大| 一级毛片高清免费大全| 天天躁夜夜躁狠狠躁躁| av有码第一页| 成人国语在线视频| 欧美日韩精品网址| 国产欧美日韩一区二区三| 毛片女人毛片| 亚洲av成人一区二区三| 丁香欧美五月| 日韩高清综合在线| 国产1区2区3区精品| 97人妻精品一区二区三区麻豆| а√天堂www在线а√下载| 高清在线国产一区| 国产三级在线视频| 日本 av在线| 久久久久九九精品影院| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 变态另类丝袜制服| 国产69精品久久久久777片 | 亚洲av成人精品一区久久| 我的老师免费观看完整版| 国产黄a三级三级三级人| 无人区码免费观看不卡| 又黄又粗又硬又大视频| 亚洲美女视频黄频| 久久久久九九精品影院| 久久久国产成人免费| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 丝袜人妻中文字幕| 搞女人的毛片| 成熟少妇高潮喷水视频| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲| 日韩大码丰满熟妇| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 一区二区三区激情视频| av在线播放免费不卡| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看 | a在线观看视频网站| 黑人操中国人逼视频| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 岛国在线观看网站| 岛国视频午夜一区免费看| 国产69精品久久久久777片 | 亚洲欧美日韩东京热| 国产精品av视频在线免费观看| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产欧美日韩av| 中国美女看黄片| 久久久久久久久免费视频了| 免费看a级黄色片| 一级片免费观看大全| 真人做人爱边吃奶动态| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 999精品在线视频| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 女人爽到高潮嗷嗷叫在线视频| 日本 av在线| 亚洲成av人片免费观看| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 亚洲国产看品久久| 欧美丝袜亚洲另类 | 大型av网站在线播放| 一级毛片精品| 99久久精品热视频| 无人区码免费观看不卡| 国产精品一区二区三区四区免费观看 | 国产午夜精品论理片| 1024香蕉在线观看| av片东京热男人的天堂| 欧美日本视频| 国产亚洲精品第一综合不卡| 90打野战视频偷拍视频| 国产麻豆成人av免费视频| 国内精品久久久久精免费| 三级国产精品欧美在线观看 | 人妻丰满熟妇av一区二区三区| 国产精品98久久久久久宅男小说| 日韩成人在线观看一区二区三区| 国产精品九九99| 黄片大片在线免费观看| 国产av一区在线观看免费| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 一边摸一边抽搐一进一小说| 久久伊人香网站| 激情在线观看视频在线高清| 啦啦啦免费观看视频1| 亚洲欧美一区二区三区黑人| 熟女少妇亚洲综合色aaa.| 国产精品美女特级片免费视频播放器 | 黄色毛片三级朝国网站| 国产99白浆流出| 久久久水蜜桃国产精品网| 最近在线观看免费完整版| 欧美精品啪啪一区二区三区| 变态另类丝袜制服| 亚洲男人的天堂狠狠| 久久久国产欧美日韩av| 国产麻豆成人av免费视频| 婷婷亚洲欧美| 精品久久久久久久毛片微露脸| 亚洲av成人精品一区久久| 国产高清激情床上av| 久久草成人影院| 国产精品久久久av美女十八| 无人区码免费观看不卡| 999精品在线视频| 1024视频免费在线观看| 国产精品亚洲美女久久久| 变态另类丝袜制服| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 大型av网站在线播放| 搞女人的毛片| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 1024香蕉在线观看| 欧美极品一区二区三区四区| 久久久久亚洲av毛片大全| 欧美日韩福利视频一区二区| 三级男女做爰猛烈吃奶摸视频| 性色av乱码一区二区三区2| netflix在线观看网站| a级毛片a级免费在线| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| 在线视频色国产色| 免费在线观看成人毛片| 悠悠久久av| 久久久久九九精品影院| 三级男女做爰猛烈吃奶摸视频| 人成视频在线观看免费观看| 99国产精品一区二区三区| 国产精品九九99| 一级毛片女人18水好多| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 少妇被粗大的猛进出69影院| 国产久久久一区二区三区| 日本 av在线| 亚洲avbb在线观看| 国产一区二区在线观看日韩 | 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 久久久久久免费高清国产稀缺| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 欧美日韩精品网址| 日韩av在线大香蕉| 亚洲色图av天堂| 国产精品久久久久久人妻精品电影| 国内精品一区二区在线观看| 性色av乱码一区二区三区2| 国产免费男女视频| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 亚洲人与动物交配视频| 日韩成人在线观看一区二区三区| 精品日产1卡2卡| 国产欧美日韩一区二区三| 50天的宝宝边吃奶边哭怎么回事| 久久精品综合一区二区三区| 在线观看舔阴道视频| 亚洲av电影在线进入| 少妇熟女aⅴ在线视频| 久久天躁狠狠躁夜夜2o2o| 身体一侧抽搐| 午夜老司机福利片| 精华霜和精华液先用哪个| √禁漫天堂资源中文www| 岛国视频午夜一区免费看| 亚洲av中文字字幕乱码综合| 一个人免费在线观看电影 | 免费在线观看日本一区| 亚洲av美国av| 男女那种视频在线观看|