• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Embedding pyridine units in acceptors to construct donor-acceptor conjugated polymers

    2019-02-15 02:27:02ZiYuanWangJieYuWangJianPei
    Chinese Chemical Letters 2019年1期

    Zi-Yuan Wang,Jie-Yu Wang*,Jian Pei

    Beijing National Laboratory for Molecular Sciences,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,Center for Soft Matter Science and Engineering,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China

    Key words:Donor-acceptor Conjugated polymers Coplanarity Pyridine-embedded Organic electronics

    ABSTRACT The development of donor-acceptor(D-A)conjugated polymers greatly promotes the device performance in organic electronics.Recently,the strategy of embedding pyridine units into D-A conjugated polymer backboneshasattracted much attention due to the resulted lowered LUMOlevels.In addition,the possible non-bonding interactions resulted from the nitrogen atoms also improve the coplanarity of the polymer backbones.All these factors have great contribution to enhance the device performance.In this review,we summarized the recent development of pyridine-embedded D-A conjugated polymers and their applications in organic fi eld-effect transistors(OFETs).

    1.Introduction

    Over the past few decades,donor-acceptor(D-A)conjugated polymers[1,2]have been promising candidates for low-cost,fl exible and large-scale engineering materials[3,4]of the nextgeneration electronics[5],due to their solution-processability and good mechanic properties.D-A conjugated polymers usually consist of tw o parts:the donor units and the acceptor units.The acceptor units have great impact on the lowest unoccupied molecular orbital(LUMO)energy levels,as well as the molecular conformation.To the best of our knowledge,there have been many electron-de fi cient aromatic units such as isoindigo(IID)[6–8],diketopyrrolopyrrole(DPP)[9,10],benzothiadiazole(BT)[11–13],and naphthalene diimide(NDI)[14,15],which are proved to have the potential to enhance the optoelectronic properties of conjugated polymers.Although a number of acceptor units have been rapidly developed,strategies to construct high-performance acceptor units are still limited.

    A common strategy to achieve electron-de fi cient acceptors is introducing electron-withdraw ing groups(such as F,Cl,CN)onto the conjugated backbones to lower their LUMO levels[16–18].Besides this,embedding sp2-nitrogen in benzene ring to form pyridine ring in acceptors[19–21]can also further lower the energy levels of the acceptor moiety of D-A conjugated polymers.Swager et al fi rst developed a promising class of w ater and/or methanol soluble n-type poly(pyridinium phenylene)s[1,2],which may fi nd utility in photovoltaic devices w hen blended with donor conjugated polymers.Introduction of electron-withdraw ing sp2-nitrogen groups onto molecular backbones[22–24]may not only tune the frontier molecular orbital energy levels of the polymers,but also lock the conformation of conjugated polymer backbones through intramolecular noncovalent interactions[25],which is bene fi cial to charge transport[26].In this review,we summarize the recent development of D-A conjugated polymers with acceptors containing pyridine units,which mainly relates to three types of acceptors:azaisoindigos(7DNIID,5DNIID),azaBDOPV(AzaBDOPV),and pyridal[2,1,3]thiadiazole(PT),as show n in Fig.1.

    2.D-A conjugated polymers based on azaisoindigo

    2.1.Design of azaisoindigo-based conjugated polymers

    Fig.1.Molecular structures of electron-de fi cient acceptors containing pyridine units.

    Fig.2.(A)Molecular structures and(B)the optimized structures and energy levels of isoindigo derivatives according to density functional theory at the B3LYP/6-31G*level.

    Recently,isoindigo has been extensively explored as electronaccepting moiety in organic fi eld-effect transistors(OFETs)and organic light-emitting diodes(OLEDs)materials[6,27,28].According to the calculation results,isoindigo has a torsion angle of ca.20?–40?due to C??H ???O?Csteric interactionsbetween the phenyl ring and the neighboring moiety[29](Fig.2B).In order to improve the conjugation of isoindigo,several strategies have been designed to enhance the coplanarity[30].Ashraf and coworkers replaced the benzene units in isoindigo with thiophene units to decrease the steric repulsion[31].Introducing thiophene units into isoindigo is favorable for efficient charge transport due to the increased planarity.The resulted new isoindigo derivative was applied to copolymers,which showed both good hole and electron mobilities up to 0.1cm2V?1s?1.Afterw ards,this strategy is extensively explored by Wan and Jassen to construct conjugated polymers for electronics[32,33].Moreover,fl uorinated isoindigos having more planar conformation were proved by Pei and others[34–36]using the “conformational lock”strategy.

    To achieve high-performance electronic materials,there is a grow ing demand to develop new strategies to achieve planar isoindigo derivatives.Inspired by the application of azaisoindigo in medicinal chemistry[37],Pei and Yu developed several azaisoindigo-based D-A conjugated polymers, respectively. The conformation and energy levels of these azaisoindigo units were calculated to elucidate the influence of the different nitrogen positions on the properties of azaisoindigos.According to the computational results(Fig.2B),the different positions of nitrogen atoms in azaisoindigos obviously influence their planarity and LUMO levels.Compared to isoindigo,azaisoindigos with nitrogen at 5,6,7 positions show more planar conformation with torsion angles of 10.4?,4.9?and 0?in 5,50-diazaisoindigo(5DNIID),6,60-diazaisoindigo(6DNIID)and 7,70-diazaisoindigo(7DNIID),respectively.Notably,all the azaisoindigos show lower LUMO levels as compared to isoindigo,indicating that embedding sp2-nitrogen in benzene ring to form pyridine ring isindeed an effective strategy to develop newelectron-de fi cient acceptors.Several synthetic routes have been designed to synthesize azaisoindigo and their derivatives,which usually involve brominaton and oxidation reactions[38–40].However,because of the high reactivity of 4DNIID and 6DNIID,only 5-and 7-azaisoindigos were explored in D-A conjugated polymers[29,40–42].

    In 2016,Yu et al.synthesized tw o D-A conjugated polymers,PAIID-BT-C1and PAIID-BT-C3,with 7DNIID as acceptor and bithiophene asdonor[29],and fabricated OFETsbased on these polymers with top-gate/bottom-contact(TGBC)and bottom-gate/bottomecontact(BGBC)con fi gurations through spin-coating.They presented that PAIID-BT-C3(Fig.3A)achieved hole mobilities as high as 7.28 cm2V?1s?1in BGBC con fi guration and ambipolar mobilities of 2.33/0.78cm2V?1s?1in TGBC con fi guration,indicating that PAIID-BT-C3 is an excellent organic bipolar semiconducting material.

    In 2017,Peiet al.reported the fi rst example of D-A conjugated polymer based on 5DNIID.They successfully copolymerized 5DNIID with bithiophene unit to construct a D-A polymer 5DNIID-2T(Fig.3A)and demonstrated its application in OFETs[40].Compared with the isoindigo-based conjugated polymer IIDDT,5DNIID-2T exhibited a lower LUMO level as expected.

    The molecular weights(Mn)of IIDDT[6]and 5DNIID-2T were measured to be 33.7 k Da and 33.46 k Da,respectively,by hightemperature gel permeation chromatography(GPC)using 1,2,4-trichlorobenzene as the eluent at 150?C.The UV–vis spectra of both polymers(IIDDT,5DNIID-2T)showed tw o characteristic bands(Fig.3B),w here the high-energy band from 300 nm to 450 nm was attributed to the p-p*transition of the IID and5DNIID units,and the low-energy band from 450 nm to 900 nm originated from the intramolecular charge transfer(ICT)absorption.In addition,grazing incidence X-ray diffraction(GIXD)was used to investigate polymer packing in fi lm(Fig.3C).IIDDT showed four diffraction peaks in out-of-plane direction with a strong diffraction peak at 2u=3.58?,corresponding to a d-spacing of 19.88?(l=1.240?).However,5DNIID-2Tshowed a weaker diffraction peak at 2u=3.00?,which correspondsto a d-spacing of 23.68?(l=1.2398 ?).Tw o other weak diffraction peaks were also observed in 5DNIID-2T fi lm which were ascribed to(200)and(300)diffractions.Different from the crystalline fi brillar intercalating network of IIDDT fi lm[6],the fi lm of 5DNIIT-2T was more amorphous as show n in the tapping-mode atomic force microscopy(AFM)images.As a result,5DNIID-2T showed lower carrier mobility than IIDDT.Further chemical modification of 5DNIID-2T might provide the opportunity to achieve better charge transport properties.In addition,5DNIID-2T showed obvious different charge transport behaviors in OFETs with PAIID-BT-C3,which may be related to the different device con fi gurations.

    2.2.Structure-property relationships of AzaBDOPV-based conjugated polymers

    Fig.3.A)Molecular structures of D-A conjugated polymers based on azaisoindigos;B)UV–vis-NIR absorption spectra of IIDDT(left)and 5DNIID-2T(right);Copied with permission for IIDDTfrom Ref[6].Copyright 2011,American Chemical Society.C)2D-GIXDpatternsof IIDDT(left)and 5DNIID-2T(right).Copied with permission for 5DNIID-2T from Ref[40].Copyright 2017,Wiley-VCH.

    In 2016,Peiet al.fi rst embedded sp2-nitrogen atoms into benzodifurandione-based oligo(p-phenylene vinylene)(BDOPV)backbone[41]to construct a new acceptor AzaBDOPV,and developed a D-Aconjugated polymer AzaBDOPV-2T(Fig.4),which showed high electron mobility of 3.22 cm2V?1s?1under ambient conditions.

    Compared with BDOPV-2T,AzaBDOPV-2T exhibited a more planar backbone and lower LUMO level of?4.37[13_TD DIFF]eV(Fig.5),which could be inferred from the absorption spectra.The absorption spectra of both BDOPV-2Tand AzaBDOPV-2T displayed dual-band absorption and obvious 0??0 and 0??1 vibrational peaks both in solution and in fi lms.However,the 0??0 vibrational peak of AzaBDOPV-2T was more obvious in solution,suggesting a more planar conformation.GIXD and tapping-mode AFM experiments indicated a distinct edge-on lamellar packing and stronger crystallinity in AzaBDOPV-2T fi lms,which could be attributed to stronger interchain interactions and more ordered microstructures.These results demonstrated that AzaBDOPVwas an excellent acceptor for constructing high-performance D-A conjugated polymers.

    In 2017,Cho and his coworkers applied alkylated bithiophene and(E)-2-(2-(thiophen-2-yl)vinyl)thiophene as donor unit[42]to synthesize tw o AzaBDOPV-based conjugated polymers PBABDFDT and PBABDF-TVT(Fig.4).The LUMO levels of PBABDF-DTand PBABDF-TVT were?4.04eV and?3.99 eV according to the cyclic voltammetry experiments,which were 0.34eV and 0.29 eV lower than that of BDOPV-2T,but higher than that of AzaBDOPV-2T.OFETs were fabricated with bottom-gate/top-contact(BGTC)con fi guration through spin-coating.These tw o polymers displayed electron mobilities up to 1.86 cm2V?1s?1and 1.56cm2V?1s?1after annealing process.Grazing incident X-ray diffraction showed the p-p stacking distance of PBABDF-DT and PBABDF-TVT were 3.52? and 3.50 ?,respectively.The relatively higher LUMO levels and larger p-p distance might result in the poorer performance of these tw o polymers than that of AzaBDOPV-2T.Recently,Yuet al.reported tw o ambipolar conjugated polymers,PNBDOPV-DTBT and PNBDOPV-DTF2BT,based on AzaBDOPV[44].OFETs based on PNDBOPV-DTBTexhibited well-balanced high hole/electron mobilities of 4.68/4.7 cm2V?1s?1.

    3.D-A conjugated polymers based on pyridal[2,1,3]thiadiazole

    Replacing the benzene ring in benzo[2,1,3]thiadiazole with pyridine was fi rst proposed in the bulk heterojunction(BHJ)polymer solar cells,w here the active layer was composed by donor materialsand acceptor materials.In order to lower the bandgaps of donor materials to achieve high short-circuit currrent(Jsc),incorporating a more electron-de fi cient acceptor to construct DA polymers or small molecules was an effective method.In 2008,Leclerc et al.synthesized several polycarbazole analogues[45](Fig.6A),and explored the different performance between benzo[2,1,3]thiadiazole and pyridal2,1,3]thiadiazole(PT)-based conjugated polymers.However,the polymerization reactions of pyridine-embedded monomer were hard to achieve high molecular weight,which limited the performance in BHJsolar cells.

    In 2010,Youet al.reported a series of“weak donor-strong acceptor”[46]conjugated polymers based on pyridal[2,1,3]thiadiazole.The molecular weight was determined by gel permeation chromatography(GPC)in 1,2,4-trichlorobenzene at 135?C.These three polymers PNDT-DTPyT,PQDT-DTPy T,and PBn DT-DTPy T(Fig.6B)showed an Mnof 17.1,21.7 and 104.4kg/mol,respectively.Compared with those of benzothiadiazolebased polymers,obviously reduced LUMO levels and slightly decreased HOMOlevels were observed by cyclic voltammetry.The optical bandgaps of PNDT-DTPy T,PQDT-DTPy T and PBn DT-DTPy T deduced from UV–vis absorption spectra were 1.53,1.56 and 1.51eV,ca.0.09–0.19 eV smaller than those of benzothiadiazole counterparts.Therefore,this strategy was proved to be effective in designing narrow-bandgap materials.

    In order to further lower the bandgap of D-A conjugated polymers based on pyridal[2,1,3]thiadiazole,Bazan[23_TD DIFF]et al.utilized Lew is acids to coordinate with the nitrogen atoms in pyridal[2,1,3]thiadiazole[47].For example,coordination of the pyridal[2,1,3]thiadiazole with electron-de fi cient boron reagent(such as B(C6F5)3)lowered both HOMO and LUMO levels,which was more pronounced for the LUMO levels.

    Fig.5.UV–vis-NIRspectrum,2D-GIXD patterns and AFM images of BDOPV-2T(A)and AzaBDOPV-2T(B).Reproduced with permission[43].Copyright 2013,Wiley-VCH.

    In addition,Bazan[24_TD DIFF]et al.reported the fi rst regioregular PT-based copolymers[48],which exhibited the highest hole mobility of 0.6[25_TD DIFF]cm2V?1s?1due to the high degree of structural order within fi lms.They designed tw o types of regioregular structures,with the pyridal nitrogen atoms of one type pointed in the same direction,while another type showed the pyridal units alternated in orientation(Fig.7A).They proposed that the additional dipole moment caused by embedding nitrogen atoms w ould affect the molecular packing in fi lm.P1-P3 represented the fi rst type,the second type and regiorandom copolymers,respectively.The UV–vis-NIR absorption spectra(Figs.7B and C)of these polymers’solution at 110?C showed hypsochromic shifts compared with those at room temperature,which resulted from the breakup of aggregated polymer chains.To reveal the impact of regioregularity on the charge mobility,bottom-gate/top-contact OFETs were fabricated through spin-casting.As a result,the hole mobilities of regioregularP1 and P2 were tw o orders of magnitude higher than that of regiorandom P3.These results revealed the importance of dipole moment on achieving highly ordered molecular orientation.

    Fig.6.Molecular structures of polycarbazole analogues(A)and pyridal[2,1,3]thiadiazole-based conjugated polymers(B).

    Afterw ards,Bazan et al.performed a detailed study on the surface topography of copolymer P2[30_TD DIFF]via atomic force microscopy(AFM)[11,49].To achieve high mobility,P2 with high molecular weight(Mn)of 300 k Da and polydispersity(PDI)of 1.5 was synthesized.Figs.8A–D show the surface morphology of gate dielectrics before and after scratching with diamond nanoparticles.For the untreated dielectric surface,the root-meansquare(RMS)roughness was 0.2 nm.After scratching,the RMS increased to 0.48,0.49 and 0.86nm for 100,250 and 500nm diamond nanoparticles.In addition,the uniformity was poorer and grooves were observed on the surface.Figs.8E–H show the morphology of P2 thin fi lms on the unscratched and scratched dielectrics.Long-range orientation and alignment were observed w hen P2 fi lms were deposited on the nanostructured dielectric substrates.OFETs fabricated on structured dielectric substrates were explored as a function of annealing temperature,and the highest hole mobility of 6.7cm2V?1s?1was achieved after optimizing several parameters.

    Subsequently,they proposed a new method[50]to orientate P2 in fi lm by utilizing capillary action.The capillary action contributed to highly oriented crystalline fi lms with a compact lamellar structure,which leadsto the hole mobilities of 36.3[cm2V?1s?1for P2(Mn=140 k Da)fi lms w hen the channel length was 140[38_TD DIFF]m m.

    In addition,Bazan[39_TD DIFF]et al.also explored the relationship between charge mobilities and different mixing ratios of polystyrene(PS)and P2[51].They obtained mobilities as high as 2.7[40_TD DIFF]cm2V?1s?1w hen mixing 90 w t%PS,which was among the highest reported mobilities for majority-insulator blend systems.

    Recently,Liu and coworkers reported the fi rst ambipolar pyridal[2,1,3]thiadiazole-based D-Asemiconducting polymer(PBPTV)[52],which utilized bispyridal[2,1,3]thiadiazole(BPT)asthe acceptor unit and alkylated(E)-2-(2-(thiophen-2-yl)vinyl)-thiophene(TVT)as the donor moiety.PBPTV had a molecular weight(Mn)of 22.7[41_TD DIFF]k Da and narrow PDIof 2.23.Cyclic voltammetry measurementsrevealed its HOMOlevel of?5.61 eV and LUMOlevel of?3.66 eV,which are suitable for ambipolar charge transport.Top-gate/bottom-contact OFETdevices were fabricated,and the hole and electron mobilities of 4.47 and 5.25 cm2V?1s?1were obtained respectively for the ascast thin fi lms(Fig.9).Further annealing of the thin fi lms gave the best performance with the average hole and electron mobilities of 6.64 and 8.13[42_TD DIFF]cm2V?1s?1.AFM images of PBPTVthin fi lms showed small surface roughness.Moreover,2D grazing-incidence w ideangle X-ray scattering(GIWAXS)indicated that the polymer chains arranged mainly in an edge-on orientation and the annealing treatment led to higher degree ordering,which is bene fi cial to the carrier transport.

    Fig.7.(A)Regiochemically precise PT-containing alternating copolymer structures.(B,C)UV–vis-NIRabsorption spectra of P1,P2 and P3(1.0?10?5 g/m L)at 25?Cand 110?C in o-DCB.Copied with perm ission[48].Copyright 2011,American Chemical Society.

    Fig.8.AFM images of dielectric substrate surfaces and related polymer fiber morphology without and with nanostructures:(A)Surface without structures,(B)100-nmstructured surface,(C)250-nm-structured surface,(D)500-nm-structured surface,and(E)polymer fibers on nonstructured surface,(F)polymer fibers on 100-nm-structured surface,(G)polymer fibers on 250-nm-structured surface,(H)polymer fibers on 500-nm-structured surface.Reproduced with permission[11].Copyright 2012,American Chemical Society.

    Fig.9.(A)Molecular structures of BPTacceptor and its copolymer PBPTV;(B)Transfer and output curvesof the hero FETdevice.Copied with permission[52].Copyright 2017,American Chemical Society.

    4.Sum m ary and persp ective

    In this review,we outlined several design strategies and recent progress in pyridine-embedded D-A conjugated polymers.Based on these results,we can conclude that introducing sp2-nitrogen atoms into polymer backbones has several advantages:i)lowering the LUMOlevels to realize the ideal charge injection;ii)enhancing the coplanarity via noncovalent interactions to lock the conformation;iii)providing coordination sites with Lew is acids to lower the energy levels,especially the LUMO levels;iv)producing dipole moment to achieve ordered molecular orientation.However,some challenges still exist,such as designing new types of pyridinecontaining D-A conjugated polymers,better controlling the molecular packing,and substantially improving the device performance.Therefore,effort on molecular design and device processing engineering is still needed to apply this strategy in organic electronics.

    Acknow ledgments

    This work was supported by National Key R&DProgram of China(No.2017YFA0204701),National Natural Science Foundation of China(Nos.21722201,21790360,21420102005),and the Major State Basic Research Development Program(No.2015CB856505)from the MOST.

    久久精品国产亚洲av涩爱 | 一进一出抽搐动态| 精品人妻一区二区三区麻豆| 少妇熟女aⅴ在线视频| 身体一侧抽搐| 精品一区二区免费观看| 免费搜索国产男女视频| 日本黄色片子视频| 免费人成在线观看视频色| av.在线天堂| 黄片wwwwww| 亚洲内射少妇av| 国产精品女同一区二区软件| 少妇人妻精品综合一区二区 | 欧美日韩在线观看h| 国产精品日韩av在线免费观看| 午夜福利视频1000在线观看| 国产av一区在线观看免费| 免费av观看视频| 国产爱豆传媒在线观看| 床上黄色一级片| 毛片女人毛片| 国产综合懂色| 亚洲一区二区三区色噜噜| av免费在线看不卡| 国产淫片久久久久久久久| 久久久a久久爽久久v久久| h日本视频在线播放| 日本与韩国留学比较| 国产一区二区亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 一级毛片aaaaaa免费看小| 国产一级毛片七仙女欲春2| av免费在线看不卡| 亚洲国产精品成人久久小说 | 一级毛片久久久久久久久女| 欧美3d第一页| 亚洲最大成人中文| 村上凉子中文字幕在线| av在线播放精品| 成人二区视频| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美+日韩+精品| 99国产极品粉嫩在线观看| 久久久久久大精品| 51国产日韩欧美| 成人欧美大片| 午夜福利高清视频| 国产一区二区在线av高清观看| 麻豆国产av国片精品| 精品久久久噜噜| 亚洲中文字幕一区二区三区有码在线看| 亚洲av.av天堂| 中国美女看黄片| 别揉我奶头 嗯啊视频| 岛国毛片在线播放| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 插逼视频在线观看| 国产男人的电影天堂91| 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美| 国产毛片a区久久久久| 婷婷色综合大香蕉| 男插女下体视频免费在线播放| 国产在视频线在精品| 一级黄色大片毛片| 国产av不卡久久| 国产淫片久久久久久久久| 一级毛片aaaaaa免费看小| 日本免费一区二区三区高清不卡| 男女边吃奶边做爰视频| 国产单亲对白刺激| 女同久久另类99精品国产91| 长腿黑丝高跟| 成年免费大片在线观看| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 午夜福利视频1000在线观看| 久久久欧美国产精品| 又粗又爽又猛毛片免费看| 国产精品三级大全| 熟女人妻精品中文字幕| 中文资源天堂在线| 最新中文字幕久久久久| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 成人特级黄色片久久久久久久| 黑人高潮一二区| 精品欧美国产一区二区三| 国产色婷婷99| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app| 色综合色国产| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 国产日韩欧美在线精品| 久久热精品热| av在线播放精品| 99久久人妻综合| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区久久| 一级黄片播放器| 国产精品99久久久久久久久| 免费观看在线日韩| 精品国产三级普通话版| 最近中文字幕高清免费大全6| 可以在线观看的亚洲视频| av在线老鸭窝| av天堂中文字幕网| av.在线天堂| 日韩av不卡免费在线播放| 亚洲自偷自拍三级| 青青草视频在线视频观看| 观看美女的网站| 乱系列少妇在线播放| 午夜久久久久精精品| 国产精品国产高清国产av| av天堂在线播放| 国产精品人妻久久久影院| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 极品教师在线视频| 波多野结衣巨乳人妻| 美女脱内裤让男人舔精品视频 | 乱人视频在线观看| 国产麻豆成人av免费视频| 老师上课跳d突然被开到最大视频| 成人永久免费在线观看视频| 国产熟女欧美一区二区| 国产一区二区在线观看日韩| 国产精品三级大全| 在现免费观看毛片| 一本精品99久久精品77| 色综合色国产| 在线免费观看的www视频| 简卡轻食公司| 黄色日韩在线| 淫秽高清视频在线观看| 国产av一区在线观看免费| 亚洲成人久久性| 免费看美女性在线毛片视频| av在线老鸭窝| 亚洲精品日韩av片在线观看| videossex国产| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| 好男人在线观看高清免费视频| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 久久久色成人| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 国产美女午夜福利| av福利片在线观看| 美女xxoo啪啪120秒动态图| 欧美极品一区二区三区四区| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频 | 黄色视频,在线免费观看| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 日本av手机在线免费观看| 亚洲天堂国产精品一区在线| 深夜a级毛片| 久久久久九九精品影院| 熟妇人妻久久中文字幕3abv| 国产成人91sexporn| 国产真实乱freesex| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 成人特级av手机在线观看| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 69av精品久久久久久| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 亚洲成人久久爱视频| 国产精品国产高清国产av| 国产成人精品婷婷| 成人鲁丝片一二三区免费| 在线观看免费视频日本深夜| 欧美性感艳星| 免费人成在线观看视频色| av免费观看日本| 久久国内精品自在自线图片| 少妇熟女aⅴ在线视频| 亚洲国产欧美在线一区| 免费看日本二区| 亚洲中文字幕一区二区三区有码在线看| 欧美性感艳星| 国产欧美日韩精品一区二区| 国产私拍福利视频在线观看| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| а√天堂www在线а√下载| 精品久久久噜噜| 美女大奶头视频| 日韩亚洲欧美综合| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 久久久午夜欧美精品| videossex国产| 97超碰精品成人国产| 丰满的人妻完整版| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 毛片女人毛片| 国产黄片美女视频| 日韩成人av中文字幕在线观看| 亚洲av成人精品一区久久| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 亚洲经典国产精华液单| 日本免费a在线| 亚洲三级黄色毛片| 日韩中字成人| 美女高潮的动态| 成人特级黄色片久久久久久久| 我要搜黄色片| 国产欧美日韩精品一区二区| 99热只有精品国产| 中出人妻视频一区二区| 此物有八面人人有两片| 日韩亚洲欧美综合| 国产亚洲精品久久久久久毛片| 我要看日韩黄色一级片| 国产成人a区在线观看| 97人妻精品一区二区三区麻豆| 给我免费播放毛片高清在线观看| 三级经典国产精品| 国产黄片视频在线免费观看| 中文资源天堂在线| 久久久精品94久久精品| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 我的老师免费观看完整版| 69av精品久久久久久| 亚洲人成网站在线观看播放| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 久久久午夜欧美精品| 男插女下体视频免费在线播放| 亚洲在久久综合| 国产黄a三级三级三级人| 欧美高清性xxxxhd video| 亚洲精品久久久久久婷婷小说 | 韩国av在线不卡| 成年女人看的毛片在线观看| 中国美女看黄片| 欧美激情国产日韩精品一区| 久久久久久大精品| 成人欧美大片| 天堂√8在线中文| 精品久久久久久成人av| 亚洲精品成人久久久久久| 国产成人aa在线观看| 欧美日韩综合久久久久久| 中国国产av一级| 亚洲人成网站高清观看| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区成人| 欧美变态另类bdsm刘玥| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 久久精品久久久久久久性| 两个人的视频大全免费| 久久午夜亚洲精品久久| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 黄色欧美视频在线观看| 亚洲精品自拍成人| 一级毛片电影观看 | 美女xxoo啪啪120秒动态图| 成熟少妇高潮喷水视频| 熟女电影av网| 亚洲无线在线观看| 亚洲av不卡在线观看| .国产精品久久| 少妇的逼好多水| 麻豆乱淫一区二区| 日本熟妇午夜| 97超视频在线观看视频| 国产中年淑女户外野战色| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 一本一本综合久久| 内射极品少妇av片p| 久久久久久久久大av| 免费在线观看成人毛片| 国产精品久久久久久久电影| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 美女被艹到高潮喷水动态| 久久精品国产清高在天天线| 又爽又黄a免费视频| 18禁黄网站禁片免费观看直播| a级毛色黄片| 欧美精品一区二区大全| 久久久久九九精品影院| 在线a可以看的网站| 免费人成视频x8x8入口观看| 黄色配什么色好看| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 一个人免费在线观看电影| 午夜免费男女啪啪视频观看| 国国产精品蜜臀av免费| 99热精品在线国产| 有码 亚洲区| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频 | 深夜a级毛片| 麻豆成人午夜福利视频| 少妇高潮的动态图| 中文字幕熟女人妻在线| 精品久久久噜噜| 日本色播在线视频| 99热6这里只有精品| 国产熟女欧美一区二区| 亚洲国产欧美人成| 欧美丝袜亚洲另类| 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄 | 免费搜索国产男女视频| 男女那种视频在线观看| 2022亚洲国产成人精品| 免费人成视频x8x8入口观看| 久久久精品大字幕| 久久久午夜欧美精品| 一区二区三区免费毛片| 亚洲人成网站在线观看播放| 国产高清激情床上av| 国产真实乱freesex| 欧美日韩国产亚洲二区| 久久久久久伊人网av| 国产中年淑女户外野战色| 熟女电影av网| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 日韩欧美三级三区| 午夜精品一区二区三区免费看| 在线免费观看的www视频| 老师上课跳d突然被开到最大视频| 国产精品久久久久久精品电影| 成年av动漫网址| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 国产精品av视频在线免费观看| 内地一区二区视频在线| 亚洲av男天堂| 精品久久久久久久久久免费视频| 国产国拍精品亚洲av在线观看| 日韩视频在线欧美| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 九九热线精品视视频播放| 久久久久久久久中文| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 国产91av在线免费观看| 大型黄色视频在线免费观看| 18禁在线无遮挡免费观看视频| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 久久人人爽人人片av| 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 国产久久久一区二区三区| 国产乱人视频| 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| www日本黄色视频网| 精品一区二区三区视频在线| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 亚洲精品456在线播放app| 天堂中文最新版在线下载 | 久久6这里有精品| 国产伦精品一区二区三区四那| 国产高清激情床上av| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 午夜亚洲福利在线播放| 中文字幕久久专区| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 国产伦精品一区二区三区四那| 亚洲综合色惰| 国产色婷婷99| 国产一区二区三区在线臀色熟女| 少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 国产老妇女一区| 毛片女人毛片| 男人舔奶头视频| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 久久久久久久久久久丰满| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 久久人人爽人人爽人人片va| 午夜免费男女啪啪视频观看| 亚洲七黄色美女视频| 亚洲av二区三区四区| 一本久久精品| 国产精品综合久久久久久久免费| 少妇熟女欧美另类| 日本色播在线视频| 国产在视频线在精品| 亚洲熟妇中文字幕五十中出| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 国内精品一区二区在线观看| videossex国产| 国产一级毛片七仙女欲春2| 亚洲欧美中文字幕日韩二区| 又粗又爽又猛毛片免费看| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 亚洲国产精品成人综合色| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 成人永久免费在线观看视频| 欧美xxxx黑人xx丫x性爽| 午夜福利在线观看免费完整高清在 | 久久久国产成人精品二区| 色噜噜av男人的天堂激情| 老师上课跳d突然被开到最大视频| 我的女老师完整版在线观看| 国产精品电影一区二区三区| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 久久久久久久久久黄片| 国产高清三级在线| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 三级国产精品欧美在线观看| 好男人视频免费观看在线| 国产精品国产高清国产av| 观看美女的网站| 国产午夜精品论理片| 亚洲av.av天堂| 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 久久久久久伊人网av| 国产91av在线免费观看| 国产真实伦视频高清在线观看| 一级黄片播放器| 国产三级中文精品| 日韩一区二区三区影片| 亚洲中文字幕日韩| 在线观看午夜福利视频| 免费无遮挡裸体视频| 久久久久九九精品影院| 91午夜精品亚洲一区二区三区| 夜夜夜夜夜久久久久| 精品一区二区免费观看| 波多野结衣巨乳人妻| 亚洲av熟女| 国产一级毛片七仙女欲春2| 日本撒尿小便嘘嘘汇集6| 国产高清激情床上av| 啦啦啦观看免费观看视频高清| 我要看日韩黄色一级片| 变态另类成人亚洲欧美熟女| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 观看免费一级毛片| 亚洲精品粉嫩美女一区| 国产精品国产高清国产av| 亚洲va在线va天堂va国产| 男女啪啪激烈高潮av片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲18禁久久av| 伦精品一区二区三区| 国产精品久久视频播放| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 天堂√8在线中文| 亚洲在久久综合| 禁无遮挡网站| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 97在线视频观看| 白带黄色成豆腐渣| 国产精品久久久久久精品电影小说 | 亚洲国产高清在线一区二区三| 韩国av在线不卡| 色综合亚洲欧美另类图片| 麻豆一二三区av精品| 色播亚洲综合网| 一进一出抽搐gif免费好疼| 男人狂女人下面高潮的视频| 亚洲18禁久久av| 内射极品少妇av片p| 国内精品宾馆在线| 亚洲成人中文字幕在线播放| 亚洲三级黄色毛片| 欧美zozozo另类| 三级国产精品欧美在线观看| 国产一级毛片在线| av免费在线看不卡| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品| 永久网站在线| 性欧美人与动物交配| 亚洲自偷自拍三级| 中文资源天堂在线| 美女cb高潮喷水在线观看| 亚洲欧美精品专区久久| 国产亚洲av片在线观看秒播厂 | 亚洲乱码一区二区免费版| 国产 一区 欧美 日韩| 久久综合国产亚洲精品| 午夜福利在线观看免费完整高清在 | 精品一区二区三区人妻视频| 亚洲精品456在线播放app| 国产精品一区二区三区四区久久| 欧美潮喷喷水| 成人午夜高清在线视频| 12—13女人毛片做爰片一| 特大巨黑吊av在线直播| 国产一区二区激情短视频| 白带黄色成豆腐渣| 99热6这里只有精品| 九九久久精品国产亚洲av麻豆| 成人午夜精彩视频在线观看| videossex国产| 人人妻人人澡欧美一区二区| 国产成人精品一,二区 | 熟女电影av网| 成人二区视频| 亚洲内射少妇av| 波野结衣二区三区在线| 99久国产av精品国产电影| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻| 毛片一级片免费看久久久久| 久久久午夜欧美精品| 老女人水多毛片| 一夜夜www| 亚洲成人久久性| 高清毛片免费看| 我要看日韩黄色一级片| 午夜福利在线观看免费完整高清在 | 国产精品综合久久久久久久免费| 久久精品国产亚洲av天美| 日韩强制内射视频| 免费观看在线日韩| 亚洲av不卡在线观看| 丰满乱子伦码专区| av福利片在线观看| 国产淫片久久久久久久久| 亚洲av中文av极速乱| 久久精品影院6| 亚洲不卡免费看| 日韩三级伦理在线观看| 免费人成在线观看视频色| 99九九线精品视频在线观看视频| 国产探花极品一区二区| 成人午夜高清在线视频| .国产精品久久| 在现免费观看毛片| 日韩一本色道免费dvd| 国产一级毛片在线| 成年女人永久免费观看视频| 三级男女做爰猛烈吃奶摸视频| 日韩一区二区三区影片| 波多野结衣高清作品| h日本视频在线播放| 色视频www国产| 哪里可以看免费的av片| 欧美日韩综合久久久久久| 国产一级毛片在线| 丰满乱子伦码专区| 亚洲第一区二区三区不卡| 亚洲人成网站在线播| 国产视频首页在线观看| 亚洲中文字幕日韩| 午夜精品国产一区二区电影 | 国产一级毛片在线| 久久精品综合一区二区三区| 人体艺术视频欧美日本| 欧美成人精品欧美一级黄| 淫秽高清视频在线观看| 国产一级毛片七仙女欲春2| 亚洲国产精品久久男人天堂| 国产精品女同一区二区软件| 99久久久亚洲精品蜜臀av| av黄色大香蕉|