• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators

    2020-05-21 05:45:14JianxiangZhangBaotongCuiXishengDaiandZhengxianJiang
    IEEE/CAA Journal of Automatica Sinica 2020年3期

    Jianxiang Zhang, Baotong Cui, Xisheng Dai, and Zhengxian Jiang

    Abstract—In this paper, an open-loop PD-type iterative learning control (ILC) scheme is first proposed for two kinds of distributed parameter systems (DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.

    I. Introduction

    IN practice, most systems can be described by a partial differential equation or a partial integral equation, referred to as distributed parameter systems. The states of distributed parameter systems are dependent on time and spatial position.Therefore, these systems are more suitable to describe system dynamics. At the same time, this has attracted many researchers to study the control and estimation of distributed parameter systems in a number of fields, most recently in [1]–[3].Since the sensors and actuators are low-cost and low energy,the distributed parameter systems using sensors and actuators have been extensively studied by many specialists. Demetriou[4] considered a law for the guidance of a mobile collocated actuator/sensor for the enhanced control of spatially distributed processes. Accordingly, he suggested an algorithm to replace the full state information from a scalar multiple of the output measurement in finite horizon linear quadratic regulator control of DPSs in [5]. Meanwhile, Muet al.[6] considered a scheme aimed at guiding the moving actuator/sensor pair for enhanced control and estimation of the distributed parameter systems. Jianget al.[7] proposed an even-driven observer-based control for DPSs based on a mobile sensor and actuator.

    Iterative learning control (ILC) is an intelligent control method which particularly suits systems working in a fixed time interval with a repetitive model. ILC aims to find proper learning control schemes of the controlled system for the actual output signal to track the given desired output signal over a finite interval time. At the same time, the constructed learning control sequences can converge to a desired control.An effective ILC algorithm can promote tracking accuracy by adjusting the system input signal according to error observations from every iteration even when the system has incomplete knowledge. Initially, ILC was proposed in 1984 by Arimotoet al.[8] that mainly involved a class of ILC algorithm for robots to obtain better control performance.Since then, ILC has been established as a separate field of control theory [9]–[14]. This methodology has been given consideration in various industrial applications, including industrial robots [15], health care systems [16], batch processes [17], and so on [18]. Nowadays, ILC is extensively employed in distributed parameter systems [19]–[21]. In particular, Daiet al.[22] proposed a closed-loop P-type iterative learning law for uncertain linear DPSs. In addition,he considered ILC for second-order hyperbolic DPSs with uncertainties [23]. A D-type ILC law for a type of distributed parameter systems with collocated sensors and actuators is considered in [24]. In many industrial processes, the sensors and actuators are always non-collocated. Hence, a type of linear parabolic distributed parameter system based on noncollocated sensors and actuators is proposed. No research papers have taken into account the problem of a PD-type ILC for this system.

    The distributed parameter system based on non-collocated sensors and actuators is a complex system since it depends on time and spatial position. Furthermore, ILC can be better in controlling dynamic systems with complex modelling,uncertainty and with strong non-linear coupling effects. As such, we can obtain good control performance of a distributed parameter system by using ILC schemes. As discussed above,there is no existing research that has been carried out using ILC for distributed parameter systems using non-collocated sensors and actuators. Thus, we first propose an open-loop PD-type ILC scheme for a distributed parameter system with non-collocated single sensor andmactuators. After that, we consider the distributed parameter system based on non-collocatedmsensors as well asmactuators, which include numerous industrial processes, such as heat exchangers, industrial chemical reactors, and agricultural irrigation processes. Lastly,we present a closed-loop PD-type ILC algorithm for the distributed parameter system using a single sensor and multiple actuators when some errors exist in the initial states of the system.

    In distributed parameter systems with non-collocated sensors and actuators, the sensors are capable of gathering information from the systems in real time. At the same time, the actuators can perform various tasks. When the states change, an input is imposed to control the output of the actuators. However, the actual output of the systems may not represent the desired output in the running of actuators. In this case, it is crucial to use ILC schemes to learn the output error of the systems. This facilitates the actual output in tracking the desired output.Therefore, this work improves the performance of systems. At the same time, it significantly closes the existing theoretical gap.

    The remainder of this paper is as follows: In Section II, we first discuss the system and problem formulation. Next, the open-loop PD-type and closed-loop PD-type ILC schemes are presented in a distributed parameter system with a sensor andmactuators. In addition, the proposed ILC schemes are extended to a class of distributed parameter systems using non-collocatedmsensors andmactuators in Section III. The effectiveness of the proposed methods are illustrated through numerical simulation in Section IV and conclusions follow in Section V.

    Notations:R, Rnand R+are the set of all real numbers,ndimensional space and the set of all positive real numbers.

    The definition of theL2-norm of the functionW(x,t):[0,h]×[0,T]→Ris

    II. The System and Problem Formulation

    Consider the distributed parameter system with a noncollocated single sensor andmactuators as follows:

    with the Neumann boundary conditions

    and the initial condition

    wherexandtare the spatial position and time which satisfyis a known continuous function ofx(?0is a constant).kdenotes thekth iteration of the repetitive operation of the system.qk(x,t) andyk(t) denote the state and output of the system at thekth iteration. When the system operates in thekth iteration,u(k,i)(t) is the associated control signal of theith actuator.denotes the spatial distribution of the actuating device of theith actuator anddenotes the centroid position of theith actuator.c(x) is the spatial distribution of the sensor. The sensor spatial distribution and the actuators spatial distribution satisfy

    and

    where δ and γ are constants. σ>0 is the spatial support of the actuators.

    Throughout this paper, two lemmas and one assumption are first given as follows:

    Lemma 1 [22]:Iff(t) andg(t) are two continuous nonnegative functions on [0,T], and there exist nonnegative constants ρ andMsatisfying

    then

    Lemma 2 [22]:If the constant sequence {dk}k≥0converges to zero, and the sequence {Zk(t)}k≥0?C[0,T] satisfies

    then {Zk(t)}k≥0(k→ ∞) uniformly converges to zero, whereM>0 and 0 ≤θ<1 are constants.

    Assumption 1:For a desired outputyd(t), a uniqueu(d,i)(t)exists such that

    whereqd(x,0)=0.

    In this paper, an open-loop PD-type ILC scheme is employed as follows:

    whereek(t) is the output error ofkth iteration which satisfiesek(t)=yk(t)?yd(t). Γ and Υ are the open-loop ILC learning gains.

    III. Convergence Analysis

    In this section, we first prove the effectiveness of the openloop PD-type ILC for a distributed parameter system with non-collocated single sensor andmactuators. In addition, we extend the proposed scheme to the distributed parameter system with non-collocatedmsensors andmactuators. The following theorem is first given.

    Theorem 1:Consider the open-loop PD-type ILC scheme(7) for the repetitive distributed parameter system (1) with the desired output satisfying Assumption 1. If the learning gain exists and satisfies (1+2mδγσΓ)2<1/2, then the output error converges to zero for allt∈[0,T] ask→∞, i.e.,∈[0,T].

    Proof:The input erroru(k+1,i)(t)?u(d,i)(t) at the (k+1)th iteration can be expressed as

    According to the state equation of system (1), we have

    Applying integration by parts and using the boundary conditions for the third term on the right hand side of (9), we obtain

    Substituting (10) into (9) yields

    Based on the spatial distribution of the sensor (4) and actuators (5), (11) can be further rewritten as

    Squaring both sides of (12) and using the definition of theL2-norm, we have

    Integrating (14) with respect toxon [ 0,h], it satisfies

    According to the spatial distribution of the actuators (5), and the definition ofL2-norm, the following gives

    Integrating (17) with respect totand using the Bellman-Gronwall Lemma, we have

    Substituting (18) into (13), we get

    Because (1+2mδγσΓ)2<1/2, we can obtain(2(1+2mδγσΓ)2+4mσ(Υδγ)2/(λ?1))<1 if λ is chosen large enough. Hence,

    According to (18), we have

    And from the output equation of system (1), we readily conclude that

    Remark 1:In engineering applications, there always need to be multiple sensors to finish complicated tasks. Hence, we consider the following distributed parameter system with noncollocatedmsensors andmactuators which exists the same boundary conditions and initial condition as system (1) in a repeatable environment

    wheredenotes the spatial distribution of the sensing device of theith sensor andis the centroid position of theith sensor.

    The spatial distribution of the sensors are assumed to be the boxcar function

    and the spatial distribution of the actuators are also assumed to be a boxcar function

    where β and α are constants. ε>0 and η>0 are the spatial support of the sensors and actuators, respectively.

    Remark 2:In some practical engineering applications, the actuator needs to perform a task so the spatial distribution of actuating device is wider than sensing device. Therefore, we assume

    According to the system (23), the following assumption is given.

    Assumption 2:For a desired outputy(d,i)(t), a uniqueu(d,i)(t)exists such that

    In this part, we consider the open-loop PD-type ILC scheme

    wheree(k,i)(t) is the output error ofit h sensor duringkth iteration which satisfiese(k,i)(t)=y(k,i)(t)?y(d,i)(t). Υiand Γiareith number of open-loop PD-type learning gains.

    Theorem 2:If the open-loop PD-type gain Γiof the ILC scheme ( 27) satisfies ( 1+2αβεΓi)2<1/2, and the system with the desired output satisfies the Assumption 2 under the initial and boundary conditions, the output errors of ( 23) converge to zero when

    Remark 3:In previous proof, we just consider that the initial condition is zero at every iterative learning process, however,there always exits some errors at the beginning in every iterative process. Hence, a more favorable initial condition is given as follows:

    For the system (1), if we consider using a closed-loop PDtype ILC scheme to replace the open-loop PD-type ILC scheme (7), we can obtain the convergence conditions of tracking error. The closed-loop PD-type ILC scheme is employed

    where Φ and Ψ are the P-type learning gain and D-type learning gain, respectively.

    Proof:From the desired input and actual input, the following gives

    whereand

    From ( 30), We can get

    According to the definition ofL2-norm, we have

    Similar to the proof of Theorem 1, we can investigateby using the spatial distribution of the actuators and the definition ofL2-norm as follows:

    Substituting ( 34) into ( 32), we have

    Multiply both sides of (35) bye?t, and letwe can get

    whereo1=2|1?2mΨδγσ|?2,o2=2|Φδ|2l?k+1/|1?2mΨδγσ|2ando3=|4Φ2δ2mγ2σ|/|1?2mΨδγσ|2.

    From Lemma 1, we can have that

    Multiply both sides of (37) byand letWe obtain

    From the initial condition, we know ? ∈[0,1), henceo2→0, whenk→∞. And wheno1<1, we can obtainV(k,i)(t)→0 (k→∞) from Lemma 2. BecauseV(k,i)(t)=we have

    Hence, we can obtain

    IV. Numerical Simulations

    Consider the following distributed parameter system with a sensor and two actuators in a repeatable environment

    wherex∈[0,1],t∈[0,0.8] and ? (x)=0.01>0.

    Assume that the sensor spatial distribution satisfies

    and the actuators spatial distribution satisfy

    and

    In this example, we employ the open-loop and closed-loop PD-type ILC schemes, and assume Γ=?0.7, Φ=?0.3 and Υ=Ψ=?15. Thus, we can obtain (1+2mδγσΓ)2<1/2 and 1/|1?2mΨδγσ|2<1/2which satisfy Theorems 1 and 3,respectively. The desired trajectory is given asyd=sin(5πt).

    Using the difference method for partial differential equations, the simulation results can be obtained which are shown in Figs. 1–6.

    Figs. 1–3 are obtained using an open-loop PD-type ILC scheme. Fig. 1 shows the desired output and actual output of system atk=15,25,30, respectively. Fig. 2 shows the statesqk(x,t) of system atk=25, and it is seen that only whenx∈[0.3125,0.375]∪[0.5,0.5625], the statesFig. 3 shows a curve chart which describes the variation in the error of output with the number of iterations. Whenk=25, the maximum error of the output function is 1.2×10?3. The simulation results demonstrate the effectiveness of the proposed scheme.

    Figs. 4–6 are obtained using a closed-loop PD-type ILC algorithm. Fig. 4 shows the desired output and actual output of system atk=15,25,30, respectively. Fig. 5 shows the statesqk(x,t) of system atk=25, and it is seen that only whenx∈[0.3125,0.375]∪[0.5,0.5625], the statesFig. 6 shows a curve chart which describes the variation in the error of output with the number of iterations. Whenk=25, the maximum error of the output function is 0.64×10?3. The simulation results demonstrate the effectiveness of the proposed algorithm.

    Fig. 1. The desired output yd(t) and iterations for output function yk(t) when k = 15,25,30, respectively (open-loop PD-type ILC scheme).

    Fig. 2. The states qk(x, t) of system when k = 25 (open-loop PD-type ILC scheme).

    Fig. 3. The variation of maximum output error ek(t) along with iterative number (open-loop PD-type ILC scheme).

    V. Conclusion

    Fig. 4. The desired output yd(t) and iterations for output function yk(t) when k = 15,25,30, respectively (closed-loop PD-type ILC scheme).

    Fig. 5. The states qk(x, t) of system when k = 25 (closed-loop PD-type ILC scheme).

    Fig. 6. The variation of maximum output error ek(t) along with iterative number (closed-loop PD-type ILC scheme).

    In this paper, we extended the open-loop and closed-loop PD-type ILC schemes for two types of the parabolic distributed parameter systems based on non-collocated sensors and actuators working in a repeatable environment. Firstly, we took into consideration the convergence condition of a type of distributed parameter system with non-collocated single sensor andmactuators by using two classes of ILC schemes.Thereafter, we discussed the convergence condition of a class of distributed parameter systems using non-collocatedmsensors andmactuators. Lastly, we presented a distributed parameter system based on one sensor and two actuators to illustrate the effectiveness of the proposed control. From Figs. 3 and 6, we know the maximum error of the output function are 1.2×10?3(open-loop PD-type) and0.64×10?3(closed-loop PD-type), respectively. Hence, the closed-loop PD-type ILC scheme is more effective.

    我的老师免费观看完整版| 国产淫片久久久久久久久| 国产成人91sexporn| 亚洲国产欧美在线一区| 少妇的逼好多水| 啦啦啦在线观看免费高清www| 一区二区av电影网| 一区在线观看完整版| 亚洲欧美成人综合另类久久久| 最黄视频免费看| 午夜福利,免费看| 久久久久久久大尺度免费视频| 高清在线视频一区二区三区| 伊人久久国产一区二区| 成年女人在线观看亚洲视频| 欧美激情极品国产一区二区三区 | 日本av手机在线免费观看| 男人和女人高潮做爰伦理| 丝瓜视频免费看黄片| 国产伦精品一区二区三区四那| 九草在线视频观看| 两个人的视频大全免费| 美女主播在线视频| 久久久久久久久大av| 激情五月婷婷亚洲| 国产亚洲午夜精品一区二区久久| 18禁在线播放成人免费| videossex国产| 三级国产精品片| 极品少妇高潮喷水抽搐| 久久鲁丝午夜福利片| 我的老师免费观看完整版| 国产黄频视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品不卡视频一区二区| 色网站视频免费| 只有这里有精品99| 国产精品国产三级国产av玫瑰| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产成人久久av| 少妇猛男粗大的猛烈进出视频| 午夜福利影视在线免费观看| 51国产日韩欧美| 日本91视频免费播放| 美女内射精品一级片tv| 日本爱情动作片www.在线观看| 熟女人妻精品中文字幕| 老熟女久久久| 国产欧美日韩精品一区二区| 欧美日本中文国产一区发布| av.在线天堂| 久久99蜜桃精品久久| 亚洲国产欧美在线一区| 一二三四中文在线观看免费高清| videossex国产| 国产视频内射| 久久久a久久爽久久v久久| a级一级毛片免费在线观看| 亚洲在久久综合| 夜夜看夜夜爽夜夜摸| 亚洲精品,欧美精品| 各种免费的搞黄视频| 日韩av免费高清视频| 久久精品久久精品一区二区三区| 一级毛片久久久久久久久女| 18禁在线无遮挡免费观看视频| 国产日韩欧美视频二区| 免费黄频网站在线观看国产| 中文资源天堂在线| 99精国产麻豆久久婷婷| 午夜日本视频在线| 日韩不卡一区二区三区视频在线| 国产日韩一区二区三区精品不卡 | 国产欧美另类精品又又久久亚洲欧美| 美女福利国产在线| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线 | 午夜免费男女啪啪视频观看| 99国产精品免费福利视频| av.在线天堂| 少妇被粗大猛烈的视频| 日韩三级伦理在线观看| 亚洲,一卡二卡三卡| 免费在线观看成人毛片| 丁香六月天网| 久久久久久久久久成人| 大话2 男鬼变身卡| 又大又黄又爽视频免费| 国产亚洲最大av| 99久久精品国产国产毛片| 性色av一级| 中文在线观看免费www的网站| 观看免费一级毛片| 亚洲欧美日韩东京热| 日韩熟女老妇一区二区性免费视频| 久久久久久久久久久久大奶| 国产男人的电影天堂91| av国产久精品久网站免费入址| 99九九在线精品视频 | 少妇被粗大的猛进出69影院 | av天堂久久9| 能在线免费看毛片的网站| 久久青草综合色| 麻豆成人午夜福利视频| 九九爱精品视频在线观看| 99久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 插逼视频在线观看| 欧美日韩精品成人综合77777| 久久久精品94久久精品| 性色avwww在线观看| 男人爽女人下面视频在线观看| 高清在线视频一区二区三区| 中文资源天堂在线| 久久99一区二区三区| 99热国产这里只有精品6| 日本猛色少妇xxxxx猛交久久| 亚洲色图综合在线观看| 插阴视频在线观看视频| 极品教师在线视频| 免费看不卡的av| 成人亚洲欧美一区二区av| 国内揄拍国产精品人妻在线| 综合色丁香网| 亚洲欧美一区二区三区国产| 成年女人在线观看亚洲视频| 高清黄色对白视频在线免费看 | 美女视频免费永久观看网站| 午夜免费男女啪啪视频观看| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 中文字幕精品免费在线观看视频 | 日韩av免费高清视频| av不卡在线播放| 一级av片app| av专区在线播放| 国产av精品麻豆| 亚洲av欧美aⅴ国产| 亚洲真实伦在线观看| 成人国产av品久久久| 热re99久久精品国产66热6| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 国产男女内射视频| 在现免费观看毛片| 观看免费一级毛片| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 伊人亚洲综合成人网| 在线观看人妻少妇| av在线老鸭窝| 亚洲四区av| 麻豆成人午夜福利视频| 能在线免费看毛片的网站| av一本久久久久| 国产极品天堂在线| 人妻夜夜爽99麻豆av| 亚洲三级黄色毛片| 亚洲美女搞黄在线观看| 免费大片18禁| 日韩欧美 国产精品| 在线观看av片永久免费下载| 国产av精品麻豆| 伊人久久精品亚洲午夜| 蜜桃在线观看..| 国产成人精品一,二区| 国产日韩欧美视频二区| 国产一级毛片在线| 99热这里只有精品一区| 在线观看免费视频网站a站| 少妇高潮的动态图| 亚洲真实伦在线观看| 黑人高潮一二区| av国产精品久久久久影院| 六月丁香七月| 最近的中文字幕免费完整| 午夜精品国产一区二区电影| 久久精品熟女亚洲av麻豆精品| 色网站视频免费| 免费高清在线观看视频在线观看| 亚洲综合色惰| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区四那| 九九在线视频观看精品| 又大又黄又爽视频免费| 精品少妇内射三级| 精品99又大又爽又粗少妇毛片| 亚洲国产精品999| 永久网站在线| 人人妻人人澡人人看| 久久人人爽人人爽人人片va| 日韩免费高清中文字幕av| 久久99热6这里只有精品| 少妇精品久久久久久久| 中文资源天堂在线| 纵有疾风起免费观看全集完整版| 在线观看三级黄色| 亚洲国产精品一区三区| 亚洲四区av| 在线亚洲精品国产二区图片欧美 | 9色porny在线观看| 一区二区三区乱码不卡18| 国产精品99久久99久久久不卡 | 波野结衣二区三区在线| freevideosex欧美| 亚洲精品色激情综合| 王馨瑶露胸无遮挡在线观看| 国产69精品久久久久777片| 18+在线观看网站| 免费高清在线观看视频在线观看| 高清av免费在线| 国产精品久久久久久av不卡| 国产色婷婷99| 国产一区二区三区av在线| 卡戴珊不雅视频在线播放| 精品一区二区三卡| 精品国产乱码久久久久久小说| av国产久精品久网站免费入址| 美女中出高潮动态图| 国产午夜精品久久久久久一区二区三区| av卡一久久| 日韩视频在线欧美| 亚洲怡红院男人天堂| 在现免费观看毛片| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 久久久久久久久久久免费av| 搡老乐熟女国产| 亚洲精品乱码久久久v下载方式| 肉色欧美久久久久久久蜜桃| 午夜免费鲁丝| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 成年人午夜在线观看视频| 伊人久久精品亚洲午夜| 青春草亚洲视频在线观看| 91成人精品电影| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 精品国产露脸久久av麻豆| 偷拍熟女少妇极品色| 一级爰片在线观看| 一区二区av电影网| 老司机影院成人| 男人添女人高潮全过程视频| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 免费看日本二区| 日本黄色日本黄色录像| av免费在线看不卡| 国产精品久久久久久精品电影小说| 日本欧美视频一区| 男人舔奶头视频| av一本久久久久| 免费在线观看成人毛片| av有码第一页| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 精品久久久噜噜| 久久99一区二区三区| 午夜久久久在线观看| 老司机影院成人| 国产在线一区二区三区精| 亚洲国产精品国产精品| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 热re99久久精品国产66热6| 精品亚洲成国产av| 黑丝袜美女国产一区| 五月玫瑰六月丁香| 最近手机中文字幕大全| 在线亚洲精品国产二区图片欧美 | 晚上一个人看的免费电影| 成年人免费黄色播放视频 | 中文字幕精品免费在线观看视频 | 久久 成人 亚洲| 免费黄频网站在线观看国产| 亚洲电影在线观看av| 爱豆传媒免费全集在线观看| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 蜜臀久久99精品久久宅男| 天堂8中文在线网| 高清毛片免费看| 欧美精品人与动牲交sv欧美| 国产淫片久久久久久久久| 精品国产一区二区三区久久久樱花| av一本久久久久| 亚洲美女搞黄在线观看| 午夜影院在线不卡| 精品一区二区三卡| 国产精品.久久久| 在线观看三级黄色| 日本黄色片子视频| 欧美激情极品国产一区二区三区 | 在线观看人妻少妇| 永久免费av网站大全| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 夫妻性生交免费视频一级片| 黑人高潮一二区| 亚洲人与动物交配视频| 免费大片黄手机在线观看| 亚洲国产精品专区欧美| av女优亚洲男人天堂| 少妇的逼水好多| 亚洲熟女精品中文字幕| 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 十八禁高潮呻吟视频 | 色婷婷久久久亚洲欧美| 国产毛片在线视频| 欧美日韩视频精品一区| 免费观看的影片在线观看| 亚洲性久久影院| 日韩三级伦理在线观看| 国产精品久久久久久久久免| 人体艺术视频欧美日本| √禁漫天堂资源中文www| 香蕉精品网在线| 国产免费一级a男人的天堂| 成人影院久久| 欧美成人午夜免费资源| 伊人久久精品亚洲午夜| 大香蕉久久网| 日韩三级伦理在线观看| 纯流量卡能插随身wifi吗| 我的老师免费观看完整版| 综合色丁香网| 又黄又爽又刺激的免费视频.| 久久热精品热| 免费观看无遮挡的男女| 国产高清三级在线| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 免费高清在线观看视频在线观看| 热re99久久国产66热| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 亚洲人与动物交配视频| h日本视频在线播放| 多毛熟女@视频| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 国产免费视频播放在线视频| 老女人水多毛片| 国产精品一区二区性色av| 在线观看国产h片| 亚洲av在线观看美女高潮| 永久免费av网站大全| 久久6这里有精品| 夜夜爽夜夜爽视频| 欧美日韩视频精品一区| 日本欧美国产在线视频| 亚洲av二区三区四区| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 最后的刺客免费高清国语| 国产精品国产av在线观看| 日本wwww免费看| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 欧美bdsm另类| 最近的中文字幕免费完整| av天堂中文字幕网| 春色校园在线视频观看| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 男女边摸边吃奶| 国产中年淑女户外野战色| 亚洲精品久久久久久婷婷小说| 国产乱来视频区| 自拍偷自拍亚洲精品老妇| 国产乱来视频区| av播播在线观看一区| 欧美3d第一页| 免费播放大片免费观看视频在线观看| 极品少妇高潮喷水抽搐| 黑人高潮一二区| 久久国产精品男人的天堂亚洲 | 亚洲一区二区三区欧美精品| 热re99久久精品国产66热6| 国产一区二区三区av在线| 亚洲精品456在线播放app| 欧美日韩精品成人综合77777| 国产欧美日韩一区二区三区在线 | videossex国产| 99视频精品全部免费 在线| 亚洲综合精品二区| 中文天堂在线官网| 99热这里只有是精品在线观看| 日本与韩国留学比较| 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄| av线在线观看网站| 亚洲av.av天堂| 国产精品麻豆人妻色哟哟久久| 欧美精品国产亚洲| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 人人澡人人妻人| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 看免费成人av毛片| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 日韩一区二区三区影片| 美女主播在线视频| 乱人伦中国视频| av免费在线看不卡| a级一级毛片免费在线观看| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 全区人妻精品视频| 狂野欧美白嫩少妇大欣赏| 久久99蜜桃精品久久| 狠狠精品人妻久久久久久综合| 99久久精品热视频| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图 | 制服丝袜香蕉在线| 秋霞在线观看毛片| 欧美bdsm另类| 91成人精品电影| 日韩av免费高清视频| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区成人| 熟女电影av网| 免费黄色在线免费观看| 3wmmmm亚洲av在线观看| tube8黄色片| 亚洲欧洲日产国产| 日本黄色日本黄色录像| 最近手机中文字幕大全| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线 | 热99国产精品久久久久久7| 中文天堂在线官网| 国产一级毛片在线| 中国三级夫妇交换| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 大陆偷拍与自拍| 下体分泌物呈黄色| 免费观看a级毛片全部| 亚洲精品一区蜜桃| 国产国拍精品亚洲av在线观看| 熟女av电影| 日日爽夜夜爽网站| 制服丝袜香蕉在线| 国产69精品久久久久777片| 亚洲av成人精品一二三区| 精品久久久噜噜| 中国国产av一级| 女人久久www免费人成看片| 久久久久人妻精品一区果冻| 一个人看视频在线观看www免费| 国产免费一区二区三区四区乱码| 亚洲精品aⅴ在线观看| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 久久狼人影院| 国产综合精华液| 欧美日韩综合久久久久久| 熟女人妻精品中文字幕| 日本午夜av视频| 老女人水多毛片| 精品一区在线观看国产| 亚洲国产日韩一区二区| 久久国内精品自在自线图片| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 一边亲一边摸免费视频| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 亚洲精品日韩在线中文字幕| 亚洲精品乱码久久久v下载方式| 久久人人爽人人爽人人片va| 免费看光身美女| 免费观看的影片在线观看| 免费高清在线观看视频在线观看| 久久久久久久久久久丰满| 又粗又硬又长又爽又黄的视频| 国产伦在线观看视频一区| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 国产精品免费大片| 大香蕉久久网| a 毛片基地| 成人黄色视频免费在线看| 精品人妻一区二区三区麻豆| 久久ye,这里只有精品| 亚洲成色77777| 欧美精品亚洲一区二区| 日韩中字成人| 免费人成在线观看视频色| 少妇裸体淫交视频免费看高清| 精品国产一区二区三区久久久樱花| 最近2019中文字幕mv第一页| 成人国产麻豆网| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 亚洲精品aⅴ在线观看| 欧美成人精品欧美一级黄| 亚洲国产欧美在线一区| 国产在线视频一区二区| 亚洲av免费高清在线观看| 国产精品国产三级专区第一集| 久久精品国产鲁丝片午夜精品| 激情五月婷婷亚洲| 老司机影院毛片| 国产中年淑女户外野战色| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 一级毛片我不卡| 亚洲精品视频女| 久久精品国产a三级三级三级| 成人特级av手机在线观看| 色94色欧美一区二区| 51国产日韩欧美| 免费播放大片免费观看视频在线观看| 日韩欧美一区视频在线观看 | 亚洲精品aⅴ在线观看| 特大巨黑吊av在线直播| 精品久久久久久久久av| 三级经典国产精品| 国产黄色视频一区二区在线观看| 免费播放大片免费观看视频在线观看| 人妻 亚洲 视频| 毛片一级片免费看久久久久| 亚洲激情五月婷婷啪啪| 97在线人人人人妻| 久久人人爽av亚洲精品天堂| 肉色欧美久久久久久久蜜桃| 丝袜在线中文字幕| 午夜激情久久久久久久| 久久久久国产网址| 国产精品99久久99久久久不卡 | 国产在视频线精品| 深夜a级毛片| 欧美97在线视频| 久久精品久久精品一区二区三区| 中文天堂在线官网| 老熟女久久久| 18禁在线播放成人免费| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| a级毛片免费高清观看在线播放| 成人亚洲欧美一区二区av| 久久99热6这里只有精品| 亚州av有码| 国产探花极品一区二区| 曰老女人黄片| 精品久久久久久电影网| 在线播放无遮挡| 大香蕉97超碰在线| 99热国产这里只有精品6| 秋霞伦理黄片| 欧美日韩国产mv在线观看视频| av播播在线观看一区| 欧美97在线视频| 男男h啪啪无遮挡| 日产精品乱码卡一卡2卡三| videos熟女内射| 黄色怎么调成土黄色| 三级国产精品欧美在线观看| 亚洲不卡免费看| 国产亚洲最大av| 免费观看av网站的网址| 免费看日本二区| 男女边吃奶边做爰视频| 九九在线视频观看精品| 极品教师在线视频| 男女国产视频网站| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 狂野欧美激情性xxxx在线观看| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 国产精品一区二区在线不卡| 成年美女黄网站色视频大全免费 | 欧美最新免费一区二区三区| 久久精品久久久久久久性| 国产国拍精品亚洲av在线观看| 欧美最新免费一区二区三区| 亚洲av综合色区一区| 一边亲一边摸免费视频| 成人亚洲欧美一区二区av| 嘟嘟电影网在线观看| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 精品99又大又爽又粗少妇毛片| 国产日韩一区二区三区精品不卡 | 69精品国产乱码久久久| 国产午夜精品一二区理论片| 99久久精品国产国产毛片| 免费播放大片免费观看视频在线观看| a级片在线免费高清观看视频| 亚洲四区av| 国产一区二区在线观看av| 亚洲无线观看免费| 国产精品99久久99久久久不卡 | 国产成人精品婷婷|