• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation and Coalescence of Blast-Induced Cracks in PMMA Material Containing an Empty Circular Hole Under Delayed Ignition Blasting Load by Using the Dynamic Caustic Method

    2019-01-17 01:11:16ZhongwenYueYaoSongZihangHuandYanlongLu

    Zhongwen Yue, Yao Song, Zihang Hu and Yanlong Lu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

    Abstract: In this paper, dynamic caustic method is applied to analyze the blast-induced crack propagation and distribution of the dynamic stress field around an empty circular hole in polymethyl methacrylate (PMMA) material under delayed ignition blasting loads. The following experimental results are obtained. ① In directional-fracture-controlled blasting, the dynamic stress intensity factors (DSIFs) and the propagation paths of the blast-induced cracks are obviously influenced by the delayed ignition. ② The circular hole situated between the two boreholes poses a strong guiding effect on the coelesence of the cracks, causing them to propagate towards each other when cracks are reaching the circular hole area. ③ Blast-induced cracks are not initiated preferentially because of the superimposed effect from the explosive stress waves on the cracking area. ④ By using the scanning electron microscopy (SEM) method, it is verified that the roughness of crack surfaces changes along the crack propagation paths.

    Key words: crack propagation and coalescence; dynamic caustic method; delayed ignition; blast-induced cracks; dynamic stress intensity factor (DSIF)

    Directional-fracture-controlled blasting technology has been widely used for smooth blasting and shock absorption inroadway excavation, road construction, hydropower engineering, and tunnel engineering. There are many factors affecting the propagation and coalescence of blast-induced cracks. In terms of the ignition time, for example, Simha[1]studied the stress wave interference between boreholes from delayed ignition using a dynamic photo elastic method. Zhu[2]studied the initiation, growth and coalescence of cracks between boreholes employing the dynamic photo elastic method. Zhang[3]studied the use of a method to calculate the rock blasting fragmentation time employing fractal theory. Tose[4]reviewed different criteria and methodologies used in mining operations. Tests conducted by Rorke[5]showed clear trends of improved fragmentation, with harder and more brittle materials being more responsive to very short ignition delays. Xie[6]investigated the crack coalescence mechanism in a coal seam under a delayed blasting load in a similar simulation. Most work in the literature on delayed blasting has focused on the damping effect, whereas there have been relatively few studies on crack propagation and coalescence under a delayed blasting load.In the study of the empty-hole effect, Mohanty[7-8]first introduced that an empty hole was situated between two boreholes for the purpose of controlling the directions of blast-induced crack paths. Nakamura[9]evaluated the effects of an empty hole and that with double notches on blast-induced crack propagation. Cho[10]analyzed the directional fracture in rock material with an empty hole by using numerical and experimental methods.

    Among available experimental techniques for the analysis of stress, the optical method of caustics, owing to the simple pattern that it generates and its high sensitivity to strain gradients, has been one of the most effective approaches to determine the relationship between the characteristic parameters of singular stress fields and the fracture properties of materials[11-12]. In recent years, Yao et al.[13- 14]revealed the variations of fracture behaviors in polymethyl methacrylate (PMMA) material with offset-parallel cracks and graded material by using the dynamic caustic method, respectively. Yue[15-17]studied blast-induced crack propagation under simultaneous ignition by using the dynamic caustic method and compared the caustic method and strain gage method in the determination of fracture parameters. Liu et al.[18]employed the caustic method to investigate the stress intensity factor of cylindrical shell in PMMA material.

    Fig.1 Schematic diagram of the dynamic digital laser caustic system

    However, there is no published paper until now dealing with crack propagation and coalescence between boreholes with simultaneous existence of an empty hole and delayed ignition time. This paper employed a dynamic digital laser caustic system to investigate the blast-induced crack propagation and coalescence as well as the distribution of the dynamic stress field around an empty circular hole situated between two notched boreholes in PMMA specimens under delayed ignition blasting load. The caustic spots at the tips of blast-induced cracks were clearly recorded by a high-speed camera used in the testing system. Therefore, the crack propagation velocities at each moment were then calculated and the variations of dynamic stress intensity factors (DSIFs) around the crack tips with respect to the time were also obtained by using the dynamic caustic method. In addition, the stress differences at the vicinity of the empty circular hole were given to illustrate the stress field distribution there as well.

    1 Experiment of Dynamic Caustics

    1.1 Experimental system

    A schematic diagram of the dynamic digital laser caustic system is shown in Fig.1. A photograph of the system is shown in Fig.2. The system consists of a laser generator, a beam expander, two field lenses, a loading device, a high-speed camera (Fastcam-SA5-16G: Photron, Japan), a multipoint pulse ignitor and a computer. The green laser light with the wave length of 532 nm was adopted in the experiment and the maximum power of the laser generator could reach 300 mW. The diameter and the focal length of the field lens are 300 mm and 900 mm, respectively. The high-speed camera with the highest frame rate of 106frame/s was used to record the dynamic caustic spots and the propagation process of the crack. The multipoint pulse ignitor was connected to the specimen through copper wires. With the polished tips of the copper wires plugged into the notched boreholes, the lead azide explosive loaded in the boreholes was ignited as the multipoint pulse ignitor reached the trigger voltage.

    Fig.2 Photograph of the dynamic digital laser caustic system

    1.2 Experimental details

    PMMA was employed as the specimen material in this experiment. The dynamic mechanical and optical properties of PMMA are listed in Tab.1. The specimen dimension is 400 mm×300 mm×5 mm in length×width×thickness, as shown in Fig.3. There are two notched boreholes with the same diameter of 6 mm, and the distance between the center of these two boreholes is 120 mm. In the middle position of the notched boreholes, an empty circular hole with a diameter of 6 mm is situated. By such an arrangement in the specimen, the directional-fracture-controlled blasting can be realized and the crack propagation is easily ensured to be consistent with the notched locations after the explosion of the charge. The time differ-Ed-Young’s modulus,νd-Poisson’s ratio,Ct-Stress optical constant,C1-Longitudinal wave speed,C2-Shear wave speed.

    Tab.1 Dynamic mechanical and optical properties

    ence of detonation in the delayed blasting was set to 13.33 μs and the frame rate of the high-speed camera was 3×105frame/s. The resolution of the photograph recorded was 256×64 pixels and the spatial resolution was 1.8 mm/pixel. The laser power was set to 60 mW. The charge mass in each notched boreholes was 140 mg.

    Fig.3 Schematic diagram of an experimental specimen

    2 Evaluation of Dynamic Fracture Parameters

    2.1 Crack propagation velocity

    The caustic spot recorded by the digital high-speed camera can be used to locate the position of the propagating crack tip precisely.Thus, the crack lengths at each moment can be determined. The data-fitting methods proposed by Takahashi and Arakawa[19]are used to calculate the real crack lengthl(t) and the crack propagation velocity and relative fracture mechanical parameters can then be obtained. The nine-order polynomial ofl(t) with respect to timetcan be expressed as

    (1)

    Here, the coefficientliis obtained using the least-squares method, and the crack propagating speedνcan then be deduced by calculating the first derivative of the fitting curvel(t) with respect to timet

    (2)

    2.2 Dynamic mode-I stress intensity factor

    Fig.4 Formation of the caustic spot

    Fig.4 shows the formation of a caustic spot. It can be seen from Fig.4 that when the parallel light beams project onto the front side of the specimen, of which the thickness can be thinned at the crack surface as a consequence of the tensile stress applied on the boundaries of the specimen, the light paths can be changed, causing a non-uniform distribution on the reference plane. Therefore, a shadow area (caustic spot) can be formed and a bright curve (caustic curve) can also be found because of the convergence in light beams.

    According to the dynamic caustic patterns of the propagating crack tip under the explosive load, the mode-I and mode-II load exists spontaneously during the dynamic fracture process. The dynamic mode-I and mode-II stress intensity factor at the crack tip can be expressed as[20]

    (3)

    (4)

    wherez0(z0=1 200 mm) is the distance between the reference plane and the specimen surface,ctis the stress optical constant of the specimen material,vis the crack propagation speed, anddis the effective thickness of the specimen.Dmaxis the diameter of the caustic spot.λmis the magnification ratio of the optical devices andλm=1 in this paper.μrepresents the ratio of mixed mode stress intensity factor around the crack tip, which is determined by the maximum and minimum characteristic sizes (DmaxandDmin) in the caustic spots.F(v) is the correction factor of the dynamic crack propagating velocity, which accounts for velocity effects on the distribution of the dynamic stress field for a propagating crack, and may be given by

    (5)

    where the coefficientsβiare given by

    (6)

    Here,c1andc2are the velocities of the longitudinal and shear waves, respectively, andvis the velocity of crack propagation. It needs to be noted thatF(v) can be approximately equalled to 1 during the data processing[20].

    2.3 Stress difference around a circular hole

    An empty circular hole in a plate subjected to a biaxial stress field generated by an explosive load from two boreholes is simplified as shown in Fig.5a, whereas Fig.5b presents caustic curves for the considered stress concentration. The relation between the length parameter for characteristic points on the caustic curve around a circular hole and the load is expressed as[21]

    (7)

    Fig.5 Caustic curves for the considered stress concentration

    wherep-qis the stress difference around an empty circular hole,Ris the radius of the empty circular hole,Dis the length parameter for characteristic points on the caustic curves, and the other parameters are the same as the ones in Eq.(3).

    3 Experimental Results and Analysis

    3.1 Blast-induced crack paths

    Fig.6 shows the patterns of experimental results under the delayed blasting load. In Fig.6 the blast-induced cracks A and B are generated between notched boreholes and both slightly deviate from the empty circular hole. The path of blast-induced crack A isobviously curved. These results show that the influence from later ignition detonation on blast-induced crack path is stronger than that from earlier ignition.

    Fig.6 Blast-induced crack paths

    3.2 Dynamic caustic patterns under a blasting load

    Fig.7 shows serial dynamic caustic patterns under a delayed ignition blasting load. The ignition time of borehole H2 is 13.33 μs earlier than that of borehole H1. Att=16.67 μs, caustic spots are formed around borehole H2. Whent=23.33 μs, explosive stress waves from borehole H2 interact with the empty circular hole. Meanwhile, the stress is concentrated around the empty circular hole and a crescent caustic spot appears on the right of the empty circular hole. Att=30.00 μs, the explosive stress waves from borehole H2 meet those from borehole H1 and, at this time, the variation of the caustic spot on the left of the empty circular hole is obviously seen. Att=40.00 μs, the explosive stress waves from borehole H2 meet the caustic spot at the tip of blast-induced crack A from borehole H1. Att=43.33 μs, the caustic spots at the tips of blast-induced cracks present oval shapes under the explosive stress wave load. Att=50.00 μs, the explosive stress waves from borehole H1 meet the caustic spot at the tip of blast-induced crack B from borehole H2. Att=96.67 μs, the blast-induced crack B coalesces with the empty circular hole. In the whole process, with the reflection, diffraction and other effects of explosive stress waves on the empty circular hole, the caustic spots move around the empty circular hole and change in size. The variation of the size and direction for the caustic spots around the empty circular hole intuitively reflects the stress concentration and stress field around the empty circular hole under the explosive stress wave load.

    Fig.7 Serial dynamic caustics patterns under a delayed ignition blasting load

    3.3 Velocity of main blast-induced cracks

    Fig.8 and Fig.9 show the changing trend of blast-induced crack length versus time and the variations in the propagation velocity of blast-induced cracks under delayed ignition blasting loads, respectively. It can be seen from Fig.8 that the total lengths that crack A and crack B reach are both about 43 mm. By using Eq.(2), the velocities of the two blast-induced cracks can then be deduced. It can be observed from Fig.9 that, in the initial stage of blast-induced crack growth, the peak value of the crack propagating speed is about 600 m/s and the blast-induced crack propagating velocity soon decreases rapidly. Whent=43.34 μs, the velocity of blast-induced crack A under a delayed ignition blasting load is reduced to a minimal value of 321.48 m/s, while att=50.00 μs, the velocity of blast-induced crack B reached a minimal value of 237.50 m/s. Meanwhile, the conclusion can be made that the interaction between compressive P-waves and blast-induced running cracks can reduce the propagating velocity of blast-induced running cracks. Later, the propagating velocity of blast-induced cracks rapidly reached the peak values. Fromt=56.67 μs tot=100.00 μs, the propagating velocities of blast-induced cracks oscillates and has basically the same trends. Att=106.67 μs, blast-induced crack B coalesces with the empty circular

    Fig.8 Blast-induced crack length vs time

    hole. After approximately 10 μs, blast-induced crack B passes through the empty circular hole and its propagating velocity rapidly reaches another peak value of 529.81 m/s.

    Fig.9 Velocity of the blast-induced crack propagation vs time

    3.4 Evolution of DSIFs at the tips of blast-induced cracks

    Fig.10 Variations of DSIFs at the crack tips with respect to time

    3.5 Stress difference around a circular empty hole under a blasting load

    Fig.11 Curve of stress difference vs. time around an empty circular hole

    Fig.11 shows the stress difference around an empty circular hole under two-borehole delayed ignition blasting loads. It is seen that the variation in the stress difference around the empty circular hole indicates the strength of the stress field in the vicinity of the empty circular hole. When two boreholes are ignited with a delay, att=23.33 μs, the stress difference around the empty circular hole is 0.87 MN/m2. Fromt=53.33 μs tot=106.67 μs, the stress difference around the empty circular hole increases from 0.51 MN/m3to 4.07 MN/m2. Aftert=123.33 μs, the stress difference around the empty circular hole decreases in an oscillating manner.

    3.6 Analysis of microscopic characterizations in specimens

    For a further investigation, the micrographs of the crack surfaces are captured by using the scanning electron microscopy (SEM) method. SEM images of crack surfaces in the vicinity of both circular hole and boreholes are given in Fig.12. It can be concluded from Fig.12 that the crack surfaces become coarse when the crack propagates towards to the circular hole. In contrast, the crack surfaces are relatively smooth in the vicinity of boreholes. Obviously, the roughness of the crack surfaces varies along the crack propagation paths under the influence of the superposition of blasting stress waves and the guiding effect from the circular hole.

    Fig.12 Typical SEM images of the fracture surfaces in blast-induced cracks

    4 Conclusions

    This paper employs the dynamic caustic method to investigate the blast-induced crack propagation and coalescence and the distribution of the dynamic stress field around an empty circular hole in PMMA material under the delayed ignition blasting load. The following conclusions are drawn from the results of the study.

    ①In directional-fracture-controlled blasting, the dynamic stress intensity factors at the tips of the blast-induced cracks from earlier ignition are smaller than that from later ignition. The explosive stress waves interact with the blast-induced crack and affect the propagation of the blast-induced crack.

    ②The blast-induced cracks gradually deflect toward the empty circular hole and coalesce with each other in the propagating process.It shows that the empty hole plays a good role in guiding the blast-induced cracks.

    ③Blast-induced cracks are not generated preferentially where the explosive stress waves are superimposed. Blast-induced cracks are generated from borehole walls and meet between the two notched boreholes. Cracks generated preferentially at the superposition of explosive stress waves need to be studied further.

    ④Due to the superposition of blasting stress waves and a guiding effect from the circular hole, the crack surfaces are coarse in the vicinity of circular hole while they are smooth when cracks start to propagate near the boreholes.

    1024视频免费在线观看| 男女午夜视频在线观看 | 久久久久国产网址| 黄色一级大片看看| 成人亚洲精品一区在线观看| 国产精品久久久久久久电影| 亚洲av欧美aⅴ国产| 婷婷色麻豆天堂久久| 国产极品天堂在线| 2022亚洲国产成人精品| 国产av精品麻豆| 亚洲国产精品一区二区三区在线| 精品熟女少妇av免费看| 亚洲一区二区三区欧美精品| 国产极品粉嫩免费观看在线| 在线观看国产h片| 一级a做视频免费观看| 国产精品国产三级国产av玫瑰| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂| av国产久精品久网站免费入址| 欧美日韩av久久| 精品国产国语对白av| 日本色播在线视频| 国产成人免费观看mmmm| 久久影院123| 男男h啪啪无遮挡| 中文乱码字字幕精品一区二区三区| 黄色 视频免费看| 日韩欧美一区视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费日韩欧美大片| 日日撸夜夜添| 欧美另类一区| 丰满少妇做爰视频| 狂野欧美激情性bbbbbb| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av天美| 男人舔女人的私密视频| videos熟女内射| 久久婷婷青草| 日韩在线高清观看一区二区三区| 欧美激情国产日韩精品一区| 免费av不卡在线播放| 亚洲av日韩在线播放| 1024视频免费在线观看| 欧美日韩视频精品一区| 国产麻豆69| 色哟哟·www| 99九九在线精品视频| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 国产精品.久久久| 免费在线观看黄色视频的| 91在线精品国自产拍蜜月| 999精品在线视频| 久久久久久久久久成人| 日本wwww免费看| 美女内射精品一级片tv| 一个人免费看片子| 日本黄大片高清| 日韩中文字幕视频在线看片| 人妻少妇偷人精品九色| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 国产永久视频网站| 日本av手机在线免费观看| 婷婷色av中文字幕| 久久久国产精品麻豆| 搡女人真爽免费视频火全软件| 美女福利国产在线| 精品亚洲成国产av| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 韩国精品一区二区三区 | 看免费av毛片| 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 一本久久精品| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 大香蕉久久网| 爱豆传媒免费全集在线观看| 色婷婷久久久亚洲欧美| 亚洲性久久影院| 观看av在线不卡| 黄色毛片三级朝国网站| 欧美97在线视频| av网站免费在线观看视频| 丰满乱子伦码专区| 国产精品久久久久久久久免| 欧美日韩一区二区视频在线观看视频在线| 精品一区在线观看国产| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 日韩制服骚丝袜av| 下体分泌物呈黄色| 国产在线视频一区二区| 各种免费的搞黄视频| www日本在线高清视频| 久久婷婷青草| 日韩中字成人| 国产精品久久久久成人av| 成人综合一区亚洲| 男人操女人黄网站| av电影中文网址| 老女人水多毛片| 永久免费av网站大全| 国产片内射在线| 久久久精品区二区三区| 大陆偷拍与自拍| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 午夜福利,免费看| 黑人巨大精品欧美一区二区蜜桃 | 丝袜美足系列| 国产日韩欧美在线精品| 国产精品成人在线| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 夫妻午夜视频| 日韩制服丝袜自拍偷拍| 国产精品 国内视频| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 成人亚洲欧美一区二区av| 日韩中文字幕视频在线看片| 亚洲成人一二三区av| av有码第一页| 97在线视频观看| 丝袜在线中文字幕| 亚洲国产精品一区二区三区在线| 免费观看性生交大片5| 蜜桃国产av成人99| 亚洲一码二码三码区别大吗| 免费观看无遮挡的男女| 成人综合一区亚洲| 99热国产这里只有精品6| 亚洲国产最新在线播放| 免费看不卡的av| 日韩伦理黄色片| 亚洲欧美清纯卡通| 欧美激情国产日韩精品一区| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 久久人人爽人人爽人人片va| 国产精品蜜桃在线观看| 伊人亚洲综合成人网| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 狠狠婷婷综合久久久久久88av| 国国产精品蜜臀av免费| 亚洲伊人色综图| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 99久国产av精品国产电影| 久久精品aⅴ一区二区三区四区 | 一级毛片 在线播放| 青青草视频在线视频观看| 免费黄网站久久成人精品| 人人妻人人爽人人添夜夜欢视频| av免费观看日本| 春色校园在线视频观看| 十八禁网站网址无遮挡| 久久人人爽人人爽人人片va| 超碰97精品在线观看| 亚洲人成77777在线视频| 久久久国产一区二区| 丰满饥渴人妻一区二区三| 黑丝袜美女国产一区| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂| 一级,二级,三级黄色视频| 黄色怎么调成土黄色| 精品亚洲成国产av| 国产精品无大码| 日韩欧美精品免费久久| 国产毛片在线视频| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 国产精品.久久久| 少妇的逼好多水| 国产成人欧美| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 久久精品国产鲁丝片午夜精品| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 黄片播放在线免费| 女性被躁到高潮视频| 蜜桃在线观看..| 全区人妻精品视频| 又大又黄又爽视频免费| 久久影院123| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 国产淫语在线视频| 全区人妻精品视频| 日本wwww免费看| 观看美女的网站| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 精品国产露脸久久av麻豆| av福利片在线| 黑人欧美特级aaaaaa片| 51国产日韩欧美| 久久av网站| 观看av在线不卡| 久久久久精品性色| 伦理电影大哥的女人| 色哟哟·www| 免费黄网站久久成人精品| a级毛片在线看网站| 久久 成人 亚洲| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 成人国产麻豆网| 侵犯人妻中文字幕一二三四区| 国产高清不卡午夜福利| 制服人妻中文乱码| 久久久久久久亚洲中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 韩国av在线不卡| 九九在线视频观看精品| 久久国产亚洲av麻豆专区| 少妇被粗大的猛进出69影院 | 精品久久久精品久久久| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 一区二区av电影网| 欧美成人精品欧美一级黄| 22中文网久久字幕| 亚洲av免费高清在线观看| 岛国毛片在线播放| 午夜免费鲁丝| 久久婷婷青草| 亚洲av福利一区| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 欧美日本中文国产一区发布| 亚洲国产精品一区三区| 国产精品国产av在线观看| 99热网站在线观看| 三上悠亚av全集在线观看| 亚洲精品视频女| 又黄又粗又硬又大视频| 99精国产麻豆久久婷婷| 美女内射精品一级片tv| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区| 777米奇影视久久| 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 成人国语在线视频| 日韩制服丝袜自拍偷拍| 99热国产这里只有精品6| 人妻系列 视频| 亚洲国产精品一区二区三区在线| 夜夜骑夜夜射夜夜干| 在线天堂中文资源库| 久久ye,这里只有精品| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 两性夫妻黄色片 | 在线天堂最新版资源| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 色哟哟·www| 免费黄频网站在线观看国产| 久久久久久伊人网av| 晚上一个人看的免费电影| 18在线观看网站| 9热在线视频观看99| 成人亚洲欧美一区二区av| 啦啦啦中文免费视频观看日本| 蜜桃在线观看..| 国产国拍精品亚洲av在线观看| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 最近手机中文字幕大全| 最近中文字幕2019免费版| 久久 成人 亚洲| 99国产精品免费福利视频| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看| 夫妻午夜视频| 国产av一区二区精品久久| 国产一区亚洲一区在线观看| 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 成人手机av| 免费黄色在线免费观看| 亚洲av国产av综合av卡| 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看 | 春色校园在线视频观看| 国产熟女欧美一区二区| 精品久久久精品久久久| 全区人妻精品视频| 欧美人与性动交α欧美软件 | 亚洲人与动物交配视频| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 99视频精品全部免费 在线| 久久 成人 亚洲| 日本黄色日本黄色录像| av在线播放精品| 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 欧美变态另类bdsm刘玥| 成人影院久久| 免费在线观看完整版高清| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 亚洲内射少妇av| 午夜影院在线不卡| 久久人人爽人人爽人人片va| 久久婷婷青草| 激情五月婷婷亚洲| 97超碰精品成人国产| av一本久久久久| 日韩欧美一区视频在线观看| 精品一区在线观看国产| 熟女av电影| 精品一区在线观看国产| 日韩成人伦理影院| 精品第一国产精品| 91精品三级在线观看| 青青草视频在线视频观看| 色5月婷婷丁香| 男女国产视频网站| 中国美白少妇内射xxxbb| 男女高潮啪啪啪动态图| 国产成人午夜福利电影在线观看| 丰满迷人的少妇在线观看| kizo精华| 日韩成人av中文字幕在线观看| 人妻一区二区av| 青青草视频在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 考比视频在线观看| av天堂久久9| 国产精品不卡视频一区二区| 国产成人av激情在线播放| 在线精品无人区一区二区三| 中文字幕av电影在线播放| 大香蕉久久网| 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 巨乳人妻的诱惑在线观看| 亚洲av福利一区| 欧美97在线视频| 大码成人一级视频| 午夜福利乱码中文字幕| 中国国产av一级| 国产毛片在线视频| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美软件 | 亚洲成人一二三区av| 成人黄色视频免费在线看| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 免费人成在线观看视频色| 九色成人免费人妻av| 考比视频在线观看| 久久影院123| 高清视频免费观看一区二区| 91精品国产国语对白视频| 国产精品一区二区在线观看99| 亚洲国产最新在线播放| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 激情视频va一区二区三区| 欧美日韩视频精品一区| 欧美 日韩 精品 国产| 人人妻人人澡人人看| 日日啪夜夜爽| 久久久国产一区二区| 精品人妻在线不人妻| 在线观看国产h片| 国产探花极品一区二区| 亚洲,一卡二卡三卡| 久久久国产精品麻豆| 国产免费一区二区三区四区乱码| 日本黄大片高清| 亚洲欧美一区二区三区国产| 伊人亚洲综合成人网| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 一级毛片电影观看| 青春草视频在线免费观看| 日韩大片免费观看网站| 久久精品国产a三级三级三级| 丝袜人妻中文字幕| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| a级毛片黄视频| 日本黄大片高清| 欧美人与性动交α欧美软件 | 成人无遮挡网站| 看十八女毛片水多多多| 国产综合精华液| 精品国产一区二区三区四区第35| 在线观看三级黄色| 一个人免费看片子| 日韩三级伦理在线观看| 老女人水多毛片| 亚洲av.av天堂| 成人二区视频| 国产精品国产三级专区第一集| 深夜精品福利| 精品久久国产蜜桃| 久久久a久久爽久久v久久| 99香蕉大伊视频| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 国内精品宾馆在线| 最近中文字幕2019免费版| 免费观看无遮挡的男女| 日韩成人伦理影院| 日本猛色少妇xxxxx猛交久久| 另类精品久久| 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 国产xxxxx性猛交| 亚洲国产精品专区欧美| 久久久久久人妻| 国产 一区精品| 在线观看www视频免费| 1024视频免费在线观看| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 国产午夜精品一二区理论片| 99视频精品全部免费 在线| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 丰满乱子伦码专区| 青春草视频在线免费观看| 黑人高潮一二区| 少妇精品久久久久久久| 少妇人妻 视频| 纯流量卡能插随身wifi吗| 91aial.com中文字幕在线观看| 秋霞在线观看毛片| 午夜日本视频在线| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 久久精品国产综合久久久 | 有码 亚洲区| 国产高清三级在线| 亚洲av.av天堂| 久久久久久久国产电影| 亚洲精品视频女| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 最近中文字幕2019免费版| 国产成人aa在线观看| 少妇被粗大猛烈的视频| 亚洲三级黄色毛片| 啦啦啦中文免费视频观看日本| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 人人妻人人澡人人看| 成年女人在线观看亚洲视频| 精品少妇久久久久久888优播| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 国产成人免费观看mmmm| 日韩成人伦理影院| av电影中文网址| 国产极品天堂在线| 九九爱精品视频在线观看| 日本猛色少妇xxxxx猛交久久| 免费大片黄手机在线观看| 一本久久精品| 国产精品成人在线| 国产精品麻豆人妻色哟哟久久| 9色porny在线观看| 国产有黄有色有爽视频| 国产日韩欧美视频二区| 一级毛片 在线播放| 熟女av电影| 一区二区三区乱码不卡18| 国产精品国产三级专区第一集| 高清在线视频一区二区三区| 男女国产视频网站| 国产高清不卡午夜福利| 麻豆精品久久久久久蜜桃| 亚洲av.av天堂| 尾随美女入室| 国语对白做爰xxxⅹ性视频网站| 欧美亚洲 丝袜 人妻 在线| 男女午夜视频在线观看 | 九草在线视频观看| a 毛片基地| 久久精品国产自在天天线| 日韩精品免费视频一区二区三区 | 中国美白少妇内射xxxbb| 美国免费a级毛片| 国产精品成人在线| 免费少妇av软件| 天美传媒精品一区二区| 国产免费一级a男人的天堂| 久久久久久人人人人人| xxx大片免费视频| 精品人妻熟女毛片av久久网站| 国产精品熟女久久久久浪| 一区在线观看完整版| 午夜影院在线不卡| 亚洲色图综合在线观看| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 中文字幕最新亚洲高清| av.在线天堂| 秋霞在线观看毛片| 欧美bdsm另类| 久久久国产欧美日韩av| 国产精品免费大片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻 视频| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区 | 精品国产一区二区三区久久久樱花| 亚洲精品日本国产第一区| av播播在线观看一区| 国产乱人偷精品视频| 黑人猛操日本美女一级片| 捣出白浆h1v1| av电影中文网址| 亚洲精品视频女| 女人被躁到高潮嗷嗷叫费观| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| 看免费av毛片| 成年美女黄网站色视频大全免费| 国产日韩欧美视频二区| 91aial.com中文字幕在线观看| 久久久久久人妻| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 国产成人a∨麻豆精品| 永久网站在线| 韩国av在线不卡| 人人妻人人澡人人看| 在线观看人妻少妇| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 综合色丁香网| 国产一区二区激情短视频 | 国产国拍精品亚洲av在线观看| kizo精华| 国产成人免费无遮挡视频| 插逼视频在线观看| 丝袜脚勾引网站| 国产 一区精品| 亚洲伊人色综图| 一级a做视频免费观看| 亚洲久久久国产精品| 最后的刺客免费高清国语| 久久久久久久久久久久大奶| 免费看av在线观看网站| 日本vs欧美在线观看视频| 秋霞伦理黄片| 亚洲 欧美一区二区三区| 全区人妻精品视频| 久久精品夜色国产| 少妇被粗大猛烈的视频| 一级爰片在线观看| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区|