• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control Research of Dual Chamber Hydro-Pneumatic Suspension

    2019-01-17 01:11:14JinweiSunMingmingDongZhiguoWangBaoyuLiandLiangGu

    Jinwei Sun, Mingming Dong, Zhiguo Wang, Baoyu Li and Liang Gu,

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.Beijing North Vehicle Group Corporation, Beijing 100072, China)

    Abstract: Vehicle riding comfort and handling stability are directly affected by suspension performance. A novel dual chamber hydro-pneumatic (DCHP) suspension system is developed in this paper. Based on the structural analysis of the DCHP suspension, an equivalent suspension model is proposed for the control purpose. A cuckoo search (CS) based fuzzy PID controller is proposed for the control of the DCHP suspension system. The proposed controller combines the advantage of fuzzy logic and PID controller, and CS algorithm is used to regulate the membership functions and PID parameters. Compared with tradition LQR controller and passive suspension system, the CSFPID controller can reduce the sprung mass acceleration, and at the same time with no deterioration of tire deflection.

    Key words: vehicle dynamics; dual chamber hydro-pneumatic (DCHP) suspension; cuckoo search (CS); fuzzy PID

    Well-designed suspension systems can provide better riding comfort and at the same time keep the tire in contact with road surface[1-2]. Hydro-pneumatic suspension systems use an inert gas as an elastic medium. Compared with the traditional suspension system, the nonlinear stiffness characteristic of the hydro-pneumatic system can enhance the vehicle ride comfort and handling stability[3]. The dual chamber hydro-pneumatic (DCHP) suspension is an improvement of the single chamber suspension, and its equivalent stiffness and damping are the functions of the excitation frequency[4]. Eltawwab[5]described the structure of the double chamber hydro-pneumatic suspension system and established a simplified linear model. The influence of parameters on the performance of the suspension is analyzed by using a series of stiffness and damping parameters, and the root mean square (RMS) value of the sprung mass acceleration. Suspension deflection and tire deflection are taken as the indexes to evaluate the suspension performance. The results show that the performance of the double chamber hydro-pneumatic suspension improved compared to the single chamber hydro-pneumatic suspension. Erin[6]established a nonlinear DCHP suspension system, and the results of the time domain simulation and frequency domain simulation are compared with the experimental data to validate the accuracy of the model. Other researchers have also studied the characteristics of DHCP suspension[7]. Consider the hydro-pneumatic suspension control: some researcher use the semi-active control model while others use the active control method for the system. Wang et al.[8]proposed a variable universe fuzzy control method for the hydro-pneumatic suspension to suppress the sprung mass acceleration. A hybrid reference model combining skyhook and ground-hook control is used in the semi-active hydro-pneumatic suspension[9]to improve both riding comfort and handling stability. Other control techniques such as sliding mode control, PID etc. are also implemented for the hydro-pneumatic suspension control. Although many researchers have worked on the hydro-pneumatic suspension modeling and control, seldom have they considered the DCHP control problem. After the analysis and model of the DCHP suspension system, this paper proposed a novel cuckoo search (CS) based fuzzy PID (FPID) controller for the system. The CS is utilized to get the best membership functions and PID parameters to improve the riding comfort, and at the same time not deteriorate the handling stability.

    1 Nonlinear Double Chamber Hydro-Pneumatic Suspension

    1.1 Structure of the DCHP suspension

    The structure of the DCHP suspension is shown in Fig.1. The system consists of four parts[3]: action cylinder, main damper, main accumulator and external components. The action cylinder is composed of a piston cylinder and an outer cylinder, and the external components include dampers and two accumulators connected via a variable orifice i.e. an adjustable throttle valve. The cylinder is mounted between the body and the lower arm to provide support force, and the piston rod moves along the outer cylinder.

    As shown in Fig.1, the main piston divides the cylinder interior space into two parts, the lower chamber and upper chamber, which are the compression and recovery chamber, respectively. When the main piston moves down, the pressure of the compression chamber increases and the oil flows into the recovery chamber through the valve block. When the pressure on both sides of the main piston increases to a certain extent, the oil flows to the recovery chamber through the compression valve, resulting in compression damping force. On the contrary, when the main piston moves upward, it results in recovery damping force.

    Fig.1 Structure of the dual-chamber hydro-pneumatic suspension

    1.2 Modeling of DCHP suspension

    The pressure equations of the main and additional accumulator can be derived from the polytropic equation of state[10]as

    (1)

    wherep10,p20,V10andV20are the initial pressure and volume of the main and additional accumulator, respectively, andp10=p20.p1is the pressure of the main accumulator, andp2is the pressure of the additional accumulator.V12is the oil volume flow into the additional accumulator,Arepresents the piston rod section area andris the polytrophic exponent. When the excitation frequency is very low, the compression and expansion of the gas can be regarded as isothermal,r=1; when the excitation frequency is high, the cooling conditions of the gas are poor,r=1.4.

    The transmission force of the DCHP suspension can be expressed as

    (2)

    whereFdis the main damper force andQ12andcaare the additional damper volumetric flow rate and damping coefficient, respectively. The values of the parameters are shown in Tab.1. As shown in Fig.2a, the dynamic model of the one quarter vehicle with DCHP suspension is expressed as

    (3)

    wherexbandxwrepresent the body and wheel displacement, respectively,xris the road roughness, andktis the tire stiffness.

    Tab.1 Parameters of the DCHP suspension

    Fig.2 Quarter model of DCHP suspension system

    The equivalent stiffness and damping coefficients of the DCHP suspension are the function of the excitation frequency, the property is independent of the nonlinear stiffness of the elastic medium itself, but is determined by the structural characteristics of the DCHP system. So, the elastic and damping components are linearized to better study the feature of the system. Eq.(3) can be rewritten as

    (4)

    wherek1=p0A2r/V10,k2=p0A2r/V20,xa=V12/Aandp0is the static equilibrium position pressure of the main and additional accumulator.V10andV20are the initial gas volume of the main and additional accumulator. The equivalent model of the DCHP suspension system is shown in Fig.2b. The equivalent stiffness and damping values of the system areceqandkeq. By comparing the sprung mass and unsprung mass displacement transfer functionxb/xw, the equivalent stiffness and damping can be expressed as

    (5)

    whereωis the excitation frequency. From Eq.(5) we can see that despite the linear characteristic of the spring and damping component, the stiffness and damping coefficient have a frequency-dependent characteristic.

    The control of the system is achieved through the control of the additional damper, and the DCHP suspension system can be equivalent to a slow active suspension system. The equivalent DCHP suspension with active force is shown in Fig.2c. DHCP suspension with active force is

    (6)

    1.3 Random road disturbance model

    Random road excitation can be considered as a symmetrical and isotropic Gaussian random process with statistical characteristics[11-12]. The power spectral density (PSD) of the random road disturbance can be expressed as

    (7)

    wherenis the spatial frequency (m-1) andn0is the reference spatial frequency.Gq(n0) represents the road roughness coefficient of different road levels. The road excitation is regarded as the response of the unit white noise excitation, and then the system frequency response function is[13]

    (8)

    vis the vehicle speed (m/s),ωis the round frequency (rad/s) andn00represents road space cutoff frequency (m-1). The time domain model of the road surface excitation can be obtained by converting Eq.(8) into a differential equation as

    (9)

    Considering the D-classes road,Gq(n0)=1 024×10-6m3,W=2,n0=0.1, and vehicle speed is 60 km/h. The displacement of the road profile can be built by integrating white noise. Fig.3 shows the quarter vehicle random road profile. To verify the statistical characteristics of random road profile, the power spectral density (PSD) of the ISO class D pavement is used for the purpose of comparison, and the result is shown in Fig.4.

    Fig.3 Random road profile

    Fig.4 Comparison of PSD curves between the generated pavement and the ISO pavement

    2 Cuckoo Search Based Fuzzy PID Control

    2.1 Cuckoo search algorithm

    CS is a new metaheuristic search algorithm developed by Yang Xinshe at the University of Cambridge in 2009[14]. The basic idea of CS is the reproductive behavior of cuckoo and the characteristics of Levy flight. The flow chart of the cuckoo search is shown in Fig.5. Preliminary studies show that it is superior to the existing algorithms, such as PSO and GA[15]. Compared with PSO, CS combines the local random walk strategy and the global search random walk strategy. They are switched through the probability parameterpa, thus improving the global searching efficiency and increasing the probability of getting the global optimal solutions. Local random walk can be expressed as

    (10)

    (11)

    (12)

    Fig.5 Flow chart of the cuckoo search algorithm

    2.2 PID control

    PID control is widely used in industry because it has a simple structure. The basic function of the PID control is to eliminate or reduce the steady state error and improve dynamic response of the system, and it is the combination of proportional, integral and derivative. The PID control law is

    (13)

    wheree(t) is the error of the model state and reference state,u(t) is the control law andKP,KIandKDare the proportional gain, integral gain and derivative gain, respectively. However,for its linear characteristics, classical PID is not suitable for nonlinear systems. So, the introduction of fuzzy logic control in this paper is not only to reduce the suspension vibration, but also to deal with system nonlinearity.

    2.3 Fuzzy logic control

    Fuzzy logic control (FLC) algorithm is based on the expert’s knowledge or experience. Generally speaking, a fuzzy system consists of three parts: fuzzifier, fuzzy inference engine for fuzzy rules and defuzzifier. Fuzzifier maps input variables into fuzzy sets, and fuzzy sets are characterized by membership functions. According to the fuzzy rules, inference engine performs mappings from input fuzzy sets to output fuzzy sets and defuzzifier maps the fuzzy output into crisp output. There are many different methods for each part of the fuzzy system; so FLC can be a combination of different methods. The controller contains two inputs and one output. The errore(t) and its derivate are used to get the control force. The linguistic variables are classified as: NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), and PB (Positive Big). The general form of the FLC rules can be defined as

    (14)

    In this paper, the controller for DHCP suspension is implemented by the CS based FLC. The two input variables to FLC are

    (15)

    2.4 CS based fuzzy PID control

    As discussed above, fuzzy PID controller can integrate the advantages of the fuzzy logic control (FLC) and PID.The controller proposed in this paper is combination of the classical fuzzy PID control and the CS optimal algorithm mentioned above. The structure of the CS based fuzzy PID controller for DCHP suspension is shown in Fig.6, where the CS is used to regulate membership functions and PID parameters for the controller. Differ from many optimization methods that require complete information of the plant parameters, CS operates without knowledge of the plant, and only needs the lower and upper bound of the optimal variables. Hence, CS is more suitable to handle the problem of lacking experience or knowledge. The design procedure is as follows.

    Step1Suppose cuckoo birds layneggs each time, and put these eggs into randomly chosenmnests. The parameter of the fuzzy PID controller, such as membership functions and PID parameters (Kp,KI,KD) make up the host nests position parameters. The fitness value will be calculated and the best nest will be kept to the next generation.

    Step2There are three rules to simulate the parasitic behavior of cuckoo birds to search nests to lay eggs:

    ①Each bird lays one eggs to a randomly chosen nest.

    ②Best nest will be kept to next generation.

    ③The eggs will be found with a probabilitypa∈[0,1]. The host birds may either throw the different eggs, or abandon the nests and build new ones.

    Step3Choose the suspension deflection as the constraint, sprung mass acceleration and tire deflection as the optimal objects; the optimal problem can be expressed as

    Constraint: 6rms(xb-xw)≤lim(xb-xw)

    Step4The initial settings for the CS should be defined, such as the population and the range of the optimal variables.

    Step5Applying the CS optimal procedure to the DCHP suspension, after several generations, we can obtain the best membership functions and PID parameters for the controller.

    Fig.6 CS based fuzzy PID controller

    3 Simulation and Results

    For the quarter DCHP suspension system discussed in section 1, the equivalent model shown in Fig.2c is used to introduce the control techniques proposed in this paper. The parameters of the DCHP suspension[16]system are selected ask1k2/(k1+k2)=12 500 N/m,mb=317.5 kg,mw=45.4 kg,cs=1 250 N·s/m, andkt=170 000 N/m. The random disturbance road profile described in section 1.3 is used as the model input disturbance. The compared method is denoted by LQR. Considering the riding comfort as the main indicator, the pareto front of the weighing factors are chosen asq1=50 823.3,q2=9.956 3×107andq3=9.350 2×107[17], whereq1,q2,q3are the weighing factors of sprung mass acceleration, suspension deflection and tire deflection, respectively. Fig.7 shows the evolution process of the CS algorithm. It can be seen that the search converges toward the minimal fitness value after 10 generations. Fig.8 shows the final membership function regulated by the CS.

    Fig.7 Evolution process

    Fig.8 Membership function

    The main function of the optimization algorithm used in this paper is to find the optimal control parameters. In order to achieve the purpose of optimal control, the offline search optimization algorithm is utilized to obtain the most appropriate parameters; so, the algorithm will not affect the real-time features of the system.

    The suspension response with the passive suspension system, the classical LQR and the proposed CSFPID, are shown in Fig.9, including sprung mass acceleration, suspension deflection and tire deflection. Tab.2 is the root mean square value of the dynamic response of the DHCP suspension with random road profile. Tab.2 shows that compared to the passive suspension system, the RMS value of body acceleration and suspension deflection reduced by 48% and 53%, respectively, by using CSFPID; The above values reduced by 37.5% and 25%, respectively, by using the LQR algorithm. However, the tire deflection, when using the LQR algorithm, had a 41% increase compared with the passive system, and the CSFPID control was almost the same with the passive system.

    Fig.9 Suspension response

    Control strategyVertical acceleration/(m·s-2)Suspension deflection/mTire deflection/mCSFPID0.3820.0050.0033LQR0.3430.0060.0048Passive suspension0.7450.0080.0034

    4 Conclusion

    In this paper, parametric DCHP suspension model and an equivalent model are developed, and CS based fuzzy PID controller is used in an equivalent DHCP suspension model. By using the CS characteristics, the control gain and the initial value of the PID controller and the fuzzy membership function can be obtained by defining the object functions and constraint of the proposed suspension. The numerical results indicate that the CS based FPID controller not only reduces the sprung mass acceleration and suspension deflection of the suspension system, but also shows that there is no deterioration of tire deflection compared to that obtained when using a classical LQR control method and passive suspension.

    亚洲人与动物交配视频| 亚洲欧美日韩东京热| 亚洲美女搞黄在线观看 | 俄罗斯特黄特色一大片| 成人三级黄色视频| 美女大奶头视频| 久久精品国产自在天天线| 成人三级黄色视频| 亚洲欧美成人综合另类久久久 | 免费人成在线观看视频色| 成人综合一区亚洲| 黄色欧美视频在线观看| 亚洲av成人精品一区久久| 国内精品久久久久精免费| 精品久久久久久久久久免费视频| 天堂网av新在线| 日韩欧美在线乱码| 少妇熟女aⅴ在线视频| 欧美日韩综合久久久久久| 国产精品乱码一区二三区的特点| 久久中文看片网| 国产av麻豆久久久久久久| 国产精品伦人一区二区| 成熟少妇高潮喷水视频| 亚洲国产精品久久男人天堂| 老司机福利观看| 精品日产1卡2卡| 欧美成人a在线观看| 欧美一区二区精品小视频在线| 日韩在线高清观看一区二区三区| 毛片女人毛片| 久久久色成人| 精品无人区乱码1区二区| 老司机午夜福利在线观看视频| 亚洲av五月六月丁香网| 国产熟女欧美一区二区| 一进一出抽搐gif免费好疼| 神马国产精品三级电影在线观看| 精品久久久久久久久亚洲| 国产精品国产三级国产av玫瑰| 国产一区二区激情短视频| 成人午夜高清在线视频| 亚洲国产精品久久男人天堂| 插逼视频在线观看| 国产一区亚洲一区在线观看| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 永久网站在线| 国产一区二区激情短视频| 国产片特级美女逼逼视频| 国产高清三级在线| 国产高潮美女av| 国产精品人妻久久久影院| 禁无遮挡网站| 日日摸夜夜添夜夜添小说| 麻豆久久精品国产亚洲av| 国产一区亚洲一区在线观看| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看| 美女免费视频网站| 日日干狠狠操夜夜爽| 男人狂女人下面高潮的视频| 白带黄色成豆腐渣| 国产精品一及| 国产淫片久久久久久久久| 欧美一级a爱片免费观看看| 全区人妻精品视频| 国产成人福利小说| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 成人特级av手机在线观看| 能在线免费观看的黄片| 一级毛片aaaaaa免费看小| 色哟哟哟哟哟哟| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| av在线亚洲专区| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 色av中文字幕| av福利片在线观看| 在线免费观看的www视频| 亚洲精品国产av成人精品 | www日本黄色视频网| 亚洲av熟女| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 久久久久九九精品影院| 国产成人a区在线观看| 午夜福利在线观看免费完整高清在 | 欧美日韩一区二区视频在线观看视频在线| 日韩av免费高清视频| 亚洲国产色片| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 国产 一区精品| 观看av在线不卡| 亚洲欧美精品专区久久| 伊人久久精品亚洲午夜| 亚洲av日韩在线播放| 久久鲁丝午夜福利片| 亚洲性久久影院| 老司机影院毛片| 国产精品偷伦视频观看了| 我的女老师完整版在线观看| 久久影院123| 成年美女黄网站色视频大全免费 | 久久久久国产精品人妻一区二区| 国产精品久久久久久av不卡| 最近2019中文字幕mv第一页| 国产深夜福利视频在线观看| 久久av网站| 寂寞人妻少妇视频99o| 少妇被粗大猛烈的视频| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩卡通动漫| 精品人妻熟女av久视频| 亚洲不卡免费看| 免费看不卡的av| 国产精品久久久久久久电影| 午夜av观看不卡| 男女国产视频网站| 97精品久久久久久久久久精品| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 一区二区三区免费毛片| 久久这里有精品视频免费| 国产精品国产三级专区第一集| 免费大片18禁| av在线app专区| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 日本vs欧美在线观看视频 | 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 又爽又黄a免费视频| 成年美女黄网站色视频大全免费 | 在线免费观看不下载黄p国产| 日韩成人伦理影院| 日日撸夜夜添| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 国产成人精品婷婷| 91精品国产九色| 免费av不卡在线播放| 亚州av有码| 久久精品夜色国产| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 在线观看www视频免费| 少妇高潮的动态图| 久久久国产一区二区| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区 | 精品酒店卫生间| 久久免费观看电影| 最黄视频免费看| 欧美性感艳星| 嫩草影院入口| 99久久综合免费| 夫妻午夜视频| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区| 男男h啪啪无遮挡| 欧美3d第一页| 18+在线观看网站| 天天操日日干夜夜撸| 中国三级夫妇交换| 能在线免费看毛片的网站| 中文字幕制服av| 欧美激情国产日韩精品一区| 亚洲一区二区三区欧美精品| 99久久中文字幕三级久久日本| 男男h啪啪无遮挡| 亚洲不卡免费看| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 啦啦啦啦在线视频资源| 成人美女网站在线观看视频| 一级爰片在线观看| 少妇高潮的动态图| 亚洲真实伦在线观看| 久久人人爽人人爽人人片va| 国产精品久久久久成人av| 久久久久久久国产电影| 欧美+日韩+精品| 国产黄色免费在线视频| 少妇的逼好多水| 男人和女人高潮做爰伦理| 丁香六月天网| av福利片在线观看| 少妇人妻 视频| 在线观看免费高清a一片| 香蕉精品网在线| 国产精品99久久久久久久久| 自拍偷自拍亚洲精品老妇| 久久影院123| 天堂俺去俺来也www色官网| 久久av网站| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 精品少妇黑人巨大在线播放| 免费久久久久久久精品成人欧美视频 | av天堂中文字幕网| 97在线视频观看| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 久久99蜜桃精品久久| 亚洲国产最新在线播放| 十八禁网站网址无遮挡 | 中文字幕久久专区| 夫妻性生交免费视频一级片| 久久女婷五月综合色啪小说| 妹子高潮喷水视频| 久久久精品免费免费高清| 在线天堂最新版资源| 99久久中文字幕三级久久日本| 能在线免费看毛片的网站| 97在线人人人人妻| 尾随美女入室| 成人毛片60女人毛片免费| 精品久久国产蜜桃| 我要看黄色一级片免费的| 在线观看人妻少妇| 中文天堂在线官网| 一级毛片电影观看| 国产精品国产三级国产专区5o| 国产在线视频一区二区| 搡女人真爽免费视频火全软件| 六月丁香七月| 涩涩av久久男人的天堂| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看| 男人狂女人下面高潮的视频| 人妻夜夜爽99麻豆av| 久久国产亚洲av麻豆专区| av专区在线播放| 国产一区二区在线观看av| 三级国产精品片| 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 久久久久久久国产电影| 久久国产乱子免费精品| 丰满饥渴人妻一区二区三| 人妻夜夜爽99麻豆av| 嫩草影院入口| 国产精品.久久久| 中国国产av一级| 日韩视频在线欧美| 亚洲精品色激情综合| 国产欧美日韩一区二区三区在线 | 99热国产这里只有精品6| 在线免费观看不下载黄p国产| 一级毛片黄色毛片免费观看视频| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频 | 日本91视频免费播放| 成人黄色视频免费在线看| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 老司机影院毛片| 久久99热这里只频精品6学生| 亚洲国产精品国产精品| 久久av网站| 狠狠精品人妻久久久久久综合| 99久国产av精品国产电影| 中文字幕久久专区| 久久久久久久久久久久大奶| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| .国产精品久久| 我的女老师完整版在线观看| 亚洲综合色惰| 欧美日韩视频精品一区| 久久久精品94久久精品| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲午夜精品一区二区久久| 日韩制服骚丝袜av| 我要看黄色一级片免费的| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 国产精品久久久久久精品电影小说| 国产在线视频一区二区| 这个男人来自地球电影免费观看 | 久久99蜜桃精品久久| 久久午夜综合久久蜜桃| 黄色视频在线播放观看不卡| 欧美丝袜亚洲另类| 国产色爽女视频免费观看| 99re6热这里在线精品视频| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 国产黄频视频在线观看| 精品一区在线观看国产| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 欧美变态另类bdsm刘玥| 国产精品99久久久久久久久| 深夜a级毛片| 久久99蜜桃精品久久| 99热网站在线观看| 69精品国产乱码久久久| 日韩精品有码人妻一区| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 亚洲精品中文字幕在线视频 | 久久 成人 亚洲| 人妻系列 视频| 久久人人爽人人片av| 亚洲av成人精品一区久久| 国产高清不卡午夜福利| 日韩,欧美,国产一区二区三区| 亚洲av中文av极速乱| 亚洲欧洲国产日韩| 国产老妇伦熟女老妇高清| av在线老鸭窝| 一级,二级,三级黄色视频| 亚洲精品色激情综合| 男人添女人高潮全过程视频| 亚洲av.av天堂| 午夜久久久在线观看| 国产精品一区二区三区四区免费观看| 亚洲中文av在线| 深夜a级毛片| 一区二区三区乱码不卡18| 国产成人a∨麻豆精品| 免费黄色在线免费观看| 国产av码专区亚洲av| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 久久久久国产网址| 夫妻午夜视频| 水蜜桃什么品种好| 国产精品一区二区三区四区免费观看| 国产成人91sexporn| 2022亚洲国产成人精品| 午夜福利在线观看免费完整高清在| 又粗又硬又长又爽又黄的视频| 日韩亚洲欧美综合| 精品久久久精品久久久| 成人二区视频| 午夜福利,免费看| 久久99精品国语久久久| 熟妇人妻不卡中文字幕| 亚洲国产最新在线播放| 欧美日韩av久久| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 哪个播放器可以免费观看大片| 综合色丁香网| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 我的老师免费观看完整版| 97在线视频观看| 在线亚洲精品国产二区图片欧美 | 亚洲精品日本国产第一区| 亚洲欧美一区二区三区国产| 国产在线男女| 日韩制服骚丝袜av| av不卡在线播放| 久久久久久久久久久丰满| 国产女主播在线喷水免费视频网站| 九九久久精品国产亚洲av麻豆| 丰满少妇做爰视频| 国产毛片在线视频| 日日啪夜夜撸| 中文字幕av电影在线播放| 成年av动漫网址| 亚洲国产日韩一区二区| 街头女战士在线观看网站| 国产精品免费大片| 中文字幕免费在线视频6| 中文字幕久久专区| 午夜免费鲁丝| 九色成人免费人妻av| 9色porny在线观看| 亚洲国产精品成人久久小说| 成年av动漫网址| 欧美精品人与动牲交sv欧美| av一本久久久久| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产亚洲91精品色在线| 国产精品伦人一区二区| 国产中年淑女户外野战色| 日本vs欧美在线观看视频 | 亚洲国产毛片av蜜桃av| 高清在线视频一区二区三区| 亚洲精品一二三| 亚洲av中文av极速乱| 成人漫画全彩无遮挡| 国产黄色视频一区二区在线观看| 看十八女毛片水多多多| 精品久久久久久久久亚洲| √禁漫天堂资源中文www| 国产精品一区www在线观看| h视频一区二区三区| 午夜精品国产一区二区电影| 午夜老司机福利剧场| 五月天丁香电影| 亚洲av二区三区四区| av福利片在线| 国产精品女同一区二区软件| 精品亚洲成国产av| 最近中文字幕2019免费版| 成人特级av手机在线观看| 建设人人有责人人尽责人人享有的| 国产成人精品一,二区| 欧美精品一区二区大全| 97在线视频观看| 亚洲精品国产av蜜桃| 少妇熟女欧美另类| 国内精品宾馆在线| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| 夜夜看夜夜爽夜夜摸| 极品人妻少妇av视频| 亚洲人与动物交配视频| 在线播放无遮挡| 亚洲精品aⅴ在线观看| 国产又色又爽无遮挡免| 黄色一级大片看看| 亚洲av男天堂| 91精品国产九色| 国产高清不卡午夜福利| 有码 亚洲区| 免费黄色在线免费观看| 欧美日本中文国产一区发布| 九色成人免费人妻av| 熟女人妻精品中文字幕| av福利片在线观看| 一本—道久久a久久精品蜜桃钙片| 99久国产av精品国产电影| 亚洲中文av在线| 精品午夜福利在线看| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 久久韩国三级中文字幕| 国产成人freesex在线| 偷拍熟女少妇极品色| 久久久a久久爽久久v久久| 精品国产乱码久久久久久小说| 中文字幕av电影在线播放| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 另类精品久久| 久久久久国产网址| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 深夜a级毛片| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 亚洲精品国产av蜜桃| 亚洲av二区三区四区| 爱豆传媒免费全集在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 久久久久网色| 国产色婷婷99| xxx大片免费视频| 久久久久久久国产电影| 看非洲黑人一级黄片| 亚洲欧美一区二区三区国产| 亚洲精品aⅴ在线观看| 免费大片18禁| 精品少妇黑人巨大在线播放| 一级毛片 在线播放| 青春草国产在线视频| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| 日韩精品免费视频一区二区三区 | 色婷婷久久久亚洲欧美| 久久国内精品自在自线图片| 狂野欧美白嫩少妇大欣赏| 亚洲精品一二三| 国产伦精品一区二区三区视频9| 三级国产精品片| 免费av不卡在线播放| 午夜免费鲁丝| 又爽又黄a免费视频| 日本黄色日本黄色录像| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 女人精品久久久久毛片| 51国产日韩欧美| 成年美女黄网站色视频大全免费 | 久久av网站| 少妇的逼好多水| 久久精品久久久久久久性| 亚洲精品乱码久久久久久按摩| 精品卡一卡二卡四卡免费| 亚洲国产精品999| 国产亚洲91精品色在线| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 午夜免费观看性视频| 草草在线视频免费看| 亚洲精品一区蜜桃| 只有这里有精品99| 丰满饥渴人妻一区二区三| 欧美最新免费一区二区三区| 天堂8中文在线网| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲,一卡二卡三卡| 亚洲不卡免费看| 少妇人妻久久综合中文| 精品一区二区三区视频在线| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 久久久国产欧美日韩av| 一区二区av电影网| 新久久久久国产一级毛片| av免费观看日本| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 97在线人人人人妻| 色视频www国产| 日韩欧美一区视频在线观看 | 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 一级二级三级毛片免费看| 97超碰精品成人国产| 国产欧美日韩综合在线一区二区 | 国模一区二区三区四区视频| 亚洲情色 制服丝袜| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 国产亚洲一区二区精品| 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 中文字幕人妻丝袜制服| 中国国产av一级| 亚洲精品一区蜜桃| 久久久午夜欧美精品| 国产日韩欧美视频二区| 制服丝袜香蕉在线| 久久精品国产自在天天线| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| 丝袜喷水一区| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 精品久久久久久久久av| 欧美高清成人免费视频www| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 我要看黄色一级片免费的| 91久久精品电影网| 国产黄片视频在线免费观看| 亚洲久久久国产精品| 亚洲精品日韩av片在线观看| 亚洲av不卡在线观看| 高清黄色对白视频在线免费看 | 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 成年女人在线观看亚洲视频| 激情五月婷婷亚洲| 99热6这里只有精品| 六月丁香七月| 亚洲av二区三区四区| 国产一区二区在线观看av| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放 | 久久久久网色| 综合色丁香网| 久久人人爽人人片av| 高清午夜精品一区二区三区| 我要看黄色一级片免费的| 97在线人人人人妻| 日本wwww免费看| 高清在线视频一区二区三区| 久久国产乱子免费精品| 中文字幕免费在线视频6| 高清黄色对白视频在线免费看 | 亚洲国产毛片av蜜桃av| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 久久国产乱子免费精品| 久久久久久久大尺度免费视频| 免费看光身美女| 午夜福利,免费看| 国产一区二区三区av在线| 内地一区二区视频在线| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡|