• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    青藏高原與極地氣象

    2019-01-16 11:05:12
    關(guān)鍵詞:海霧緯向經(jīng)向

    青藏高原與極地氣象研究進(jìn)展

    Progress in the Tibetan Plateau and Polar Meteorology Research

    1 高原氣象

    1 Tibetan Plateau meteorology

    1.1 Variability of summertime Tibetan tropospheric temperature and associated precipitation anomalies over the central-eastern Sahel

    The relationship between the Tibetan tropospheric thermal condition and West African monsoon precipitation during boreal summer,and the associated physical mechanisms,are investigated.A significant positive correlation exists between the summertime Tibetan tropospheric temperature (TTT) and centraleastern Sahel precipitation.When the TTT increases,higher than-normal precipitation occurs over the centraleastern Sahel,and vice versa.The increased tropospheric temperature over the western Tibetan Plateau (TP)-Mediterranean Sea region associated with a high TTT forms a tropospheric temperature gradient from the middle latitudes to the subtropics,which is accompanied by an anomalous zonal-vertical circulation from the western TP to the Mediterranean Sea.The tropospheric temperature distribution associated with a high TTT over the western TP-Mediterranean Sea region contributes to a tropospheric temperature gradient from the eastern Mediterranean and West Asia to the western Mediterranean,which is accompanied by an anomalous meridional-vertical circulation cell over the Mediterranean Sea-Africa region.The meridional-vertical circulation cell is accompanied by a deepened African continental low,and enhanced low-level westerly and southwesterly winds from the tropical and eastern Atlantic to inland Africa.These conditions favor an increase in precipitation over the central-eastern Sahel.Thus,the relationship between summer TTT and precipitation over the central-eastern Sahel is explained by the anomalous zonal-vertical circulation between the western TP and the Mediterranean Sea,and the anomalous meridional-vertical circulation cell over the Mediterranean Sea-Africa region.The zonal and meridional circulations are connected by the vertical motion over the Mediterranean Sea.Sensitivity experiments with an atmospheric model,in which the surface vegetation type is adjusted,demonstrate the impacts of an increase in the summertime TTT on the anomalous zonal-vertical circulation between the western TP and the Mediterranean Sea,the anomalous meridional-vertical circulation cell over the Mediterranean Sea-Africa region,the deepened African continental low,and the enhanced lowlevel westerly winds from the tropical and eastern Atlantic to inland Africa.Thus,the relationship between summertime TTT and central-eastern Sahelian precipitation reflects an impact of the TTT on central-eastern Sahelian precipitation.(Nan Sulan)

    1.2 Observational evidence of particle hygroscopic growth in the upper troposphere-lower stratosphere (UTLS) over the Tibetan Plateau

    We measured the vertical profiles of backscatter ratio (BSR) using the balloon-borne,lightweight Compact Optical Backscatter AerosoL Detector (COBALD) instruments above Linzhi,located in the southeastern Tibetan Plateau,in the summer of 2014.An enhanced aerosol layer in the upper troposphere–lower stratosphere (UTLS),with BSR (455 nm)>1.1 and BSR (940 nm)>1.4,was observed.The color index (CI) of the enhanced aerosol layer,defined as the ratio of aerosol backscatter ratios (ABSRs) at wavelengths of 940 and 455 nm,varied from 4 to 8,indicating the prevalence of fine particles with a mode radius of less than 0.1 μm.We find that unlike the very small particles (mode radius smaller than 0.04 μm) at low relative humidity (RHi<40%),the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.This result indicates that water vapor can play a very important role in increasing the size of fine particles in the UTLS over the Tibetan Plateau.Our observations provide observation-based evidence supporting the idea that aerosol particle hygroscopic growth is an important factor influencing the radiative properties of the Asian Tropopause Aerosol Layer (ATAL) during the Asian summer monsoon.(Ma Jianzhong)

    1.3 Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon

    Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM) is referred to as the Asian Tropopause Aerosol Layer (ATAL).The chemical composition,microphysical properties,and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade.In this work,we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1°×1.1°) to numerically simulate the emissions,chemistry,and transport of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012.We find a pronounced maximum of aerosol extinction in the UTLS over the Tibetan Plateau,which to a large extent is caused by mineral dust emitted from the northern Tibetan Plateau and slope areas,lofted to an altitude of at least 10 km,and accumulating within the anticyclonic circulation.We also find that the emissions and convection of ammonia in the central main body of the Tibetan Plateau make a great contribution to the enhancement of gas-phase NH3in the UTLS over the Tibetan Plateau and ASM anticyclone region.Our simulations show that mineral dust,water-soluble compounds,such as nitrate and sulfate,and associated liquid water dominate aerosol extinction in the UTLS within the ASM anticyclone.Due to shielding of high background sulfate concentrations outside the anticyclone from volcanoes,a relative minimum of aerosol extinction within the anticyclone in the lower stratosphere is simulated,being most pronounced in 2011,when the Nabro eruption occurred.In contrast to mineral dust and nitrate concentrations,sulfate increases with increasing altitude due to the larger volcano effects in the lower stratosphere compared to the upper troposphere.Our study indicates that the UTLS over the Tibetan Plateau can act as a well-defined conduit for natural and anthropogenic gases and aerosols into the stratosphere.(Ma Jianzhong)

    1.4 Estimation of surface heat fluxes over the central Tibetan Plateau using the maximum entropy production model

    Surface heat fluxes over the central Tibetan Plateau have been estimated using the maximum entropy production (MEP) model with the surface energy balance and the observation data from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III).The MEP surface heat fluxes are highly correlated with those of the TIPEX-III observations.The agreement between the MEP and TIPEX-III heat fluxes is higher when the observed surface energy balance closure is better.The errors of the MEP heat fluxes are smaller compared to those of the fluxes derived from the bulk transfer method,the Land Data Assimilation Systems,and the Simple Biosphere Model version 2 reported in the previous studies.The values of MEP sensible and latent heat fluxes tend to be less than those of the previous bulk heat fluxes.Thus,the MEP model can reasonably estimate surface heat fluxes over the central Tibetan Plateau.(Zhao Ping)

    2 極地氣象

    2 Polar meteorology

    2.1 Distribution and temporal trends of temperature extremes over Antarctica

    The spatiotemporal characteristics of temperature extremes over Antarctica remain largely unknown.Here,we use quality-controlled daily datasets from Antarctic weather stations to show that the annual maximum and minimum temperatures exhibit a decreasing pattern over Antarctica from the coast to inland regions.This feature holds for the warmest daily maximum and coldest daily minimum temperatures,which define the intensity of extremes,but not for the number of warm (cold) days measuring the frequency of extremes,which show limited dependence on latitude or elevation.During 1970–2000,the temperature extremes in the South Orkney islands and on the margins of East Antarctica show opposite trends,especially with a significant increasing and decreasing trend in warm events,respectively.During 1999–2013,the intensity and frequency of extreme temperatures decrease significantly over West Antarctica,but the trends vary greatly across subregions of Antarctica.Despite the limited number of stations and the potential time dependence of trends,these results not only help to decipher the climate regimes of Antarctica and fill current gaps in the map of global climate extremes,but also may guide the future design of Antarctic observational networks and be used to assess the capability of reanalysis datasets and climate models.(Wei Ting)

    2.2 Surface energy balance on the Antarctic plateau as measured with an automatic weather station during 2014

    AWS data during 2014 collected at PANDA-N station,on the East Antarctica Plateau,are analysed.Net Short Wave Radiation (QSWR),net Long Wave Radiation (QLWR),sensible (QH),latent (QL) and subsurface or ground (QG) heat fluxes are computed.Annual averages forQSWR,QLWR,QH,QLandQGof 19.65,?49.16,26.40,?0.77 and 3.86 W m?2were derived based on an albedo value of 0.8.QSWRandQHare the major sources of heat gain to the surface andQLWRis the major component of heat loss from the surface.An iterative method is used to estimate surface temperature in this paper; surface temperature of snow/ice is gradually increased or decreased,thereby changing longwave radiation,sensible,latent and subsurface heat fluxes,so that the net energy balance becomes zero.Mass loss due to sublimation at PANDA-N station for 2014 is estimated to be 12.18 mm w.e.a?1; and mass gain due to water vapour deposition is estimated to be 3.58 mm w.e.a?1.Thus the net mass loss due to sublimation/deposition is 8.6 mm w.e.a?1.This study computes surface energy fluxes using a model,instead of direct measurements.Also there are missing data especially for wind speed,though 2 m air temperature data is almost continuously available throughout the year.The uncertainties of albedo,wind speed and turbulent fluxes cause the most probable error in monthly values ofQLWR,QH,QL,QGand surface temperature of about ±4%,±20%,±50%,±11% and ±0.74 K respectively.(Ding Minghu)

    2.3 2017年夏季北冰洋浮冰區(qū)海霧特征分析

    首先利用中國(guó)第八次北極考察隊(duì)期間獲取的走航觀測(cè)數(shù)據(jù)分析了環(huán)北極考察的海霧特征。接下來利用在北冰洋密集浮冰區(qū)海霧加密觀測(cè)試驗(yàn)期間獲取的GPS探空觀測(cè)數(shù)據(jù)NCEP再分析資料,研究了北冰洋浮冰區(qū)海霧生成的氣象要素特征、邊界層特征和大氣環(huán)流形勢(shì)特征,發(fā)現(xiàn)浮冰區(qū)冰雪面之上的冷空氣穹丘使得大氣易于達(dá)到飽和,為北冰洋不同種類海霧的出現(xiàn)制造了有利條件。平流霧、輻射霧和蒸汽霧生消的機(jī)理和影響期間邊界層氣象特征各不相同,并且根據(jù)特定環(huán)流形勢(shì)對(duì)3種海霧進(jìn)行預(yù)報(bào)是可行的。(陳志昆,丁明虎)

    2.4 極地業(yè)務(wù)服務(wù)

    圓滿完成了南極和北極考察任務(wù),進(jìn)行了黃河站梯度觀測(cè)系統(tǒng)的維護(hù)工作,在中山站增設(shè)LGRCO/N2O監(jiān)測(cè)儀、太陽光度計(jì),實(shí)現(xiàn)了中山站數(shù)據(jù)的自動(dòng)化采集與部分?jǐn)?shù)據(jù)的實(shí)時(shí)顯示。

    3 模型和預(yù)測(cè)

    3 Model and prediction

    3.1 A statistical forecast model for the Chinese winter temperature based on autumn SST anomalies

    This study investigates the impacts of the autumn sea surface temperature anomalies (SSTAs) on the following winter (DJF) 2-m air temperature anomalies (TSAs) in China and discusses the potential predictability of the DJF TSAs based on the intimate link between the DJF TSAs and autumn global SSTAs.The empirical orthogonal function (EOF) analysis suggests that the three leading EOF modes jointly account for 80% of the total TSA variances and are characterized by a homogeneous spatial pattern,a north-south seesaw pattern and a cross structure pattern.These EOFs are temporally stable and suggest the potential predictability of the DJF TSAs.The EOF1 mode is influenced by changes in the intensities of the Siberian high,East Asian winter monsoon (EAWM) and East Asian trough related to a Eurasian teleconnection pattern,which can be tracked back to the autumn (SON) SSTAs.The Arctic Oscillation (AO) exerts a strong influence on the EOF2 mode.The configuration of the global SON SSTAs induces the AO signal and causes a TSA oscillation between the northern and southern parts of China.The EOF3 mode is associated with the western pathway of the EAWM and the westward shift of the Siberian high,which are attributed to two SON SSTA patterns.The multiple correlation coefficients between the SSTA indices and winter atmospheric circulations suggest the cooperative contribution of the autumn global SSTAs to the DJF TSAs.Therefore,a physically motivated statistical model is established based on the autumn SSTA indices.Cross validation suggests that this statistical forecast model shows a good performance in predicting the DJF TSAs wave dynamics and then be amplified because of the involvement of transient eddy feedbacks.(Lyu Junmei)

    3.2 A study of objective prediction for summer precipitation patterns over the eastern China based on a multinomial logistic regression model

    The prediction of summer precipitation patterns (PPs) over the eastern China is an important and topical issue in China.Predictors that are selected based on historical information may not be suitable for the future due to non-stationary relationships between summer precipitations and corresponding predictors,and might induce the instability of prediction models,especially in cases with few predictors.This study aims to investigate how to learn as much information as possible from various and numerous predictors reflecting different climate conditions.An objective prediction method based on the multinomial logistic regression (MLR) model is proposed to facilitate the study.The predictors are objectively selected from a machine learning perspective.The effectiveness of the objective prediction model is assessed by considering the influence of collinearity and number of predictors.The prediction accuracy is found to be comparable to traditionally estimated predictability,ranging between 0.6 and 0.7.The objective prediction model is capable of learning the intrinsic structure of the predictors,and is significantly superior to the prediction model with randomly-selected predictors and the single best predictor.A robust prediction can be generally obtained by learning information from plenty of predictors,although the most effective model may be constructed with fewer predictors through proper methods of predictor selection.In addition,the effectiveness of objective prediction is found to generally improve as observation increases,highlighting its potential for improvement during application as time passes.(Gao Lihao)

    3.3 Simulation of the Northern and Southern Hemisphere annular modes by CAMS-CSM

    As leading modes of the planetary-scale atmospheric circulation in the extratropics,the Northern Hemisphere (NH) annular mode (NAM) and Southern Hemisphere (SH) annular mode (SAM) are important components of global circulation,and their variabilities substantially impact the climate in mid-high latitudes.A 35-year (1979?2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences (CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data.The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM,relation of the NAM to the East Asian climate,and temporal variability of the SAM are examined and validated against the observational data.The results show that CAMS-CSM captures the zonally symmetric and outof-phase variations of sea level pressure anomaly between midlatitudes and polar zones in the extratropics of the NH and SH.The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies.Furthermore,the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies.The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia.It also captures the upward trend of the austral summer SAM index during recent decades.However,compared with the observation,the model shows biases in both the intensity and center locations of the NAM’s and SAM’s horizontal and vertical structures.Specifically,it overestimates their intensities.(Nan Sulan)

    3.4 A skilful prediction scheme for West China autumn precipitation

    West China is one of the country’s largest precipitation centres in autumn.This region’s agriculture and people are highly vulnerable to the variability in the autumn rain.This study documents that the water vapour for West China autumn precipitation (WCAP) is from the Bay of Bengal,the South China Sea and the Western Pacific.A strong convergence of the three water vapour transports (WVTs) and their encounter with the cold air from the northern trough over Lake Barkersh?Lake Baikal result in the intense WCAP.Three predictors in the preceding spring or summer are identified for the interannual variability of WCAP:(1) sea surface temperature in the Indo-Pacific warm pool in summer; (2) soil moisture from the Hexi Corridor to the Hetao Plain in summer; and (3) snow cover extent over East Europe and West Siberian in spring.The cold SSTAs contribute to an abnormal regional meridional circulation and intensified WVTs.The wet soil results in greater air humidity and anomalous southerly emerging over East Asia.Reduced snow cover stimulates a Rossby wave train that weakens the cold air,favouring autumn rainfall in West China.The three predictors,which demonstrate the influences of air-sea interaction,land surface processes and the cryosphere on the WCAP,have clear physical significance and are independent with each other.We then develop a new statistical prediction model with these predictors and the multilinear regression analysis method.The predicted and observed WCAP shows high correlation coefficients of 0.63 and 0.51 using cross-validation tests and independent hind casts,respectively.(Wei Ting)

    3.5 降雨型地質(zhì)災(zāi)害預(yù)報(bào)方法研究

    開展降雨型地質(zhì)災(zāi)害預(yù)報(bào)是減少災(zāi)害損失的有效方法。該文在討論降雨型地質(zhì)災(zāi)害預(yù)報(bào)相關(guān)概念的基礎(chǔ)上,結(jié)合國(guó)內(nèi)外已有的研究成果,系統(tǒng)總結(jié)了隱式統(tǒng)計(jì)模型、顯式統(tǒng)計(jì)模型和動(dòng)力模型等降雨型地質(zhì)災(zāi)害預(yù)報(bào)模型的特點(diǎn)和適用條件。近幾年區(qū)域降雨型地質(zhì)災(zāi)害的預(yù)報(bào)技術(shù)研究有以下新特點(diǎn):統(tǒng)計(jì)模型簡(jiǎn)單實(shí)用,目前已經(jīng)由單一考慮降雨特征的第1代隱式統(tǒng)計(jì)模型,進(jìn)一步發(fā)展為考慮地質(zhì)、地貌等靜態(tài)因子的顯示統(tǒng)計(jì)模型;動(dòng)力模型逐漸由基于垂直入滲理論的邊坡穩(wěn)定性模型開始向基于水土耦合機(jī)制的復(fù)雜預(yù)報(bào)模型發(fā)展;降雨型地質(zhì)災(zāi)害業(yè)務(wù)預(yù)報(bào)預(yù)警的核心是地質(zhì)災(zāi)害預(yù)報(bào)模型的本地化運(yùn)行,我國(guó)已經(jīng)基于統(tǒng)計(jì)模型搭建了服務(wù)于不同區(qū)域的業(yè)務(wù)預(yù)報(bào)預(yù)警系統(tǒng)。結(jié)合多源預(yù)報(bào)降雨資料,搭建基于水土耦合機(jī)制的降雨型地質(zhì)災(zāi)害集合預(yù)報(bào)預(yù)警系統(tǒng)是未來可能的發(fā)展方向。(陳悅麗)

    4 其他

    4 Others

    4.1 Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China

    We investigated the seasonal and spatial ozone variations in China by using three-year surface ozone observation data from the six Chinese Global Atmosphere Watch (GAW) stations and tropospheric column ozone data from satellite retrieval over the period 2010?2012.It is shown that the seasonal ozone variations at these GAW stations are rather different,particularly between western and eastern locations.Compared with the western China,the eastern China has lower background ozone levels.However,the Asian summer monsoon (ASM) can transport photochemical pollutants from the southern to the northern areas in the eastern China,leading to a northward gradual enhancement of background ozone levels at the eastern GAW stations.Over China,the tropospheric column ozone densities peak during spring and summer in the areas that are directly and/or indirectly affected by the ASM,and the peak time lags from the south to the north in the eastern China.We also investigated the regional representativeness of seasonal variations of ozone at the six Chinese GAW stations using the yearly maximum tropospheric column month as an indicator.The results show that the seasonal variation characteristics of ozone revealed by the Chinese GAW stations are typical,with each station having a considerable large surrounding area with the ozone maximum occurring at the same month.Ozone variations at the GAW stations are influenced by many complex factors and their regional representativeness needs to be investigated further in a broader sense.(Ma Jianzhong)

    4.2 Precipitation data and their uncertainty as input for rainfall induced shallow landslide models

    Physical models used to forecast the temporal occurrence of rainfall-induced shallow land slides are based on deterministic laws.Owing to the existing measuring technology and our knowledge of the physical laws controlling landslide initiation,model uncertainties are due to an inability to accurately quantify the model input parameters and rainfall forcing data.An uncertainty analysis of slope instability prediction provides a rationale for refining the geotechnical models.The Transient Rainfall Infiltration and Grid-based Regional Slope Stability-Probabilistic (TRIGRS-P) model adopts a probabilistic approach to compute the changes in the Factor of Safety (FS) due to rainfall infiltration.Slope Infiltration Distributed Equilibrium (SLIDE) is a simplified physical model for landslide prediction.The new code (SLIDE-P) is also modified by adopting the same probabilistic approach to allow values of the SLIDE model input parameters to be sampled randomly.This study examines the relative importance of rainfall variability and the uncertainty in the other variables that determine slope stability.The precipitation data from weather stations,China Meteorological Administration Land Assimilation System 2.0 (CLDAS2.0),China Meteorological Forcing Data set precipitation (CMFD),and China geological hazard bulletin are used to drive TRIGRS,SLIDE,TRIGRS-P and SLIDE-P models.The TRIGRS-P and SLIDE-P models are used to generate the input samples and to calculate the values of FS.The outputs of several model runs with varied input parameters and rainfall forcings are analyzed statistically.A comparison suggests that there are significant differences in the simulations of the TRIGRS-P and SLIDE-P models.Although different precipitation data sets are used,the simulation results of TRIGRS-P are more concentrated.This study can inform the potential use of numerical models to forecast the spatial and temporal occurrence of regional rainfall-induced shallow landslides.(Chen Yueli)

    4.3 Tropospheric NO2 vertical column densities retrieved from ground-based MAX-DOAS measurements at Shangdianzi regional atmospheric background station in China

    Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were performed at the Shangdianzi (SDZ) regional atmospheric background station in the northern China from March 2009 to February 2011.The tropospheric NO2vertical column densities (VCDs) were retrieved to investigate the background condition of the Beijing-Tianjin-Hebei region developed economic circle in China.The seasonal variation of mean NO2tropospheric VCDs (VCDTrop) at SDZ is apparent,with the maximum (1.3 × 1016molec cm?2) in February and the minimum (3.5 × 1015molec cm?2) in August,much lower than those observed at the Beijing city center.The average daytime diurnal variations of NO2VCDTrop are rather consistent for all four seasons,presenting the minimum at noon and the higher values in the morning and evening.The largest and lowest amplitudes of NO2VCDTrop diurnal variation appear in winter and in summer,respectively.The diurnal pattern at the SDZ station is similar to those at other less polluted stations,but distinct from the ones at the urban or polluted stations.Tropospheric NO2VCDs at SDZ are strongly dependent on the wind,with the higher values being associated with the pollution plumes from Beijing.Tropospheric NO2VCDs derived from ground-based MAX-DOAS at SDZ show to be well correlated with corresponding OMI (Ozone Monitoring Instrument) satellite products with a correlation coefficientR= 0.88.However,the OMI observations are on average higher than MAX-DOAS NO2VCDs by a factor of 28%,probably due to the OMI grid cell partly covering the south of SDZ,which is influenced more by the pollution plumes from the urban areas.(Cheng Siyang)

    4.4 Seasonal and interannual variability of the subsurface velocity profile of the Indonesian throughflow at the Makassar Strait

    Although there have been many previous studies that have interpreted the variability of Indonesian throughflow (ITF) transport,the processes that determine its vertical structure have rarely been investigated due to limited observations and model inefficiencies.In this study,a regionally coupled model is developed to address this issue.The model adopts an unstructured model grid,with an 3 km resolution within the Indonesian seas and straits and reveals somewhat inconsistent results compared to previous models with coarser resolutions.The results suggest that the seasonal variability of the depth of the ITF velocity maximum is partially controlled by the seasonally reversed Karimata throughflow,while the remainder primarily originated from the Mindanao-Sulawesi inflow rather than the Sibutu Strait throughflow.The Mindanao-Sulawesi inflow possesses a subsurface velocity core similar to that of the Makassar Strait,with a deep (shallow) maximum during El Ni?o (La Ni?a) years that plays a crucial role in determining the downstream Makassar throughflow profile in the interannual timescale.A sensitivity experiment by fixing the Indian Ocean boundary condition shows that the impacts from the Indian Ocean might be significant only within the intra-seasonal to seasonal timescales.(Jiang Guoqing)

    4.5 四川地形擾動(dòng)對(duì)降水分布影響

    引入一維加權(quán)平均的譜分析方法定量研究四川地形強(qiáng)迫對(duì)該區(qū)域降水分布的影響。結(jié)果表明:緯向地形和冬季降水譜峰鎖相于同一波長(zhǎng)(475.8 km),呈共振關(guān)系,地形與其他季節(jié)降水呈漂移關(guān)系,這與經(jīng)向和緯向上環(huán)流變動(dòng)有關(guān),即冬季緯向環(huán)流占主導(dǎo),緯向地形觸發(fā)的大氣波動(dòng)對(duì)冬季降水策動(dòng)作用大;夏季降水是各種不同尺度系統(tǒng)相互作用的結(jié)果,地形是重要因素之一。經(jīng)向和緯向地形特征尺度分別為296.8 km和475.8 km,反映了地形強(qiáng)迫的中尺度特征,且緯向地形譜峰比經(jīng)向大1個(gè)數(shù)量級(jí),緯向強(qiáng)迫更明顯。夏季降水譜峰比冬季大2個(gè)數(shù)量級(jí),降水系統(tǒng)緯向特征尺度比冬季小約150 km,說明夏季在緯向地形強(qiáng)迫下,降水系統(tǒng)尺度減小的同時(shí)其強(qiáng)度大大增加,這在一定程度上可以解釋中尺度對(duì)流性降水在夏季偏多。四川夏季最大降水位于雅安地區(qū),其地形擾動(dòng)比四川整體擾動(dòng)更明顯,故產(chǎn)生的降水也更大。夏季降水和經(jīng)向地形鎖相于同一波長(zhǎng)(37.1 km),經(jīng)向地形對(duì)雅安夏季強(qiáng)降水起關(guān)鍵作用。(王成鑫)

    猜你喜歡
    海霧緯向經(jīng)向
    基于LoRa的海霧監(jiān)測(cè)系統(tǒng)在漳州的觀測(cè)精度分析*
    浸膠帆布經(jīng)向剛度影響因素分析
    橡膠科技(2022年5期)2022-07-20 02:24:04
    與南亞高壓相聯(lián)的歐亞大陸-印度洋經(jīng)向環(huán)流
    紗線強(qiáng)力對(duì)純棉平紋面料強(qiáng)力的影響
    2018年8月大氣環(huán)流中水汽經(jīng)向輸送特征
    利用掩星溫度數(shù)據(jù)推算大氣月平均緯向風(fēng)場(chǎng)
    溫度對(duì)絲綢面料粘襯熱縮率的影響
    絲綢(2018年10期)2018-10-15 09:54:16
    基于FY-3B衛(wèi)星資料的中國(guó)南海海區(qū)1—3月海霧時(shí)空分布特征研究
    柞蠶絲面料在粘襯過程中的熱縮率變化分析
    有關(guān)副熱帶太平洋對(duì)ENSO影響研究的綜述
    久久天躁狠狠躁夜夜2o2o| 色综合亚洲欧美另类图片| 亚洲成人精品中文字幕电影| 男人舔奶头视频| av在线蜜桃| 网址你懂的国产日韩在线| 特级一级黄色大片| 欧美高清成人免费视频www| 国产激情欧美一区二区| xxx96com| 九色国产91popny在线| 两个人视频免费观看高清| 国产三级黄色录像| 久久亚洲精品不卡| 一区福利在线观看| 国产精品香港三级国产av潘金莲| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄片视频| av天堂在线播放| 国产视频一区二区在线看| 国产视频一区二区在线看| 亚洲人成网站在线播放欧美日韩| 在线a可以看的网站| 亚洲精品一卡2卡三卡4卡5卡| 一个人看的www免费观看视频| 免费无遮挡裸体视频| 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| 一级黄色大片毛片| 黑人巨大精品欧美一区二区mp4| 亚洲成人免费电影在线观看| 久久国产精品影院| 国产精品1区2区在线观看.| 一二三四在线观看免费中文在| 婷婷精品国产亚洲av| 一个人看的www免费观看视频| 在线观看免费视频日本深夜| 亚洲av电影不卡..在线观看| 欧美色视频一区免费| 精品免费久久久久久久清纯| 久久久久久久精品吃奶| 母亲3免费完整高清在线观看| 午夜福利在线观看吧| 桃红色精品国产亚洲av| tocl精华| 国产成人av教育| 99久久精品国产亚洲精品| 国产单亲对白刺激| 亚洲avbb在线观看| 亚洲欧洲精品一区二区精品久久久| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 欧美一级a爱片免费观看看| 精品一区二区三区av网在线观看| 窝窝影院91人妻| 国产熟女xx| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 亚洲成人免费电影在线观看| 一区二区三区高清视频在线| 91字幕亚洲| 亚洲自拍偷在线| 最新中文字幕久久久久 | 少妇丰满av| 日韩欧美一区二区三区在线观看| 欧美黄色片欧美黄色片| 亚洲精品粉嫩美女一区| 精品久久久久久久毛片微露脸| 午夜亚洲福利在线播放| 欧美黑人巨大hd| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区精品| 巨乳人妻的诱惑在线观看| 91av网一区二区| 精品国产美女av久久久久小说| 亚洲国产欧洲综合997久久,| 琪琪午夜伦伦电影理论片6080| 日韩欧美免费精品| 亚洲欧美一区二区三区黑人| 最近最新免费中文字幕在线| 国产欧美日韩精品亚洲av| 人人妻,人人澡人人爽秒播| 国产精品国产高清国产av| 久久久久久久久免费视频了| 久久性视频一级片| 国产一区二区在线av高清观看| 免费看a级黄色片| 麻豆成人午夜福利视频| 色噜噜av男人的天堂激情| 亚洲色图av天堂| 国产高清三级在线| 国产美女午夜福利| а√天堂www在线а√下载| 亚洲激情在线av| 12—13女人毛片做爰片一| 亚洲中文日韩欧美视频| 精品日产1卡2卡| 黄片大片在线免费观看| 两个人视频免费观看高清| 欧美xxxx黑人xx丫x性爽| 亚洲国产色片| 欧美3d第一页| 国产真实乱freesex| 国产单亲对白刺激| svipshipincom国产片| 亚洲在线自拍视频| 国产激情偷乱视频一区二区| 一本综合久久免费| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 婷婷精品国产亚洲av在线| 国产又色又爽无遮挡免费看| 宅男免费午夜| 90打野战视频偷拍视频| 99国产精品一区二区蜜桃av| 一本久久中文字幕| 午夜激情欧美在线| 国产v大片淫在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产1区2区3区精品| 特级一级黄色大片| 亚洲中文字幕日韩| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 美女黄网站色视频| 国产精品精品国产色婷婷| 夜夜爽天天搞| 一级作爱视频免费观看| 久久精品国产99精品国产亚洲性色| 日韩欧美国产在线观看| 99久久99久久久精品蜜桃| 一个人看的www免费观看视频| 国产爱豆传媒在线观看| 五月伊人婷婷丁香| 十八禁网站免费在线| 舔av片在线| 18美女黄网站色大片免费观看| 成人av在线播放网站| 91麻豆av在线| 国产探花在线观看一区二区| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在 | 脱女人内裤的视频| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜| 日韩成人在线观看一区二区三区| 亚洲激情在线av| 免费大片18禁| 日本一二三区视频观看| 两人在一起打扑克的视频| 欧美大码av| 国产精品99久久久久久久久| 精品一区二区三区视频在线观看免费| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 18禁美女被吸乳视频| 亚洲欧美日韩高清专用| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 在线视频色国产色| 国产av不卡久久| av视频在线观看入口| 亚洲成人久久爱视频| 精品日产1卡2卡| 成人一区二区视频在线观看| 国产精品国产高清国产av| 男人舔女人的私密视频| 九九久久精品国产亚洲av麻豆 | 亚洲欧美激情综合另类| 国产人伦9x9x在线观看| 欧美乱码精品一区二区三区| 亚洲中文字幕日韩| 搡老岳熟女国产| 成人特级av手机在线观看| 欧美成人一区二区免费高清观看 | 欧美+亚洲+日韩+国产| 欧美午夜高清在线| 免费观看人在逋| 国产淫片久久久久久久久 | 神马国产精品三级电影在线观看| 欧美午夜高清在线| 观看美女的网站| 精品熟女少妇八av免费久了| 精品久久久久久久久久久久久| 香蕉久久夜色| av在线蜜桃| 黄色女人牲交| 日本撒尿小便嘘嘘汇集6| 午夜久久久久精精品| 黑人操中国人逼视频| 小说图片视频综合网站| 欧美日本亚洲视频在线播放| 97超视频在线观看视频| 日日干狠狠操夜夜爽| 非洲黑人性xxxx精品又粗又长| 亚洲第一电影网av| 日韩国内少妇激情av| 一区二区三区高清视频在线| 国产蜜桃级精品一区二区三区| 叶爱在线成人免费视频播放| 国产真实乱freesex| 日韩欧美国产在线观看| 亚洲国产精品合色在线| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看成人毛片| 夜夜躁狠狠躁天天躁| 黄色日韩在线| 久久这里只有精品中国| 长腿黑丝高跟| 夜夜爽天天搞| 中出人妻视频一区二区| 天堂av国产一区二区熟女人妻| 女同久久另类99精品国产91| 亚洲国产精品999在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩无卡精品| 亚洲18禁久久av| 精品久久久久久久末码| 成熟少妇高潮喷水视频| 香蕉久久夜色| 成人国产一区最新在线观看| 亚洲18禁久久av| 这个男人来自地球电影免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久国产高清桃花| 18美女黄网站色大片免费观看| cao死你这个sao货| 欧美激情在线99| 日本免费a在线| 欧美性猛交╳xxx乱大交人| or卡值多少钱| 欧美日韩中文字幕国产精品一区二区三区| 十八禁网站免费在线| 欧美黑人欧美精品刺激| 97超视频在线观看视频| 99热只有精品国产| 国产成年人精品一区二区| 久久天堂一区二区三区四区| 国产精品免费一区二区三区在线| 1024香蕉在线观看| 免费电影在线观看免费观看| 美女黄网站色视频| 亚洲18禁久久av| 久久精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产真实乱freesex| 亚洲在线自拍视频| 一区二区三区激情视频| 色综合亚洲欧美另类图片| 日本 欧美在线| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 美女免费视频网站| 香蕉丝袜av| 久久久国产成人精品二区| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人不卡在线观看播放网| 国产欧美日韩精品亚洲av| 美女cb高潮喷水在线观看 | 久久久成人免费电影| 日韩av在线大香蕉| 亚洲一区高清亚洲精品| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 久久久久久久午夜电影| 国产美女午夜福利| 真人做人爱边吃奶动态| 久久久久久人人人人人| 亚洲精品美女久久av网站| 香蕉国产在线看| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 国产精品免费一区二区三区在线| 俺也久久电影网| 日韩欧美国产在线观看| 熟女电影av网| 国产欧美日韩一区二区三| www.www免费av| 最近最新中文字幕大全电影3| 亚洲天堂国产精品一区在线| 黑人操中国人逼视频| 一进一出抽搐gif免费好疼| 长腿黑丝高跟| 操出白浆在线播放| 一区二区三区国产精品乱码| 成人国产一区最新在线观看| 久久久久久国产a免费观看| 国产美女午夜福利| 看黄色毛片网站| 午夜免费成人在线视频| 极品教师在线免费播放| 精品无人区乱码1区二区| 99久久综合精品五月天人人| 欧美大码av| 一级毛片高清免费大全| 亚洲最大成人中文| 国产精品亚洲一级av第二区| 国产高清视频在线播放一区| 麻豆av在线久日| 国产亚洲av嫩草精品影院| av女优亚洲男人天堂 | 国产精品99久久99久久久不卡| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线播放一区| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 黄片小视频在线播放| 久久久国产精品麻豆| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 久久久色成人| e午夜精品久久久久久久| 日本在线视频免费播放| 免费一级毛片在线播放高清视频| 超碰成人久久| 一区二区三区激情视频| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 少妇的丰满在线观看| 欧美不卡视频在线免费观看| 亚洲激情在线av| 国产欧美日韩一区二区精品| 一区二区三区国产精品乱码| 天天躁狠狠躁夜夜躁狠狠躁| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 在线观看66精品国产| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| 少妇丰满av| 毛片女人毛片| 一级毛片高清免费大全| 国产精品久久久av美女十八| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 18禁观看日本| 91av网站免费观看| 午夜成年电影在线免费观看| 午夜福利在线观看免费完整高清在 | 亚洲av日韩精品久久久久久密| 国产97色在线日韩免费| 丁香六月欧美| 色在线成人网| 亚洲国产精品成人综合色| xxx96com| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 两个人看的免费小视频| 国产乱人视频| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 嫩草影院精品99| 精品久久久久久成人av| 久久精品91蜜桃| 舔av片在线| 午夜成年电影在线免费观看| 三级国产精品欧美在线观看 | 亚洲成av人片在线播放无| 午夜福利欧美成人| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 青草久久国产| 国产熟女xx| 在线永久观看黄色视频| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 一区福利在线观看| 好男人在线观看高清免费视频| 欧美日本视频| 99久久精品热视频| 亚洲人成电影免费在线| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一及| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 老汉色av国产亚洲站长工具| 欧美3d第一页| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 麻豆久久精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月 | 国产精品一区二区免费欧美| 99国产极品粉嫩在线观看| 亚洲国产欧美一区二区综合| 99久久精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 久久久国产成人免费| www日本在线高清视频| 波多野结衣高清作品| 久久久久国产一级毛片高清牌| 亚洲 欧美 日韩 在线 免费| 成在线人永久免费视频| 国内久久婷婷六月综合欲色啪| 亚洲 国产 在线| 麻豆av在线久日| 欧美日本视频| 99热只有精品国产| 狂野欧美激情性xxxx| 不卡一级毛片| cao死你这个sao货| 国产1区2区3区精品| 一区福利在线观看| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看| 国产午夜精品久久久久久| 国产激情久久老熟女| 18禁观看日本| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 亚洲av熟女| 国产伦精品一区二区三区四那| 五月伊人婷婷丁香| 午夜爱爱视频在线播放| 一级黄色大片毛片| 欧美一区二区亚洲| 老师上课跳d突然被开到最大视频| 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| 欧美+日韩+精品| 国产成年人精品一区二区| 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| av视频在线观看入口| 亚洲人成网站在线观看播放| 99久久精品热视频| 干丝袜人妻中文字幕| 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 国产在线男女| 亚州av有码| 精品久久久久久成人av| 汤姆久久久久久久影院中文字幕 | 91午夜精品亚洲一区二区三区| 国产一区二区在线av高清观看| 国产黄色视频一区二区在线观看 | 草草在线视频免费看| 日韩av在线大香蕉| 国产乱人偷精品视频| 最近中文字幕2019免费版| 97超视频在线观看视频| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 午夜福利高清视频| 久久精品综合一区二区三区| 久久人人爽人人片av| 国产亚洲精品av在线| 欧美日韩在线观看h| 免费搜索国产男女视频| av黄色大香蕉| 国产女主播在线喷水免费视频网站 | 亚洲av成人精品一区久久| 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx在线观看| 桃色一区二区三区在线观看| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 色视频www国产| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 国产精品一区二区在线观看99 | av又黄又爽大尺度在线免费看 | 精品国产露脸久久av麻豆 | 床上黄色一级片| 99热这里只有是精品50| 精品久久久久久电影网 | 亚洲精品成人久久久久久| 建设人人有责人人尽责人人享有的 | 成人综合一区亚洲| 亚洲av男天堂| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 中文乱码字字幕精品一区二区三区 | 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9| 久久久国产成人精品二区| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| av在线蜜桃| 国产亚洲精品久久久com| 最近中文字幕2019免费版| 嫩草影院入口| 成年版毛片免费区| 欧美zozozo另类| 久久精品国产亚洲av涩爱| 深爱激情五月婷婷| 看黄色毛片网站| 一级毛片电影观看 | 亚洲精品日韩在线中文字幕| 国产真实乱freesex| 永久免费av网站大全| 免费观看的影片在线观看| 白带黄色成豆腐渣| 青青草视频在线视频观看| 欧美日本视频| 我要看日韩黄色一级片| 少妇的逼水好多| 男女边吃奶边做爰视频| av专区在线播放| 日日撸夜夜添| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 国产精品久久电影中文字幕| 久久精品国产自在天天线| 国产一级毛片在线| av播播在线观看一区| 亚洲一区高清亚洲精品| 2021天堂中文幕一二区在线观| 韩国高清视频一区二区三区| 只有这里有精品99| 久久人人爽人人片av| 国产精品国产三级专区第一集| 国产精品国产三级国产专区5o | 人妻系列 视频| 国产av在哪里看| 99热这里只有是精品在线观看| 日本五十路高清| 成年免费大片在线观看| 日韩欧美精品v在线| 干丝袜人妻中文字幕| 91av网一区二区| 成人av在线播放网站| 欧美不卡视频在线免费观看| 日本免费a在线| 日韩,欧美,国产一区二区三区 | 青青草视频在线视频观看| 美女被艹到高潮喷水动态| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 亚洲第一区二区三区不卡| 春色校园在线视频观看| av.在线天堂| 国产淫片久久久久久久久| 91久久精品电影网| 能在线免费观看的黄片| 久久热精品热| 午夜激情福利司机影院| 久久久午夜欧美精品| 三级国产精品片| 91av网一区二区| 国产91av在线免费观看| 精品久久久久久电影网 | 国产成人免费观看mmmm| 日本三级黄在线观看| 七月丁香在线播放| 午夜精品一区二区三区免费看| 国产精品三级大全| 久久久欧美国产精品| 国产精品女同一区二区软件| 亚洲最大成人中文| 丝袜美腿在线中文| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 水蜜桃什么品种好| 国产av在哪里看| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区视频9| videos熟女内射| 又粗又硬又长又爽又黄的视频| 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 国产免费男女视频| 国产成人a∨麻豆精品| 色网站视频免费| 99久久精品国产国产毛片| 久久久久久九九精品二区国产| 人妻系列 视频| 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| 国产成人精品婷婷| 赤兔流量卡办理| 综合色丁香网| 国产精品1区2区在线观看.| 日本一二三区视频观看| 中文天堂在线官网| 国产亚洲一区二区精品| eeuss影院久久| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 国产在线男女| 免费观看性生交大片5| 亚洲av二区三区四区| 久久久色成人| 亚洲av中文av极速乱| 极品教师在线视频| 美女国产视频在线观看| 国产免费又黄又爽又色| 激情 狠狠 欧美| 99久久九九国产精品国产免费| 最近手机中文字幕大全| 亚洲精品aⅴ在线观看| 免费在线观看成人毛片| 最新中文字幕久久久久| 国产一区有黄有色的免费视频 | 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 亚洲精品国产成人久久av| 人妻制服诱惑在线中文字幕|