• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FEC design for remote control and data transmission of aeronautic and astronautic vehicles

    2019-01-16 03:45:16QinHUANGMingxuZHANGZulinWANGXunweiZHANG
    CHINESE JOURNAL OF AERONAUTICS 2019年1期

    Qin HUANG,Mingxu ZHANG,Zulin WANG,b,*,Xunwei ZHANG

    aSchool of Electronic and Information Engineering,Beihang University,Beijing 100191,China

    bCollaborative Innovation Center of Geospatial Technology,Wuhan 430079,China

    KEYWORDS Circulant decomposition;FEC;High efficiency;LDPC;Nontransparent

    Abstract This paper focuses on the advanced Forward Error Correction(FEC)based on Low-Density Parity-Check(LDPC)codes for remote control and data transmission of Aeronautic and Astronautic Vehicles(AAV).It shows that the nontransparent LDPC codes with odd row weights are able to resist phase inversion with a small computational overhead.To the best of our knowledge,it is the first time to use FEC to resist phase inversion.Then,a high hardware-efficient FEC design for AAV,which is capable of correcting random errors as well as phase inversion,is proposed based on circulant decomposition with circulant size of 2s.Such a(4096,2048)LDPC code has been adopted in a data transmission system due to its excellent error performance and hardware efficiency.

    1.Introduction

    Over the past few years,Aeronautic and Astronautic Vehicles(AAV)are developing and evolving rapidly.1-6Due to the dynamic of AAV,which changes the link geometry and multipath conditions,and the influence of atmosphere,the communication channel for remote control and data transmission of AAV is volatile,noisy and unreliable.Meanwhile,the resources that can be used for aeronautic and astronautic mission are extremely restricted by the payload capacity of AAV.Therefore,efficient and reliable remote control and data transmission of AAV are urgently required.

    Forward Error Correction(FEC)is a technique used for controlling errors in data transmission over unreliable or noisy communication channels.The core idea is that the transmitted message is encoded in a redundant way by using an error correcting code.The redundancy allows the receiver to correct a certain number of errors.

    It is very challenging to design FEC for remote control and data transmission of AAV.On one hand,the FEC must provide high coding gain to resist the thermal and phase noise caused by the channel.On the other hand,the FEC must be implemented efficiently because the resources of the aeronautic and astronautic mission are rather limited compared with the land-based mission.

    In the past few decades,concatenated Reed-Solomon codes and convolutional codes are often used in aeronautic and astronautic mission.A(31,23)Reed-Solomon code concatenated with a rate 4/5 convolutional code is used in Link-16 communication.7And a(255,223)Reed-Solomon code concatenated with a rate 1/2 convolutional code is recommended by the Consultative Committee for Space Data Systems(CCSDS)for space data system.8Recently,Low-Density Parity-Check(LDPC)codes,a class of linear block codes,show near-capacity performance while implementable decoders are simultaneously admitted.9,10They outperform concatenated Reed-Solomon codes and convolutional codes by about 1-2 dB.Thus more and more astronautic missions consider LDPC codes as their FEC scheme.For instance,S.Lin designed an (8176,7156)quasicyclic Euclidean geometry LDPC code for NASA’s near-earth space mission.11Moreover,it is widely believed that LDPC codes have a great potential for aeronautic mission.

    In order to efficiently keep the reliability of the remote control and data transmission of AAV,this paper presents an advanced FEC design based on LDPC codes.The advanced FEC design contains code construction as well as its codec implementation.We prove that an LDPC code is nontransparent if and only if its parity-check matrix contains at least one row with odd weight.The resulted nontransparent codes are resistant to the decoding failures caused by phase inversion of codeword in aeronautic and astronautic channel.And we construct the FEC codes based on circulant decomposition,which provides excellent error performance to resist noise and flexibility of circulant size and column weight.Analysis indicates that the design can be implemented with better performance and lower complexity than the(8176,7156)LDPC code adopted by NASA.Moreover,a data transmission system has adopted such a code as its standard code due to the excellent error performance and hardware efficiency.

    The paper is organized as follows:In Section 2,we prepare the preliminary for the following contents.Section 3 studies nontransparent LDPC codes for AAV.The FEC design based on circulant decomposition is addressed for high performance and flexibility in Section 4.In Section 5,their implementation is provided,and finally conclusions and perspectives are drawn in Section 6.

    2.Preliminary

    An(n,k)LDPC code C is a linear block code given by the null space of anm×nparity-check matrix H that has a low density of 1 s.Lethi,j(1≤i≤m,1≤j≤n)denote the element in theith row andjth column of H.Letdc,i(1≤i≤m)denote the row weight of theith row of H.Let x=[x1,x2,...,xn]denote the codeword.The codeword x should be checked by each parity-check equation,i.e.,for theith parity-check equation,it must satisfy that:

    Almost all LDPC code constructions keep the row-column constraint(RC constraint)on H:No two rows(or two columns)have more than one position in common that contains a nonzero element.

    The original LDPC codes are randomly constructed based on computer search,such as Gallager codes,MacKay codes and Progressive-Edge-Growth (PEG)codes.Thus,their parity-check matrices possess little structure apart from being a linear code.9,12,13In this manner,it raises the complexity in both encoding and decoding.Quasi-Cyclic LDPC (QCLDPC)codes are a class of LDPC codes with tremendous structure, leading to simplified encoder and decoder designs.14-17The H matrix of a QC-LDPC code is generally represented as an array of circulants,i.e.,

    whereAi,j(0≤i<r,0≤j<s)is az×zcirculant.A circulant is a square matrix such that every row is the cyclic-shift one place to the right of the row above it.

    Finite geometries are powerful mathematical tools for algebraically constructing structured LDPC codes.18Euclidean geometry is a kind of finite geometries which can be used to construct QC-LDPC codes,called QC-EG-LDPC codes.Performance of QC-EG-LDPC code is close to the Shannon theoretical limit.One of QC-EG-LDPC codes has been used in NASA.11

    Consider them-dimensional Euclidean geometry EG(m,q)over the Galois field GF(q).This geometry consists ofqmpoints andqm-1(qm-1)/(q-1)lines.A point in EG(m,q)can be represented as anm-tuple over GF(q).

    The Galois field GF(qm)as an extension field of GF(q)is a realization of EG(m,q).Let α be a primitive element of GF(qm).Then the powers of α,

    represent theqmpoints of EG(m,q),where α-∞r(nóng)epresents the origin point of EG(m,q).

    Let EG*(m,q)be a subgeometry of EG(m,q)obtained by removing the origin α-∞and all the lines passing through the origin from EG(m,q).This subgeometry consists ofqm-1 non-origin points and(qm-1-1)(qm-1)/(q-1)lines not passing through the origin.

    Let L bealinein EG*(m,q)consisting of points

    It is easy to prove that theqm-1 lines,L,αL,α2L,...,αqm-2L,form a cyclic class.All lines in EG*(m,q)can be partitioned into

    cyclic classes,denoted as S1,S2,...,SKc.

    For any line L in EG*(m,q)not passing through the origin,the incidence vector of L is defined as the following(qm-1)-tuple over GF(2):

    whose components correspond to theqm-1 non-origin points, α0,α,...,αqm-2,in EG*(m,q),wherevi=1 if αiis a point on L,otherwisevi=0.

    Using the incidence vectors vL,vαL,vα2L,...,vαqm-2Lof the lines L,αL,α2L,...,αqm-2L in Sias rows arranged in right cyclic order,we can form a(qm-1)×(qm-1)circulant matrix Hc,iover GF(2)with both column and row weightsq.

    For 1≤k≤Kc,we form the followingk(qm-1)×(qm-1)matrix over GF(2):

    The subscript‘‘c” of HEG,c,kstands for ‘‘cyclic”.

    Using the incidence vectors vL,vαL,vα2L,...,vαqm-2Lof the lines L,αL,α2L,...,αqm-2L in Sias columns arranged in downward cyclic order,we can form a(qm-1)×(qm-1)circulant matrix Gc,iover GF(2)with both column and row weightsq.

    For 1≤k≤Kc,we form the following(qm-1)×k(qm-1)matrix over GF(2):

    where the subscript‘‘qc” of HEG,qc,kstands for ‘‘quasi-cyclic”.HEG,qc,kdefines the null space of a QC-EG-LDPC code.

    The(8176,7156)QC-LDPC codeC2designed by S.Lin for NASA is constructed based on the three-dimensional Euclidean geometry EG(3,23)over the field GF(23).There are 9 cyclic classes,S1,S2,...,S9.By splitting each column of Si,into 4 columns of the same length with its weight uniformly distributed into the 4 new columns,Sican be partitioned into four 511×511 circulants,Each circulanthas column and row weight of 2.Using these 4 circulants,a 511×2044 matrix is formed:

    Then the parity-check matrix H2of C2is given below:

    which defines the null space of the(8176,7156)QC-LDPC code C2.

    3.Nontransparent LDPC codes for AAV

    Many negative factors affect and limit possibilities of aeronautic and astronautic communication channel.Most of these factors cause two types of noise,the additive thermal noise and the multiplicative phase noise.While the additive thermal noise arises only from the receiver side of the communication system,the multiplicative phase noise is projected from the receiver side local oscillators as well as from the transmitter side carrier sources.To ensure a high correctness of decoding a codeword without phase inversion ambiguous for remote control and data transmission of AAV,a nontransparent LDPC code for AAV needs to be designed.

    In general,the channel of satellite is Additive White Gaussian Noise(AWGN)model.19If the multipath effect is strong,the channel of airplane in flying communication with the ground station is Rician channel;otherwise,it can also be considered as AWGN.20Besides AWGN noise,the whole received symbols of a frame may be rotated π radians,which is called frame phase inversion,due to the combined effect of transmission phase disturbance and asynchrony of crystal oscillator.

    The basic channel model of AAV for communicating with LDPC codes can be described as follows.

    Ak-bit information sequence is encoded by an(n,k)binary LDPC code C,wherenrepresents the length of the codeword.The codeword is PSK modulated and the transmitted symbols are subjected to AWGN and phase inversion.LetPdenote the probability of frame phase inversion.Here assuming that the codeword is BPSK modulated,at the receiver after matched filtering and sampling,we have

    wheresi∈{+1,-1}is theith transmitted symbol,riis theith received symbol,ηiis the AWGN noise andnis the number of transmitted symbols.

    For the sake of simplicity,we focus on the above channel of AAV to describe and analyze our approach.

    In general,the traditional approach with differential coding can resist phase inversion.But it needs 1-2 dB higher received signal-to-noise ratio to achieve the same error performance as that without differential coding.21So we propose the FEC approach without using differential coding which does not introduce any performance loss.Indeed,the proposed FEC approach takesPtimes decoding more than the traditional approach,wherePis the probability of frame phase inversion,e.g.,P=0.1 in Section 5.As a result,it provides a good tradeoff between complexity and performance for most applications.

    The FEC can be separated into two classes in terms of frame phase inversion,transparent codes and nontransparent codes.If all valid codewords of an FEC code are still valid codewords after frame phase inversion,the code is called transparent code.On the contrary,if there exists a valid codeword of an FEC code which is not a valid codeword after frame phase inversion,the code is called nontransparent code.

    A theorem for designing nontransparent LDPC codes is presented as follows.

    Theorem 1.An LDPC code is nontransparent if and only if its parity-check matrix contains at least one row with odd row weight.

    Proof.For an(n,k)LDPC code C,let xr=denote the symbols with phase inversion of codeword x=[x1,x2,...,xn].Any phase inversion of the symbol is equivalent tormodulo-2 addition of the symbol with element one,i.e.,xj=xj+1(mod 2).

    ?:In this direction,suppose H contains at least one row with odd row weight.Letdc,kbe odd.Using thek-th parity check equation to check xr=,the result is obvious as follows:

    Thus xr=is not a valid codeword of C.Therefore,according to the definition of nontransparent codes,the LDPC code C is nontransparent.

    ?:Conversely,in this direction,suppose H contains no row with odd row weight,which meansdc,iis even for 1≤i≤m.Using anyith parity-check equation to check xr=...,xnr],the result is obvious as follows:

    Thus xr=is still a valid codeword of C.Therefore,according to the definition of transparent codes,the LDPC code C is transparent.

    Hence,an LDPC code is nontransparent if and only if its parity-check matrix contains at least one row with odd row weight.□

    According to Theorem 1,QC-LDPC codes can be designed by properly selecting and masking circulants to make sure that some rows of parity-check matrix have odd row weight,which can guarantee the designed QC-LDPC codes to be nontransparent.

    The proposed nontransparent QC-LDPC codes can efficiently solve decoding failures caused by frame phase inversion,whose simulation results are shown in Section 5.

    4.FEC design based on circulant decomposition

    Efficient and reliable remote control and data transmission of AAV are urgently required.The FEC design must provide high performance and low resource consumption.Nowadays,many QC-LDPC code designs are unable to provide flexible code length and rate to satisfy the demands of various missions.The size of a circulant in algebraic QC-LDPC code isqm-1.18,22,23Thus efficient Banyan network cannot be used to reduce the resource consumption.24Moreover,QC-LDPC codes like the NASA uses consist of circulants with column weight two,which raises the complexity of decoder.

    Therefore,we propose the FEC design based on circulant decomposition.Particularly,we can use the proposed FEC design to construct a class of QC-LDPC codes with circulants of a size of 2sby circulant decomposition,called QC-CDLDPC codes.As a result,it can be implemented with a Banyan network to reduce resource consumption.24What’s more,our design can guarantee the column weight of circulant to be one,i.e.,the circulant is a cyclic-shift of an identity matrix.Thus,the complexity of decoder implementation can be significantly reduced.The FEC design based on circulant decomposition is shown as follows.

    Firstly,the size of a circulant in QC-LDPC code should be determined and denoted as 2s.Secondly,aqneeds to be determined,which is subject toq2-1=(q+1)(q-1)=2s×c,wherecis a constant positive integer andqis a positive power of a prime.Thirdly,HEG,c,1can be constructed based on EG*(2,q):

    where HEG,c,1is a circulant.The generator of the circulant is its first row v=[v0,v1,...,vn-1].For simplicity,HEG,c,1is denoted by its generator as follows:HEG,c,1=Ψ(v)=Ψ(v0,v1,...,vn-1).From Eq.(8),we see that the rows and columns of HEG,c,1are labelled from 0 toq2-1.

    Becauseq2-1=2s×c,we label the columns and rows of HEG,c,1from 0 toc×2s-1.Let I={0,1,2,...,c×2s-1}be the index set for the columns and rows of HEG,c,1.Define the following index sets:

    Then,π gives a permutation of the indices in I.Suppose that we first permute the columns and then the rows of HEG,c,1based on π,and these column and row permutations based on π result in the followingc×carray of circulants of size 2s×2sover GF(2):

    and Ψ(1)(vi)denotes the circulant obtained by simultaneously cyclically shifting all the rows of Ψ(vi)one place to the right.Each 2s× 2scirculant in the array Φ(v)is called a descendant circulant of Ψ(v).

    Finally,according to the requirement of code’s parameter,a new HQCcan be formed by selecting some circulants of Φ(v)for masking.Masking operation is to set some circulants to all zero matrices.By masking the base array HQC,HQC,maskis obtained.The null space of HQC,maskdefines the proposed QC-CD-LDPC code.

    Example 1.We choose 26as the size of a circulant of QCLDPC code.And we select a properq=127 which is subject toq2-1=(q+1)(q-1)=26×c,wherecis a constant.Then we constructHEG,c,1based on EG*(2,127)and decompose it to π(HEG,c,1)with circulant size of 26.Finally,HQC,maskis constructed by selecting some circulants of π(HEG,c,1)with masking.The null space ofHQC,maskdefines the QC-CDLDPC code.

    The QC-CD-LDPC code we proposed here has mainly two advantages in hardware implementation.

    Table 1 Hardware analysis of three shifting network implementation methods.

    First of all,we design the size of circulant with power of 2.It is supposed to reduce implementation complexity of digital circuit in accumulation and addressing.The most effective hardware overhead economization is on shifting network,which always holds a considerable area in decoder and is influenced by circulant size.There are three common methods for shifting network implementation:Benes network,25QSN network26and Banyan network.27As shown in Table 1,Benes network and QSN network are able to support different circulant sizes in one implementation yet occupy more area.So it will be a waste to use Benes network or QSN network unless in a flexible-code-needed scenario.Banyan network,as the most economical scheme,allows only the input with size of power of 2.Therefore,to maximize the hardware resource usage efficiency,it is a valuable work using algebraic method to construct QC-LDPC code with circulant size of power of 2.

    Second,we adopt a design with circulant weight of 1.In the most common way of QC-LDPC decoding,layered decoding,each variable node updates all the edges connected to it within current layer.Thus,it will cause a longer decoding delay of a layer when circulant weight is more than 1.

    Compared with other QC-LDPC codes,QC-CD-LDPC codes take almost the same hardware implementation complexity under the same code parameters.Moreover,unlike the existing algebraic QC-LDPC codes,QC-CD-LDPC codes provide flexible code parameters,e.g.,circulant size and circulant weight.As a result,QC-CD-LDPC codes can significantly reduce the complexity of decoder implementation.

    If we design nontransparent QC-CD-LDPC codes to resist phase inversion,there may be a slight increase in control circuit.If the average row weight is set to even,the transparent QC-LDPC codes can have all even row weight.However,the nontransparent QC-CD-LDPC codes have to contain at least one row with odd row weight.As a result,the control circuit needs to add a small overhead to control the computing units dealing with rows with different row weights.

    A nontransparent(8192,7168)QC-CD-LDPC code is designed by our method based on circulant decomposition with sophisticated masking,whose circulant size is 256,column weight is 4 and row weight is 31.It has higher engineering efficiency than that of NASA,which is presented in Section 5 in detail.

    5.Implementation of FEC design

    The proposed FEC design can be implemented with better performance and lower resource consumption.For the sake of simplicity,we focus on the above basic channel of AAV to describe and analyze our approach and choose the frame phase inversion probabilityP=0.1.It’s worth mentioning that our approach is also resistant to phase inversion over other frame phase inversion probability and more complex channels,e.g.,Rayleigh channel.

    A decoder is proposed for the proposed FEC codes over the basic channel of AAV,i.e.,AWGN with frame phase inversion channel.The proposed FEC codes are nontransparent,which means that a codeword is not a valid codeword after frame phase inversion.If the failure happens after the first traditional decoding,we can believe in high probability that the received symbols are a codeword with phase inversion.Therefore,we can try one more time to decode the phase inversion of the received symbols.The above decoding algorithm that we proposed is called Inversion Resistant Decoding(IRD)algorithm.IRD just uses at most twice traditional decoding without adding extra structures to resolve the phase ambiguous,which simplifies the complexity of implementation.Specifically,if the traditional decoding uses Sum-Product Algorithm(SPA),the corresponding IRD is denoted as IRD-SPA.

    A nontransparent(8192,7168)QC-CD-LDPC code is designed by using the methods proposed in Sections 3 and 4,whose circulant size is 256,circulant weight is one and row weight is 31.The performance of this LDPC code is shown in Fig.1.It compares the Bit Error Rate(BER)and Frame Error Rate(FER)of the nontransparent(8192,7168)QCCD-LDPC code(denoted as NT(8192,7168)QC-CD-LDPC in legend)and NASA’s(8176,7156)QC-LDPC code over AWGN channel(denoted as AWGN in legend)and AWGN with frame phase inversion probabilityP=0.1 channel(denoted as AWGN+P=0.1 in legend)decoded by SPA and IRD-SPA.

    Fig.1 Performance of nontransparent(8192,7168)QC-CDLDPC code.

    From the performance curve in Fig.1,we can see that the coding gain of the(8192,7168)QC-CD-LDPC code is better than the(8176,7156)QC-LDPC code adopted by NASA.And the(8192,7168)QC-CD-LDPC code can resist phase inversion with the proposed IRD algorithm,while NASA’s(8176,7156)QC-LDPC code fails in decoding with phase inversion.

    Besides performance,our design is more efficient in hardware utilization than that of NASA.The throughput of an LDPC decoder is directly influenced by its circulant size.It is assumed that each iteration needsTidealclocks and its throughput can be delivered as throughput=(n×fmax)/(I×Tideal),in whichnindicates codeword length,fmaxis the highest clock frequency of the hardware andIindicates the average iteration number.Row parallel and block parallel,as two common structures in parallel LDPC decoder implementation,have different calculations onTidealrespectively.In row parallel decoder,Tideal= 「(m×trow)/(C×z),mis parity length,trowis the required clock number of a row,Cis core number andzindicates circulant size.In block parallel decoder,Tideal= 「(n×dv)/(C×z),wheredvis the average degree of each variable node.It can be seen that regardless of parallel mode,the throughput of an LDPC decoder is proportional to the circulant size of the code.Thus the circulant size should be chosen according to the specific demand of decoder throughput.Our construction allows flexible circulant size,which is different from the traditional construction.

    According to Table 1,Table 2 gives the estimation of the MUXs usage number under three different shifting network designs for NASA’s(8176,7156)code and the proposed(8192,7168)code.The comparison result indicates that with the design of setting circulant size to power of 2,the hardware consumption of shifting network declines by about 46%by employing Banyan network than Benes network and incidentally drops the whole decoder area by a substantial amount.

    Table 3 gives the throughput of NASA’s(8176,7156)code and the proposed(8192,7168)code.It is assumed that the decoder adopts block parallel structure and uses one core,fmax=300 MHz andI=5.It can be seen that the throughput is directly related to circulant size.So the decoder will achieve a lower throughput while using the proposed code than using NASA’s code due to the smaller circulant size.However,the MUXs usage amount per Gbps demonstrates that the decoder complexity of our proposed code is only half of that of the NASA’s code.

    From the above analysis,it’s apparent that the advanced FEC design can construct codes with excellent performance and efficiency.Aiming at the demand of reliable communication of a data transmission system,a nontransparent(4096,2048)QC-CD-LDPC code is constructed by the advanced FEC design,whose circulant size is 64,column weight is 3 and row weight consists of 5,6 and 7.We use a transparent(4096,2048)PEG LDPC code,whose circulant size is 64,column weight is 4 and row weight is 8,to compare the ability of resisting phase inversion.The performance of these LDPC codes is shown in Fig.2.It compares the BER and FER of the nontransparent(4096,2048)QC-CD-LDPC code(denoted as NT(4096,2048)QC-CD-LDPC in legend)and the transparent(4096,2048)PEG LDPC code(denoted as T(4096,2048)PEG LDPC in legend)over AWGN channel and AWGN with frame phase inversion probabilityP=0.1 channel decoded by SPA and IRD-SPA.

    Fig.2 Performance of nontransparent(4096,2048)QC-CDLDPC code.

    Table 2 Estimation of MUXs usage number under three different shifting network designs.

    Table 3 Throughput of various LDPC codes.

    Fig.3 Performance of QC-CD-LDPC codes with same code rate but different code length.

    Fig.4 Performance of QC-CD-LDPC codes with same code length but different code rate.

    Fig.5 Performance of nontransparent(8192,4096)QC-CDLDPC code over different channels.

    From the performance curve in Fig.2,we can see that the nontransparent(4096,2048)QC-CD-LDPC code has ability to resist phase inversion,but the transparent code loses the ability of error correcting with phase inversion.The hardware consumption of this nontransparent(4096,2048)QC-CD-LDPC code,given in Tables 2 and 3,demonstrates the hardware efficiency of our QC-CD-LDPC code.

    This code has been adopted in a data transmission system due to its excellent error performance and hardware efficiency.

    Furthermore,Fig.3 shows the performance of QC-CDLDPC codes with same code rate but different code length.And Fig.4 shows the performance of QC-CD-LDPC codes with same code length but different code rate.We can see that the proposed QC-CD-LDPC codes with different code parameters keep good error performance and the ability to resist phase inversion.In short,the proposed QC-CD-LDPC codes can suit a variety of different needs of code length and code rate in practice.

    Fig.5 shows the performance of the nontransparent(8192,4096)QC-CD-LDPC code over different channels.It compares the BER and FER of the nontransparent(8192,4096)QC-CD-LDPC code(denoted as NT(8192,4096)QC-CDLDPC in legend)respectively over AWGN,AWGN+P=0.1,Rayleigh,Rayleigh+P=0.1 decoded by SPA and IRD-SPA.It shows that the proposed QC-CD-LDPC code keeps good error performance and the ability to resist phase inversion over different channels.

    6.Conclusions

    In this paper,we have presented an advanced FEC design for remote control and data transmission of AAV.It’s worth mentioning that unlike frame header detection,the proposed method works well for systems,in which one frame header is followed by multiple frames.We verified that nontransparent LDPC codes can solve decoding failures caused by phase inversion.The advanced FEC design based on circulant decomposition keeps nontransparency and realizes the flexibility of code parameters.Experimental results show that the proposed nontransparent QC-LDPC codes have excellent performance and hardware efficiency.

    Acknowledgements

    This study was supported by Fundamental Research Funds for the Central Universities of China,NSAF of China(No.U1530117),the National Natural Science Foundation of China(No.61471022)and the Young Elite Scientists Sponsorship Program by CAST of China(No.2017QNRC001).

    内射极品少妇av片p| 午夜激情久久久久久久| www.色视频.com| 国产精品久久久久久精品电影| 各种免费的搞黄视频| 中国三级夫妇交换| 99久久精品热视频| 国产精品精品国产色婷婷| 在线观看美女被高潮喷水网站| 女人十人毛片免费观看3o分钟| 一区二区三区四区激情视频| 2021少妇久久久久久久久久久| av免费观看日本| 国产精品av视频在线免费观看| 99久久中文字幕三级久久日本| 97超视频在线观看视频| 深爱激情五月婷婷| 国产人妻一区二区三区在| 国产亚洲精品久久久com| a级毛色黄片| 人妻系列 视频| 国产爽快片一区二区三区| 国产一区有黄有色的免费视频| 一级毛片aaaaaa免费看小| 尾随美女入室| 国产av码专区亚洲av| 亚洲欧美精品自产自拍| 全区人妻精品视频| 精品人妻偷拍中文字幕| 午夜福利高清视频| 亚洲美女视频黄频| 精品人妻视频免费看| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 国产精品av视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 色视频在线一区二区三区| 亚洲综合精品二区| 三级国产精品片| 久久久久久久国产电影| 一级爰片在线观看| 欧美激情国产日韩精品一区| 网址你懂的国产日韩在线| 蜜桃久久精品国产亚洲av| 成年免费大片在线观看| 久久久久久久大尺度免费视频| 韩国高清视频一区二区三区| tube8黄色片| kizo精华| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 搡女人真爽免费视频火全软件| 国产av不卡久久| 亚洲欧洲日产国产| 午夜老司机福利剧场| 精品人妻熟女av久视频| 晚上一个人看的免费电影| 99热这里只有是精品50| 联通29元200g的流量卡| 欧美97在线视频| 一级毛片黄色毛片免费观看视频| 久久国产乱子免费精品| 久久99热这里只有精品18| 国产国拍精品亚洲av在线观看| 成人特级av手机在线观看| 亚洲国产最新在线播放| 直男gayav资源| 欧美一级a爱片免费观看看| 国产精品人妻久久久久久| 九草在线视频观看| 亚洲国产高清在线一区二区三| 亚洲av国产av综合av卡| 各种免费的搞黄视频| 嫩草影院新地址| 91在线精品国自产拍蜜月| 亚洲精品影视一区二区三区av| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 成人免费观看视频高清| av在线观看视频网站免费| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 亚洲欧美清纯卡通| 久久人人爽人人片av| 精品久久久噜噜| 欧美三级亚洲精品| 街头女战士在线观看网站| 亚洲国产精品专区欧美| 亚洲欧美成人综合另类久久久| 中文字幕av成人在线电影| 免费播放大片免费观看视频在线观看| 最近最新中文字幕免费大全7| 搡老乐熟女国产| 毛片一级片免费看久久久久| 国产黄a三级三级三级人| 久久精品国产自在天天线| 日本与韩国留学比较| 深夜a级毛片| 亚洲av.av天堂| 亚洲欧洲日产国产| 亚洲av电影在线观看一区二区三区 | 啦啦啦中文免费视频观看日本| 久久精品国产亚洲网站| 久热这里只有精品99| 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| 一区二区三区乱码不卡18| 国产在线一区二区三区精| 国产毛片a区久久久久| av播播在线观看一区| 超碰av人人做人人爽久久| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 91久久精品电影网| 免费电影在线观看免费观看| 国模一区二区三区四区视频| 韩国高清视频一区二区三区| 欧美 日韩 精品 国产| 可以在线观看毛片的网站| 国产乱人视频| 精品久久国产蜜桃| 国产一级毛片在线| 精品一区二区三卡| 国产女主播在线喷水免费视频网站| 亚洲av.av天堂| 日本av手机在线免费观看| 亚洲成人久久爱视频| 日日啪夜夜爽| 成人亚洲欧美一区二区av| 精品少妇黑人巨大在线播放| 久久久久久九九精品二区国产| 国产精品秋霞免费鲁丝片| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 美女视频免费永久观看网站| 国产伦理片在线播放av一区| 制服丝袜香蕉在线| a级毛片免费高清观看在线播放| 欧美成人a在线观看| 大片免费播放器 马上看| 精品国产乱码久久久久久小说| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 亚洲av二区三区四区| 看十八女毛片水多多多| 久久亚洲国产成人精品v| 亚洲最大成人中文| 99久久九九国产精品国产免费| 伊人久久精品亚洲午夜| 国产精品无大码| 97在线视频观看| 精品人妻熟女av久视频| 秋霞伦理黄片| 五月伊人婷婷丁香| 各种免费的搞黄视频| 天美传媒精品一区二区| 91精品伊人久久大香线蕉| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 免费观看的影片在线观看| 亚洲精品中文字幕在线视频 | 伊人久久国产一区二区| 在线免费观看不下载黄p国产| 激情 狠狠 欧美| 有码 亚洲区| 国产精品爽爽va在线观看网站| 在线观看三级黄色| 欧美精品国产亚洲| 我的女老师完整版在线观看| 精品一区二区免费观看| 大码成人一级视频| 好男人视频免费观看在线| 久久久久久久久久久丰满| 久久亚洲国产成人精品v| 赤兔流量卡办理| 高清午夜精品一区二区三区| 日产精品乱码卡一卡2卡三| 国产成年人精品一区二区| 啦啦啦中文免费视频观看日本| 好男人在线观看高清免费视频| 久久精品国产亚洲网站| 狂野欧美激情性bbbbbb| 亚洲四区av| 国产老妇伦熟女老妇高清| 最后的刺客免费高清国语| 日日摸夜夜添夜夜爱| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产精品成人综合色| 精品久久久久久电影网| 午夜福利在线在线| 中文欧美无线码| 在线天堂最新版资源| 日本欧美国产在线视频| 特级一级黄色大片| 亚洲国产最新在线播放| 国产精品一二三区在线看| 色视频在线一区二区三区| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 男女那种视频在线观看| 高清视频免费观看一区二区| 神马国产精品三级电影在线观看| 亚洲av电影在线观看一区二区三区 | 女人被狂操c到高潮| 男人添女人高潮全过程视频| 国产黄片美女视频| 亚洲精品乱久久久久久| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| 欧美日韩视频高清一区二区三区二| 夫妻午夜视频| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| av卡一久久| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 午夜福利在线在线| 中文欧美无线码| 王馨瑶露胸无遮挡在线观看| 欧美丝袜亚洲另类| 联通29元200g的流量卡| 波多野结衣巨乳人妻| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 一区二区三区精品91| 国产亚洲最大av| 精品亚洲乱码少妇综合久久| av在线蜜桃| 亚洲国产欧美人成| 国产视频内射| 国产欧美亚洲国产| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 国产免费福利视频在线观看| 精品久久久久久久久av| 18禁在线无遮挡免费观看视频| 小蜜桃在线观看免费完整版高清| 黄片wwwwww| 五月天丁香电影| 国产精品一区二区三区四区免费观看| 一级毛片 在线播放| 精品久久久精品久久久| 简卡轻食公司| 日本熟妇午夜| 国产精品久久久久久精品电影| 国产视频内射| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 日韩电影二区| 亚洲国产精品999| 熟女av电影| 你懂的网址亚洲精品在线观看| 亚洲欧美精品自产自拍| 欧美亚洲 丝袜 人妻 在线| 久久精品综合一区二区三区| 日韩欧美精品免费久久| 99热全是精品| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 99久久九九国产精品国产免费| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 国产精品一及| 免费观看无遮挡的男女| 69av精品久久久久久| 久久久久久久久大av| 黑人高潮一二区| 久久国产乱子免费精品| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 亚洲,一卡二卡三卡| 69av精品久久久久久| 成人午夜精彩视频在线观看| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 夜夜爽夜夜爽视频| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久 | 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 女人被狂操c到高潮| 91久久精品电影网| 在线观看三级黄色| 香蕉精品网在线| 熟女电影av网| 精品一区二区免费观看| 国产人妻一区二区三区在| 99久久人妻综合| 精品人妻视频免费看| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| av在线观看视频网站免费| 一级二级三级毛片免费看| 香蕉精品网在线| 91久久精品电影网| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 亚洲国产欧美人成| 国产淫语在线视频| 永久网站在线| 中国国产av一级| 午夜福利视频精品| 午夜免费观看性视频| 久久精品久久久久久噜噜老黄| 99久国产av精品国产电影| 在线播放无遮挡| 精品一区二区免费观看| 18禁在线无遮挡免费观看视频| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 又爽又黄无遮挡网站| 中文字幕av成人在线电影| 欧美日韩视频高清一区二区三区二| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 国产精品精品国产色婷婷| 午夜免费观看性视频| 九九久久精品国产亚洲av麻豆| 我要看日韩黄色一级片| 免费观看的影片在线观看| 成人无遮挡网站| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 中文欧美无线码| 最近2019中文字幕mv第一页| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频 | 黄色一级大片看看| 2022亚洲国产成人精品| 欧美xxxx性猛交bbbb| 国产精品.久久久| 久久精品久久精品一区二区三区| 国产91av在线免费观看| 亚洲欧美精品自产自拍| 久久久久久伊人网av| 精品99又大又爽又粗少妇毛片| 国产毛片a区久久久久| 国产精品女同一区二区软件| 日本黄色片子视频| av在线观看视频网站免费| 国产美女午夜福利| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 欧美成人a在线观看| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 国产精品国产三级国产av玫瑰| 在现免费观看毛片| 免费av不卡在线播放| 一级片'在线观看视频| 少妇 在线观看| 亚洲成人av在线免费| 一本色道久久久久久精品综合| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 网址你懂的国产日韩在线| 国产 一区精品| 国产成年人精品一区二区| 少妇 在线观看| 免费av不卡在线播放| 久久人人爽人人爽人人片va| 国产精品人妻久久久影院| 精品一区二区三卡| 国产成人freesex在线| 亚洲伊人久久精品综合| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 久久久久久九九精品二区国产| 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| 午夜激情久久久久久久| 午夜亚洲福利在线播放| av国产久精品久网站免费入址| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 国产又色又爽无遮挡免| 身体一侧抽搐| 精华霜和精华液先用哪个| 免费电影在线观看免费观看| 国产综合精华液| 中文在线观看免费www的网站| 亚洲精品一二三| 国产精品久久久久久精品电影| 亚洲av男天堂| 国产乱人偷精品视频| 人妻 亚洲 视频| 如何舔出高潮| 丝袜脚勾引网站| 超碰97精品在线观看| 国产伦理片在线播放av一区| 国产精品无大码| 男女边吃奶边做爰视频| 少妇裸体淫交视频免费看高清| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久亚洲| 亚洲精品久久午夜乱码| 久久精品国产鲁丝片午夜精品| 国产日韩欧美在线精品| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 亚洲av福利一区| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 午夜激情久久久久久久| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| 中文精品一卡2卡3卡4更新| 王馨瑶露胸无遮挡在线观看| 性色avwww在线观看| 国产精品嫩草影院av在线观看| 男人爽女人下面视频在线观看| 亚洲,欧美,日韩| 欧美另类一区| 亚洲在久久综合| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 免费看a级黄色片| 午夜激情福利司机影院| 亚洲熟女精品中文字幕| 51国产日韩欧美| 亚洲精品成人av观看孕妇| 涩涩av久久男人的天堂| www.色视频.com| 99久久精品国产国产毛片| 岛国毛片在线播放| 深爱激情五月婷婷| tube8黄色片| 男女边摸边吃奶| 亚洲精品日韩在线中文字幕| 国产男女内射视频| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 在线观看av片永久免费下载| 人妻少妇偷人精品九色| 亚洲性久久影院| 日本wwww免费看| 大话2 男鬼变身卡| 亚洲天堂av无毛| 欧美一区二区亚洲| 中文字幕久久专区| 黄片wwwwww| 欧美丝袜亚洲另类| 国产精品一区二区三区四区免费观看| 亚洲综合精品二区| 国产白丝娇喘喷水9色精品| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 好男人在线观看高清免费视频| 色网站视频免费| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 精品一区二区免费观看| 伊人久久国产一区二区| 少妇人妻 视频| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 免费电影在线观看免费观看| 嫩草影院新地址| 男人狂女人下面高潮的视频| 亚洲综合色惰| 国产精品一区www在线观看| 黄色一级大片看看| 日韩成人av中文字幕在线观看| 成人亚洲精品av一区二区| 久久久久久久久大av| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站 | 亚洲国产欧美人成| 新久久久久国产一级毛片| 在线观看一区二区三区| 久久久久九九精品影院| 亚洲精品视频女| 在线 av 中文字幕| 日本熟妇午夜| 国产成人免费观看mmmm| 精品一区二区三卡| 777米奇影视久久| 国产日韩欧美在线精品| 亚洲电影在线观看av| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 国产极品天堂在线| 午夜爱爱视频在线播放| 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 日韩欧美 国产精品| 成人漫画全彩无遮挡| 欧美老熟妇乱子伦牲交| 久久久精品欧美日韩精品| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 日韩成人av中文字幕在线观看| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 男女啪啪激烈高潮av片| 久久精品久久久久久噜噜老黄| 大香蕉97超碰在线| 精品熟女少妇av免费看| av在线播放精品| kizo精华| 日韩制服骚丝袜av| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 99热6这里只有精品| 日韩av不卡免费在线播放| 在线 av 中文字幕| 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 两个人的视频大全免费| 丝袜脚勾引网站| 亚洲av日韩在线播放| 一本久久精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲三级黄色毛片| 男女下面进入的视频免费午夜| 欧美亚洲 丝袜 人妻 在线| 最新中文字幕久久久久| 亚洲精品国产成人久久av| 亚洲精品国产av成人精品| 中文在线观看免费www的网站| 日本与韩国留学比较| 在线观看免费高清a一片| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区| 观看美女的网站| 国产日韩欧美亚洲二区| 在线天堂最新版资源| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 欧美精品国产亚洲| 91精品伊人久久大香线蕉| 亚洲色图av天堂| 久久精品综合一区二区三区| 欧美成人午夜免费资源| 日本黄大片高清| 成年人午夜在线观看视频| 91精品一卡2卡3卡4卡| 久久精品国产自在天天线| 国产精品国产三级专区第一集| 肉色欧美久久久久久久蜜桃 | 少妇人妻一区二区三区视频| 777米奇影视久久| 美女视频免费永久观看网站| 91午夜精品亚洲一区二区三区| 亚洲伊人久久精品综合| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 最新中文字幕久久久久| av国产精品久久久久影院| 天天躁日日操中文字幕| av在线亚洲专区| 舔av片在线| 男人添女人高潮全过程视频| 又大又黄又爽视频免费| 干丝袜人妻中文字幕| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 国产亚洲av嫩草精品影院| 寂寞人妻少妇视频99o| 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 建设人人有责人人尽责人人享有的 | 亚洲最大成人中文| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 男人和女人高潮做爰伦理| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 爱豆传媒免费全集在线观看| av在线播放精品| 成年版毛片免费区| 日韩欧美精品免费久久| 色网站视频免费| 又爽又黄无遮挡网站| 国产女主播在线喷水免费视频网站| 简卡轻食公司| 99视频精品全部免费 在线| 国产片特级美女逼逼视频| av在线蜜桃| 日本三级黄在线观看| 听说在线观看完整版免费高清| 国产亚洲av片在线观看秒播厂| 久久国产乱子免费精品| 亚洲久久久久久中文字幕| 国产成人91sexporn| 赤兔流量卡办理| 99久久精品热视频| 日韩成人伦理影院| 色婷婷久久久亚洲欧美|