• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    計弱連接條件下網(wǎng)絡(luò)數(shù)據(jù)多信道傳輸節(jié)點(diǎn)路徑調(diào)控方法

    2019-01-10 01:48:14嚴(yán)星吳向前高敬禮
    現(xiàn)代電子技術(shù) 2019年1期

    嚴(yán)星 吳向前 高敬禮

    關(guān)鍵詞: 計弱連接; 網(wǎng)絡(luò)數(shù)據(jù); 多信道傳輸節(jié)點(diǎn); 傳輸效率; 路徑調(diào)控; 信道分配

    中圖分類號: TN915?34 ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)01?0100?03

    Abstract: The traditional method can′t regulate the information content on the path of network data transmission node evenly under the condition of weak connection, which leads to large energy consumption and low efficiency of data transmission. Therefore, a path regulation method for multi?channel transmission nodes under weak connection condition is proposed. The network data multi?channel transmission node model is constructed to determine the best path queue of data transmission nodes, so the information content on the transmission node path can be uniformly transmitted. The path regulation method of channel allocation is used to optimize the data transmission node path, which can effectively reduce the energy consumption of data transmission, improve the transmission efficiency of multi?channel nodes, and complete the path regulation of network data multi?channel transmission nodes under weak connection condition. The experimental results show this method can improve the transmission efficiency of data multi?channel transmission nodes effectively, solve the shortcomings of traditional methods validly, and has important significance for the development of this field.

    Keywords: weak connection; network data; multi?channel transmission node; transmission efficiency; path regulation; channel allocation

    0 ?引 ?言

    在計弱連接的條件下,人們對網(wǎng)絡(luò)數(shù)據(jù)信息的傳遞質(zhì)量要求也在逐漸提高,網(wǎng)絡(luò)經(jīng)歷了傳統(tǒng)單一化到現(xiàn)在的快速集成化,逐漸發(fā)展成智能化、網(wǎng)絡(luò)化,這就是智能的網(wǎng)絡(luò)[1?2]。網(wǎng)絡(luò)所具有的良好性能,使其成為現(xiàn)今研究的熱點(diǎn)之一[3?5]。然而大部分的網(wǎng)絡(luò)節(jié)點(diǎn)是由電池或者是有限供電的設(shè)備供電的,能量進(jìn)行補(bǔ)充時較為困難,為此通過有效的網(wǎng)絡(luò)數(shù)據(jù)多徑信道傳輸?shù)墓?jié)點(diǎn)進(jìn)行路徑優(yōu)化,提高數(shù)據(jù)傳輸?shù)男剩档蛿?shù)據(jù)傳輸?shù)哪芰肯腫6]。對網(wǎng)絡(luò)數(shù)據(jù)多徑信道的傳輸節(jié)點(diǎn)路徑調(diào)控的目標(biāo)是保證在數(shù)據(jù)依照路由進(jìn)行數(shù)據(jù)傳輸?shù)倪^程中,減少節(jié)點(diǎn)的能耗量,延長網(wǎng)絡(luò)的生命周期,使網(wǎng)絡(luò)運(yùn)行最大化[7]。

    文獻(xiàn)[8]提出基于遺傳的模擬退火數(shù)據(jù)傳輸節(jié)點(diǎn)路徑優(yōu)化算法。依據(jù)優(yōu)化目標(biāo)建立數(shù)學(xué)模型,對種群編碼的方式進(jìn)行設(shè)計,依據(jù)種群相對應(yīng)個體不同的進(jìn)化程度提出一種新的準(zhǔn)則,使模擬的退火算法更有規(guī)律性。實驗結(jié)果表明,與其他數(shù)據(jù)傳輸路徑優(yōu)化算法相比,該算法可以生成更多數(shù)據(jù)傳輸路徑,但優(yōu)化時間略長,數(shù)據(jù)傳輸效率較低。文獻(xiàn)[9]提出基于蟻群算法的網(wǎng)絡(luò)數(shù)據(jù)傳輸路徑尋優(yōu)算法。經(jīng)過改進(jìn)啟發(fā)函數(shù),使在最優(yōu)路徑上發(fā)生節(jié)點(diǎn)死亡情況時,減少節(jié)點(diǎn)路徑進(jìn)行再次尋優(yōu)耗費(fèi)的時間。經(jīng)過實驗證明,利用該方法能對最優(yōu)路徑進(jìn)行修復(fù),但由于修復(fù)時間較長,節(jié)點(diǎn)能量消耗大,數(shù)據(jù)傳輸效率較低。

    由圖2能夠看出,本文方法網(wǎng)絡(luò)數(shù)據(jù)生存時間較高,且隨著多信道傳輸節(jié)點(diǎn)數(shù)量的降低,本文方法網(wǎng)絡(luò)數(shù)據(jù)生存時間提高的效果越來越明顯,這是因為本文方法對數(shù)據(jù)傳輸節(jié)點(diǎn)區(qū)域的各位置進(jìn)行了全面的考慮與監(jiān)測,在數(shù)據(jù)多信道傳輸節(jié)點(diǎn)路徑選擇時,以網(wǎng)絡(luò)數(shù)據(jù)生存時間為主要指標(biāo),構(gòu)建更優(yōu)化的路徑調(diào)控模型。而層次分析法沒有對網(wǎng)絡(luò)數(shù)據(jù)傳輸?shù)纳鏁r間進(jìn)行考慮。充分說明本文方法有效地提高了網(wǎng)絡(luò)數(shù)據(jù)傳輸節(jié)點(diǎn)的生存時間,數(shù)據(jù)傳輸效率高。

    對圖3進(jìn)行分析能夠看出,當(dāng)網(wǎng)絡(luò)傳輸節(jié)點(diǎn)的數(shù)量小于100時,本文方法比層次分析法移動的路程較大一些,在獲取的數(shù)據(jù)傳輸節(jié)點(diǎn)的路徑調(diào)控時,雖然本文方法停留的位置增加了,但停留時間比較短,而層次分析法停留位置的間距比較長,由此得出本文方法更能提高數(shù)據(jù)傳輸路徑的效率,降低了傳輸節(jié)點(diǎn)路徑過程的能耗。

    圖4為本文方法與多層次分析法的網(wǎng)絡(luò)數(shù)據(jù)多信道網(wǎng)絡(luò)吞吐量對比。

    從圖4能夠看出,本文所提方法的平均網(wǎng)絡(luò)數(shù)據(jù)吞吐量是0.8 Mb/s,相比多層次分析法增加了1.2 Mb/s,從增加的網(wǎng)絡(luò)吞吐量上可以看出,本文所提方法的性能比較好。在網(wǎng)絡(luò)數(shù)據(jù)信道較多的情況下,能有效地減少數(shù)據(jù)在進(jìn)行傳輸時節(jié)點(diǎn)的延遲時間,減少了數(shù)據(jù)節(jié)點(diǎn)間的相互干擾,降低了網(wǎng)絡(luò)數(shù)據(jù)傳輸時產(chǎn)生的能量消耗,提高了數(shù)據(jù)傳輸節(jié)點(diǎn)的效率。

    3 ?結(jié) ?論

    針對節(jié)點(diǎn)在數(shù)據(jù)傳輸過程中產(chǎn)生的能量消耗較多,節(jié)點(diǎn)路徑傳輸效率較低等問題,本文提出一種基于信道分配的網(wǎng)絡(luò)數(shù)據(jù)傳輸節(jié)點(diǎn)路徑調(diào)控方法。經(jīng)過實驗證明,該方法能有效降低數(shù)據(jù)節(jié)點(diǎn)傳輸路徑過程中的能耗,提高了節(jié)點(diǎn)數(shù)據(jù)傳輸路徑的效率,為后續(xù)進(jìn)行該領(lǐng)域的研究提供了依據(jù)。

    參考文獻(xiàn)

    [1] EGAMI T, WATANABE T, UMEMOTO K. Proposal and verification of a path control method that considers vehicle sideslip [J]. Transactions of the society instrument and control engineers, 2017, 53(4): 268?275.

    [2] NISHIOKA J. Path control device, path control system, path control method, and non?transitory computer readable medium [J]. Fresh patents, 2016, 34(3): 34?45.

    [3] 侯貴升,吳曉蓓,黃成,等.混合型異構(gòu)傳感器網(wǎng)絡(luò)中移動數(shù)據(jù)收集器的路徑優(yōu)化[J].控制與決策,2016,31(7):1285?1290.

    HOU Guisheng, WU Xiaobei, HUANG Cheng, et al. Optimi?zing path selection for mobile data collector in hybrid heterogeneous sensor networks [J]. Control and decision, 2016, 31(7): 1285?1290.

    [4] 閆偉,史洪瑋.網(wǎng)絡(luò)數(shù)據(jù)多信道傳輸路徑規(guī)劃方法研究[J].計算機(jī)仿真,2016,33(8):284?287.

    YAN Wei, SHI Hongwei. Multi channel network data transmission path planning method research [J]. Computer simulation, 2016, 33(8): 284?287.

    [5] 劉飛強(qiáng),周新志.有源星型光纖CAN網(wǎng)絡(luò)的數(shù)據(jù)傳輸系統(tǒng)的研究設(shè)計[J].計算機(jī)測量與控制,2015,23(11):3846?3848.

    LIU Feiqiang, ZHOU Xinzhi. Design of data transmission system based on active star fiber CAN bus [J]. Computer measurement & control, 2015, 23(11): 3846?3848.

    [6] 楊志勇,葉馮彬,馮艷輝,等.有向非負(fù)權(quán)圖中經(jīng)過必經(jīng)節(jié)點(diǎn)集最短路徑算法[J].電子設(shè)計工程,2017,33(16):32?36.

    YANG Zhiyong, YE Fengbin, FENG Yanhui, et al. The shor?test path algorithm through the necessary node set in directed non negative weight graph [J]. Electronic design engineering, 2017, 33(16): 32?36.

    [7] 胡代弟.遠(yuǎn)程實驗數(shù)據(jù)傳輸中加密數(shù)據(jù)防丟失方法研究[J].科學(xué)技術(shù)與工程,2016,16(31):61?65.

    HU Daidi. The remote experiment data encrypted data loss prevention method in the study [J]. Science technology and engineering, 2016, 16(31): 61?65.

    [8] 吳意樂,何慶.基于改進(jìn)遺傳模擬退火算法的WSN路徑優(yōu)化算法[J].計算機(jī)應(yīng)用研究,2016,33(10):2959?2962.

    WU Yile, HE Qing. WSN path optimization algorithm based on improved genetic simulated annealing algorithm [J]. Application research of computers, 2016, 33(10): 2959?2962.

    [9] THOMSEN B C, LAVERY D, PHILLIPS I D, et al. Unrepea?tered Nyquist PDM?16QAM transmission over 364 km using Raman amplification and multi?channel digital back?propagation [J]. Optics letters, 2015, 40(13): 3025?3028.

    [10] 陳志華.分布式云計算環(huán)境下的海量數(shù)據(jù)有效查詢方法[J].科技通報,2015,31(8):222?224.

    CHEN Zhihua. Huge amounts data effective query methods in distributed cloud computing environment [J]. Bulletin of science and technology, 2015, 31(8): 222?224.

    [11] 張建偉,潘秀琴.一種聯(lián)合多信道分配決策的認(rèn)知Mesh系統(tǒng)數(shù)據(jù)傳輸優(yōu)化算法[J].計算機(jī)應(yīng)用研究,2016,33(2):567?570.

    ZHANG Jianwei, PAN Xiuqin. Cognitive Mesh system data transfer optimization algorithm based on joint multi?channel allocation decisions [J]. Application research of computers, 2016, 33(2): 567?570.

    黑河市| 西盟| 黑龙江省| 曲水县| 安新县| 海阳市| 和田县| 绥滨县| 延长县| 五大连池市| 探索| 安达市| 建德市| 乐山市| 北宁市| 南安市| 岗巴县| 定州市| 长岛县| 汾西县| 沛县| 四子王旗| 瑞金市| 封开县| 万源市| 雅江县| 都江堰市| 白银市| 棋牌| 延边| 白水县| 莫力| 甘谷县| 蓝山县| 阿坝县| 安仁县| 蓝田县| 电白县| 和静县| 安化县| 榆中县|