• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultraviolet Optical Properties and Structural Characteristics of Radio Frequency-Deposited HfO2Thin Films

    2019-01-10 01:50:14CunzhiSunRongdunHongXiapingChenJiafaCaiZhengyunWu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年6期

    Cun-zhi Sun,Rong-dun Hong,Xia-ping Chen,Jia-fa Cai,Zheng-yun Wu

    Department of Physics,Xiamen University,Xiamen 361005,China

    Jiujiang Research Institute of Xiamen University,Jiujiang 332000,China

    Fujian Key Laboratory of Semiconductor Materials and Applications,Xiamen University,Xiamen 361005,China

    Hafnium oxide(HfO2)thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W.The optical and microstructural properties of samples before and after annealing were characterized by XRD,XPS,UV-VISNIR spectrophotometer and ellipsometer.The results show optical transmittances with low absorption in wavelength range above λ=200 nm for all samples.The appropriate annealing can transfer the amorphous state of as-deposited films to the crystal film,contribute to the growth of nanocrystalline and compressive stress,optimize the stoichiometry of the film and systematically improve film density and the refractive index.In consideration of the stability of proper refractive index(>2)and high optical transmittance in UV band,HfO2films deposited approximately at 220 W can be used in UV anti-reflection system.

    Key words:Thin films,Optical materials,Sputtering,X-ray diflraction

    I.INTRODUCTION

    Hafnium dioxide(HfO2)and HfO2-base materials serve as leading contenders for the replacement of SiO2and Si-base materials as gate dielectric oxide and the reduction of the leakage currents in miniaturization of modern devices[1],due to their relatively high permittivity(k≈25)compared with SiO2(k≈3.9),large bandgap(Eg≈5.68 eV),reasonable band gap oflset(?E≈1.4 eV),and excellent thermodynamic stability[2].More than excellent electric properties,HfO2is one of the choices to deposit anti-reflective(AR)films on detector,on account of its high refractive index(>2)in the UV range,high band gap,low UV absorption.Moreover,various optical applications of HfO2films have been pursued such as chirped mirrors and band pass filters[3],UV mirrors with a high damage threshold[4,5]and HfO2-base coatings[6,7].

    Specially,AR coating plays an important role in increasing response of UV photodetectors(PDs)[8].In addition,the band pass AR filter coatings can also suppress the other wavelength incidence to further improve the PDs’performance.In various typies of AR thin-film systems,quarter-wave stack with alternate high and low refractive index films of quarter wavelength thickness is considered as a basic structure[9].However,with characters of high refractive index and low absorption,candidate coating materials are limited for constructing UV AR thin-film systems,especially in the UVC range(200?280 nm).HfO2,as a good choice,can be employed to produce high performance UV AR coatings with low refractive index materials[10],SiO2,for example,by the stack of HfO2and SiO2films.

    Several deposition methods have been acquired to obtain HfO2thin films,such as atomic layer deposition,chemical vapor deposition,physical vapor deposition,and radio frequency(RF)magnetron sputtering[11–18].Among these methods,RF sputtering is generally preferred due to its low deposition temperature processing and simplicity.However,a small amount of research has focused on the optical properties in UV wavelength of HfO2thin film prepared by RF sputtering method.In this work,the improvement of optical and structural properties of HfO2thin films deposited by RF sputtering was investigated with diflerent condition of RF sputtering power and thermal annealing.

    II.EXPERIMENTAL DETAILS

    In base pressure of 1.0×10?6mbar of deposition chamber,thin films of HfO2were deposited on cleaned quartz substrates(thickness:1.16 mm)at room temperature.Films were accomplished through diflerent powers of 160,180,200,220,and 240 W for 15 min in 120 sccm argon flow and 1.0×10?2mbar processing pressure.The distance between the 4 inch HfO2ceramic target(99.99%in amorphous state)sputter target and substrate was 8 cm.The RF power density was 6.2,6.9,7.8,8.5,and 9.3 W/cm2.All the films were deposited at room temperature.And the target was cooled by water(~30oC).Then,these films were subjected to 600?C annealing process in oxygen ambient(1.5 L/min)for 20 min.The optical and structural properties of these thin films were characterized by X-ray diflraction(XRD,Rigaku Ultima IV X-ray diflractometer system).The equipment was operated with Cu Kα radiation(λ=1.5406 ?A)at 40 kV,30 mA and a scanning speed of 4o/min at an incident angle of 3?o.X-ray diflraction with grazing angle mode was chosen to investigate the phase formed in the bulk of annealed films.X-ray photoelectron spectroscopy(XPS,ESCALAB 250Xi,Thermo Fisher Scientific Inc.,USA),UV-VIS-NIR spectrophotometer(PerkinElmer Lambda 750),and spectroscopic ellipsometer(SE,ISA JOBIANYVON SPEX,France)were also used.As derived from the experiment results of spectroscopic ellipsometer,the thickness of as-grown films is 45,66,93,63,and 17 nm,corresponding to power 160 180,200,220,and 240 W,respctively.After annealing,the films’thickness changes to 42,58,87,70,and 20 nm.

    III.RESULTS AND DISCUSSION

    A.Crystal structure

    The XRD patterns(not depicted)have shown no peaks for the as-deposited HfO2films,which indicates the amorphous state of the samples.The XRD spectra of HfO2films after annealing are illustrated in FIG.1(a),no characteristic phase emerges in XRD pattern of the annealed film at 160 W RF power,which indicates the film retains amorphous state.With RF power increasing from 180 W to 240 W,annealed films show preferential orientation in(111)direction,which exhibits the growth of the monoclinic phase intensities.However,the annealed film deposited at 240 W has shown poor crystallization,which could be caused by the thin film thickness(20 nm)for re-sputtering process.Theoretically,sputtering method consists of sputtering and re-sputtering process at the same time[19,20],especially,with RF sputtering power increasing up to 240 W,which will aflect the thickness of annealedfilms and decrease phase intensity.On the other hand,in addition to the thin film thickness of annealed film being 42 nm(160 W),the low kinetic energy of the ionic gas source can lead to the low quality of annealed film and show no crystallization.

    From the data of FIG.1(a),the crystal inter-planar spacing(df)is calculated by Bragg formula[21]:

    FIG.1(a)XRD spectra of HfO2films after 600oC annealing in oxygen ambient.(b)The calculated crystallite size and inter-planar spacing of annealed films at diflerent sputtering power.

    where λ denotes X-ray wavelength(λ=1.5406 ?A)and θ denotes half angle of scattering vector corresponding to(111)peaks in XRD patterns. As shown in FIG.1(b),dfequals to 2.82,2.82,2.86,and 2.96?A,corresponding to sputtering power of 180,200,220,and 240 W,respectively.Compared with(111)standard inter-planar spacing(d0=2.82?A)for stress-free relaxed monoclinic hafnia system,the increase of inter-planar spacing causes negative sign of?d/df[22],which indicates compressive strain in these films.

    It reveals that the crystalline quality which aflects film density is improved with RF power.The compressive stress can be caused by grain boundary densification[23,24]which attributes to atomic peening[25,26]and adatom oxygen diflusion into grain boundaries.FIG.1(b)also depicts the calculated average crystallite sizes of samples by applying the Scherrer equation[14]:

    where L denotes the structural coherence length,λ denotes the wavelength of the X-ray radiation(0.1542 nm),θ denotes the half angle of scattering vector of(111)peak,Weffdenotes the eflective full width at half maximum(FWHM)of(111)peak after background subtraction and correction for instrumental broadening.The crystallite size aflects film density and the refractive index[13].More details about correlation between compressive strains,crystallite size,and refractive index will be discussed in the following of optical properties analysis.

    B.XPS results

    The XPS spectra of Hf 4f and O 1s for the samples asdeposited(a,c)and after annealing(b,d)are illustrated in FIG.2.After Shirley background subtraction,Hf 4f and O 1s XPS peaks are calibrated using C 1s peaks(284.8 eV)of the surface carbon contamination,having contrasted to the profile of C 1s,O 1s,and Hf 4f spectra reported in Refs.[13,15].In FIG.2(a)and(b),Hf 4f spectra are decomposed into two contribution of Hf 4f5/2and Hf 4f7/2with the spin-orbit splitting of 1.6 eV,which correspond to the Hf?O bond.

    Before annealing,as shown in FIG.2(c),these main peaks(~530 eV)of O 1s are exemplified with decomposed Gaussian peaks,corresponding to Hf?O,exhibiting a blue shift which indicates the increase of Hf dangling bonds with sputtering power.Peak at 531.4 eV denotes water or?OH groups[27]and that at 532.9 eV denote C?O.After annealing,in FIG.2(d),the bonding energy of Hf?O at 530 eV indicates that stable Hf?O bonds are formed and plentiful hafnium dangling bonds are eflectively passivated[28].In addition,it can be noticed that C?O bonds almost disappear,and the intensity of physisorbed water or?OH decreases.

    For all the samples as-deposited and after annealing,the stoichiometric ratio of O/Hf is evaluated by the intensities of oxygen(530 eV)to that of hafnium(17.1 and 18.7 eV)peaks.As depicted in FIG.3(a),O/Hf ratio of as-deposited films decreases with the increase of the sputtering power,which could be due to the broken Hf?O bonds and oxygen-deficiency.However,in spite of a minimum at 200 W,O/Hf ratio systematically increases for reduction of oxygen vacancy after annealing in 600oC oxygen ambience[29].

    C.Optical constants

    The growth rate and refractive index are derived from the experiment results of spectroscopic ellipsometer,according to Tauc-Lorentz model[30–35].The growth rates of films are approximately 3.0,4.4,6.2,4.2,and 1.1 nm/min under RF power from 160 W to 240 W.The increase of growth rate with power from 160 W to 200 W indicates more eflective bombardment of the target.As the power continues to increase from 200 W to 240 W,the growth rate decreases for the prominent re-sputtering process with limited mobility transition of sputtered partials to the film surface[19,20].Before the adatoms impact on substrate surface,the HfOxadatoms migrate parallelly to the incident beam.Upon impact,the adatoms keep a part of their momentum parallel to the substrate surface.This conservation of parallel momentum suggests that it might play a decisive role in the formation of the film structure.In our study,the incidence beam can also result in this mobility transition.However,the mobility transition should be weak,increasing the film density and reducing the optical adsorption.

    FIG.2 XPS spectra of the samples by diflerent sputtering powers:(a)as-prepared Hf 4f,(b)Hf 4f after annealing in 600oC in O2,(c)as-prepared O 1s,and(d)O 1s after annealing in 600oC in O2.

    After annealing,the thickness decreases with the lattice contraction for eflectively passivated hafnium dangling bonds in power range from 160 W to 200 W[36,37].And in power range of 220?240 W,thickness of annealed film increases slightly due to oxygen diflusion and crystallite size increases in annealed HfOxthin film[36].

    The variation of stoichiometry and structural properties directly influences the optical characteristics of the samples[1].In FIG.3(a)and(b),as the sputtering power increases from 160 W to 200 W,the O/Hf ratio falls from about 1.7 to 1.4 and the growth rate increases from 3.0 nm/s to 6.2 nm/s,while the refractive index decreases,signifying that the film has less optical density.This result is due to surface dipole repulsion,which implies dominant repulsive force between Hf4+atoms and therefore reduction in oxygen atom[36].In addition,the increasing proportion of nonstoichiometric HfOx(x<2)with broken Hf?O bonds reduces the average dispersion energy parameter,which results in the reduction of refractive index in disordered HfO2films[15,20,38].A minimum refractive index of as-depositedfilms appears at power of 200 W.As the power goes up from 200 W to 220 W,the O/Hf ratio and the growth ratio decrease,refractive index increases for the reduction of film porosity by re-sputtering process.The thickness of as-deposited film at 240 W is just about 17 nm,and the roughness of the substrate could result in equivalent eflect of void between film and substrate and decrease detected refractive index at the same time.

    FIG.3(a)Thickness,O/Hf ratios of HfO2films before and after annealing.(b,c)Refractive index and(d,e)transmission spectra.

    After annealing,refractive index in FIG.3(c)systematically increases with the improving of stoichiometry and density of monoclinic phase films[36]which are deduced from O/Hf ratios,crystallite size,and compressive stress.Hf dangling bonds are eflectively passivated,resulting in increase of attraction force between Hf4+and O2?dipoles and average dispersion energy parameter.Meanwhile,crystallite size decreases with O/Hf ratio within power from 180 W to 200 W and films keep in stress-free state.Then,as power goes up from 200 W to 240 W,the increase of crystallite size and the compressive stress in films enhances optical density[37]and refractive index.However,it could not be negligible that refractive index in the transition region(200?220 W)increases slightly after annealing.In consideration of the limited improvement of stoichiometry,this phenomena might be due to the minimum crystallite size and stress-free state,therefore,slight increase of optical density.

    FIG.3(d)and(e)show transmittance spectra of all prepared HfO2films with low absorption in wavelength range above λ=200 nm.As depicted in FIG.3(c),these high values of transmittance at 200 and 220 W RF power are obtained for the density films with low porosity ratio,especially at 200 W.The low transmittance of the film with RF power below 180 W might be due to porosity in films for low kinetic energy of the ionic gas source[39].And after annealing,the increase of the samples transmittance,shown in FIG.3(e),would be attributed to the reduction of film porosity(increase of film density)and the optimization of stoichiometric ratios.Additionally,the increase of transmittance of the sample at 240 W could be due to the reduction of equivalent eflect of void between film and substrate and the increase of roughness which leads to the scattering of incident beam.

    Considering the stability of films characteristics after annealing,especially the refractive index and optical transmittance,we choose annealed films which are deposited approximately at 220 W with the merits of moderate refractive index above 2 in UV band,high transmission and high film density,and apply these films to UV AR coatings.

    IV.CONCLUSION

    In this work,we have investigated ultraviolet optical and structural characteristics of RF-deposited HfO2thin films at diflerent sputtering power.After annealing,films show optimization of stoichiometric ratios for eflective passivation of hafnium dangling bonds and high optical density which is attributed to the growth of nanocrystalline.It can be found that the annealed HfO2films with sputtering power of about 220 W have high density,high transmission,and moderate refractive index.Therefore,the HfO2material is significant in the application as the high refractive index materials,which combines with low refractive index materials(SiO2or Al2O3)to form an optical antireflection coatings in UV wavelength.

    V.ACKNOWLEDGMENTS

    This work was supported by the Natural Science Foundation ofFujian Province ofChina(No.2018J05113) and the FundamentalResearch Funds for the Central Universities(No.20720160123,20720170013,and No.20720170084).

    [1]G.He,Zh.Q.Sun,G.Li,and L.D.Zhang,Crit.Rev.Solid State Mater.Sci.37,131(2012).

    [2]M.Vargas,N.R.Murphy,and C.V.Ramana,Opt.Mater.37,621(2014).

    [3]V.Pervak,F.Krausz,and A.Apolonski,Thin Solid Films 515,7984(2007).

    [4]P.Torchio,A.Gatto,M.Alvisi,G.Albrand,N.Kaiser,and C.Amra,App.Opt.41,3256(2002).

    [5]S.Jena,R.B.Tokas,K.D.Rao,S.Thakur,and N.K.Sahoo,App.Opt.55,6108(2016).

    [6]J.M.Yuan,L.Yuan,H.B.He,K.Yi,Z.X.Fan,and J.D.Shao,Appl.Surf.Sci.254,4864(2008).

    [7]J.W.Zhang,G.He,L.Zhou,H.S.Chen,X.S.Chen,X.F.Chen,B.Deng,and J.G.Lv,J.Alloys Compd.611,253(2014).

    [8]F.Zhang,W.F.Yang,H.L.Huang,X.P.Chen,Z.Y.Wu,H.L.Zhu,H.J.Qi,J.K.Yao,Z.X.Fan,and J.D.Shao,Appl.Phys.Lett.92,251102(2008).

    [9]H.Angus Macleod,Thin-Film Optical Filters,4th Edn.,Boca Raton:Taylor&Francis,(2001).

    [10]M.Scherer,J.Pistner,and W.Lehnert,Opt.Interfer.Coat.MA7(2010).

    [11]J.Vlˇcek,A.Belosludtsev,J.Rezek,J.Houˇska,J.ˇCapek,R.ˇCerstv′y,and S.Haviar,Surf.Coat.Tech.290,58(2016).

    [12]T.J.Bright,J.I.Watjen,Z.M.Zhang,C.Muratore,and A.A.Voevodin,Thin Solid Films 520,6793(2012).

    [13]S.S.Lin and H.R.Li,Cer.Inter.39,7677(2013).

    [14]M.Y.Ho,H.Gong,G.D.Wilk,B.W.Busch,M.L.Green,P.M.Voyles,D.A.Muller,M.Bude,W.H.Lin,A.See,M.E.Loomans,S.K.Lahiri,and Petri.I.R¨ais¨anen,J.Appl.Phys.93,14771(2003).

    [15]C.V.Ramana,M.Vargas,G.A.Lopez,M.Noor-AAlam,M.J.Hernandez,and E.J.Rubio,Cer.Inter.41,6187(2015).

    [16]V.Dave,P.Dubey,H.O.Gupta,and R.Chandra,Thin Solid Films 549,2(2013).

    [17]G.Aygun,A.Cantas,Y.Simsek,and R.Turan,Thin Solid Films 519,5820(2011).

    [18]V.Dave,P.Dubey,H.O.Gupta,and R.Chandra,Proceedings of American Institute of Physics,United States,1576,29(2014).

    [19]L.Abelmann and C.Lodder,Thin Solid Films 305,1(1997).

    [20]S.H.Wemple,J.Chem.Phys.67,2151(1977).

    [21]M.Ladd and R.Palmer,Structure Determination by X-ray Crystallography,4th Edn.,Kluwer Academic/Plenum Publishers,New York,117-175(2003).

    [22]S.Jena,R.B.Tokas,J.S.Misal,K.D.Rao,D.V.Udupa,S.Thakur,and N.K.Sahoo,Thin Solid Films 592,135(2015).

    [23]C.Pao,S.M.Foiles,E.B.Webb III,D.J.Srolovitz,and J.A.Floro,Phys.Rev.Lett.99,036102(2007).

    [24]E.Chason,B.W.Sheldon,L.B.Freund,J.A.Floro,and S.J.Hearne,Phys.Rev.Lett.88,156103(2002).

    [25]J.A.Thornton and D.W.Hoflman,Thin Solid Films 171,5(1989).

    [26]C.A.Davis,Thin Solid Films 226,30(1993).

    [27]Y.J.Wang,Z.L.Lin,X.L.Cheng,H.Xiao,F.Zhang,and S.C.Zou,Appl.Surf.Sci.228,93(2004).

    [28]S.C.Chen,C.C.Ting,H.H.Su,P.C.Yang,J.Lu,H.C.Huang,D.S.Gan,N.J.Ho,and Y.Shi,Mater.Lett.63,1914(2009).

    [29]W.T.Liu,Z.T.Liu,F.Yan,T.T.Tan,and H.Tian,Surf.Coat.Tech.205,2120(2010).

    [30]G.E.Jellison Jr.and F.A.Modine,Appl.Phys.Lett.69,371(1996).

    [31]G.E.Jellison Jr.and F.A.Modine,Appl.Phys.Lett.69,2137(1996).

    [32]J.Jaiswal,S.Mourya,G.Malik,S.Chauhan,A.Sanger,R.Daipuriya,M.Singh,and R.Chandra,Appl.Opt.55,8368(2016).

    [33]J.Jaiswal,S.Mourya,G.Malik,and R.Chandra,J.Opt.Soc.Am.A 35,740(2018).

    [34]G.Malik,J.Jaiswal,S.Mourya,and R.Chandra,J.Appl.Phys.122,143105(2017).

    [35]S.Mourya,J.Jaiswal,G.Malik,B.Kumar,and R.Chandra,J.Appl.Phys.123,023109(2018).

    [36]S.Pandey,P.Kothari,S.K.Sharma,and K.J.Rangra,J.Mater.Sci.27,7055(2016).

    [37]F.Parmigiani,E.Kay,T.C.Huang,and J.D.Swalen,Appl.Optics 24,3335(1985).

    [38]S.Goldsmith,E.C?etin¨org¨u,and R.L.Boxman,Thin Solid Films 517,5146(2009).

    [39]L.Abelmann and C.Lodder,Thin Solid Films 305,1(1997).

    日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 欧美精品啪啪一区二区三区 | 午夜福利免费观看在线| 丁香六月天网| 精品亚洲乱码少妇综合久久| 久久人人97超碰香蕉20202| 18禁观看日本| 日韩制服丝袜自拍偷拍| 老熟女久久久| 男人舔女人的私密视频| www.自偷自拍.com| 丝袜喷水一区| 亚洲第一av免费看| 精品视频人人做人人爽| 人人妻人人爽人人添夜夜欢视频| 这个男人来自地球电影免费观看| 国产高清国产精品国产三级| 国产视频一区二区在线看| 免费少妇av软件| 国产精品.久久久| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| 99热全是精品| 午夜福利,免费看| 电影成人av| 成人国语在线视频| 在现免费观看毛片| 一个人免费看片子| 天天操日日干夜夜撸| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区亚洲一区在线观看| 欧美日韩精品网址| 亚洲人成网站在线观看播放| 日韩大码丰满熟妇| 在线观看国产h片| 国产黄色视频一区二区在线观看| 欧美变态另类bdsm刘玥| 亚洲精品自拍成人| 精品第一国产精品| 国产成人欧美| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 欧美大码av| 下体分泌物呈黄色| 国产一卡二卡三卡精品| 母亲3免费完整高清在线观看| 日韩中文字幕视频在线看片| 女性被躁到高潮视频| 少妇精品久久久久久久| 欧美xxⅹ黑人| 国产亚洲欧美精品永久| 老司机亚洲免费影院| 日本91视频免费播放| 午夜福利免费观看在线| 日韩大片免费观看网站| 免费日韩欧美在线观看| 国产真人三级小视频在线观看| 久久人妻熟女aⅴ| 国产成人一区二区三区免费视频网站 | 午夜老司机福利片| 亚洲欧美日韩高清在线视频 | 黄色毛片三级朝国网站| 丝瓜视频免费看黄片| 国产在线视频一区二区| 波多野结衣一区麻豆| 两个人看的免费小视频| 亚洲精品第二区| h视频一区二区三区| 中文字幕人妻丝袜制服| 亚洲国产欧美在线一区| 欧美精品亚洲一区二区| 午夜福利,免费看| 大香蕉久久成人网| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 热re99久久精品国产66热6| 亚洲国产精品999| 日韩大码丰满熟妇| 亚洲,一卡二卡三卡| 老司机靠b影院| 免费在线观看完整版高清| 1024视频免费在线观看| 看免费av毛片| 亚洲国产精品国产精品| 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 久久久久网色| 尾随美女入室| 国产精品一国产av| 99九九在线精品视频| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 两性夫妻黄色片| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 九草在线视频观看| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 成年动漫av网址| 天天躁夜夜躁狠狠久久av| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 亚洲天堂av无毛| 国产1区2区3区精品| 91字幕亚洲| 亚洲av电影在线进入| 亚洲欧美成人综合另类久久久| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看 | 五月天丁香电影| 成年动漫av网址| 丝袜人妻中文字幕| 国产av国产精品国产| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品亚洲一区二区| 赤兔流量卡办理| 视频在线观看一区二区三区| 国产av国产精品国产| 18禁观看日本| 99国产精品一区二区蜜桃av | 深夜精品福利| 男人操女人黄网站| 一本综合久久免费| 久久狼人影院| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 久久天躁狠狠躁夜夜2o2o | 一二三四社区在线视频社区8| 青草久久国产| 啦啦啦在线免费观看视频4| 亚洲三区欧美一区| 午夜福利在线免费观看网站| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 91精品三级在线观看| 天天操日日干夜夜撸| 麻豆av在线久日| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲 | 女人被躁到高潮嗷嗷叫费观| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美精品永久| 黄色 视频免费看| 99re6热这里在线精品视频| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美在线一区| 国产高清视频在线播放一区 | 精品一区二区三区四区五区乱码 | 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| 老司机亚洲免费影院| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 高潮久久久久久久久久久不卡| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 日本猛色少妇xxxxx猛交久久| 激情视频va一区二区三区| 国产精品.久久久| 国产成人欧美在线观看 | 青草久久国产| 美国免费a级毛片| 精品一品国产午夜福利视频| 亚洲欧洲国产日韩| 国产片特级美女逼逼视频| 亚洲精品久久成人aⅴ小说| 国产色视频综合| 真人做人爱边吃奶动态| 两个人免费观看高清视频| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 大码成人一级视频| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 一级毛片电影观看| 人人妻,人人澡人人爽秒播 | 亚洲精品日本国产第一区| 亚洲,欧美精品.| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| 午夜视频精品福利| 日韩av在线免费看完整版不卡| 一级毛片女人18水好多 | 欧美大码av| 伊人久久大香线蕉亚洲五| 亚洲一码二码三码区别大吗| 精品国产国语对白av| 久久毛片免费看一区二区三区| 少妇人妻 视频| 99国产精品一区二区三区| 亚洲av美国av| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 9色porny在线观看| 日韩电影二区| 精品熟女少妇八av免费久了| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 两个人免费观看高清视频| 精品国产一区二区久久| 啦啦啦啦在线视频资源| 国产精品 国内视频| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 在线av久久热| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 久久九九热精品免费| 天天躁日日躁夜夜躁夜夜| 久久久欧美国产精品| 欧美日韩福利视频一区二区| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 久久久国产一区二区| 国产视频一区二区在线看| 99精国产麻豆久久婷婷| 校园人妻丝袜中文字幕| 精品国产一区二区三区四区第35| 国产成人一区二区三区免费视频网站 | 亚洲成人免费av在线播放| 一级片免费观看大全| 久久久久久久精品精品| 精品一品国产午夜福利视频| 99热网站在线观看| 另类精品久久| 天天躁夜夜躁狠狠久久av| 中文字幕高清在线视频| 亚洲,欧美,日韩| 狂野欧美激情性xxxx| 国产精品一二三区在线看| 老司机影院毛片| 搡老乐熟女国产| 97在线人人人人妻| 女警被强在线播放| 国产黄色视频一区二区在线观看| 免费女性裸体啪啪无遮挡网站| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 婷婷色综合大香蕉| 国产视频一区二区在线看| 国产成人精品在线电影| 亚洲欧美日韩高清在线视频 | 18禁观看日本| 免费看十八禁软件| 2021少妇久久久久久久久久久| www.999成人在线观看| 成年女人毛片免费观看观看9 | 欧美日韩亚洲综合一区二区三区_| 久久午夜综合久久蜜桃| 久热这里只有精品99| 亚洲国产av新网站| 国产精品久久久久久精品古装| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美 | 天堂中文最新版在线下载| 一区二区三区四区激情视频| 人妻 亚洲 视频| bbb黄色大片| 国产精品一区二区精品视频观看| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 成人午夜精彩视频在线观看| 久久久久视频综合| 另类精品久久| 免费高清在线观看视频在线观看| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 午夜福利视频精品| 国产一区二区激情短视频 | 一边摸一边做爽爽视频免费| 亚洲七黄色美女视频| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 老鸭窝网址在线观看| 一本综合久久免费| 欧美激情高清一区二区三区| 99久久99久久久精品蜜桃| 深夜精品福利| 精品第一国产精品| 一本一本久久a久久精品综合妖精| 91麻豆av在线| 亚洲第一av免费看| 中文字幕色久视频| 一个人免费看片子| 国产精品亚洲av一区麻豆| 欧美 日韩 精品 国产| 91国产中文字幕| 在线 av 中文字幕| 51午夜福利影视在线观看| 国产成人a∨麻豆精品| 亚洲精品美女久久av网站| 制服人妻中文乱码| 赤兔流量卡办理| 国产男人的电影天堂91| 搡老岳熟女国产| 最新在线观看一区二区三区 | 嫁个100分男人电影在线观看 | 麻豆国产av国片精品| 国产视频一区二区在线看| 人成视频在线观看免费观看| a级毛片黄视频| 亚洲七黄色美女视频| 精品少妇内射三级| 国产欧美亚洲国产| 国精品久久久久久国模美| 亚洲久久久国产精品| 又粗又硬又长又爽又黄的视频| 女人高潮潮喷娇喘18禁视频| 纵有疾风起免费观看全集完整版| 99久久综合免费| 啦啦啦啦在线视频资源| 亚洲欧美一区二区三区黑人| 国产片内射在线| 国产xxxxx性猛交| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 亚洲av成人精品一二三区| 丝袜脚勾引网站| 欧美xxⅹ黑人| 五月天丁香电影| 男女免费视频国产| 亚洲 欧美一区二区三区| 深夜精品福利| xxxhd国产人妻xxx| 国产欧美日韩一区二区三区在线| 国产女主播在线喷水免费视频网站| av在线播放精品| 另类精品久久| 人体艺术视频欧美日本| 天堂8中文在线网| 亚洲少妇的诱惑av| 国产黄频视频在线观看| 国产xxxxx性猛交| 别揉我奶头~嗯~啊~动态视频 | 欧美黑人精品巨大| 桃花免费在线播放| 男女午夜视频在线观看| 首页视频小说图片口味搜索 | 亚洲av欧美aⅴ国产| 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 久久精品熟女亚洲av麻豆精品| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 18禁裸乳无遮挡动漫免费视频| 日本五十路高清| 超色免费av| 亚洲欧美精品综合一区二区三区| 国产女主播在线喷水免费视频网站| 丝袜美足系列| 国产免费现黄频在线看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 2018国产大陆天天弄谢| 免费少妇av软件| 婷婷丁香在线五月| 亚洲av在线观看美女高潮| 免费不卡黄色视频| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 十八禁网站网址无遮挡| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 免费在线观看影片大全网站 | 国产1区2区3区精品| 国产精品国产av在线观看| 久久影院123| 高清视频免费观看一区二区| 男女国产视频网站| 亚洲精品一二三| 亚洲欧美日韩高清在线视频 | 国产高清视频在线播放一区 | 久久中文字幕一级| 中文字幕精品免费在线观看视频| 亚洲黑人精品在线| 亚洲一区中文字幕在线| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站 | 老汉色av国产亚洲站长工具| 日本vs欧美在线观看视频| 啦啦啦啦在线视频资源| 美女主播在线视频| 免费看av在线观看网站| bbb黄色大片| 亚洲欧美精品综合一区二区三区| 91国产中文字幕| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 一区二区av电影网| 999久久久国产精品视频| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品| 日韩大片免费观看网站| 午夜福利一区二区在线看| av一本久久久久| 成年动漫av网址| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 制服人妻中文乱码| 91麻豆精品激情在线观看国产 | 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 美女主播在线视频| 91成人精品电影| 国产一区亚洲一区在线观看| 亚洲精品中文字幕在线视频| 老鸭窝网址在线观看| 看免费av毛片| 免费少妇av软件| 国产黄频视频在线观看| 在现免费观看毛片| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 日日夜夜操网爽| 国产又爽黄色视频| 视频区图区小说| 婷婷色综合www| 亚洲成色77777| 国产成人啪精品午夜网站| 99热全是精品| 久久99一区二区三区| 国产精品一区二区免费欧美 | 亚洲中文日韩欧美视频| 国产精品二区激情视频| 国产视频首页在线观看| 黄色一级大片看看| av国产精品久久久久影院| 亚洲九九香蕉| av国产精品久久久久影院| 精品少妇黑人巨大在线播放| 91老司机精品| 成人亚洲欧美一区二区av| 免费一级毛片在线播放高清视频 | 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 我要看黄色一级片免费的| 国产男女超爽视频在线观看| 美女福利国产在线| 永久免费av网站大全| 国产精品熟女久久久久浪| 久久久亚洲精品成人影院| 欧美国产精品va在线观看不卡| 又大又爽又粗| 国产亚洲av高清不卡| 久久中文字幕一级| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 999精品在线视频| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| av片东京热男人的天堂| 在线观看免费视频网站a站| 一级片'在线观看视频| 亚洲,欧美精品.| 欧美少妇被猛烈插入视频| 欧美成人精品欧美一级黄| 久久天躁狠狠躁夜夜2o2o | 乱人伦中国视频| 亚洲激情五月婷婷啪啪| 精品高清国产在线一区| 午夜福利,免费看| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 一二三四社区在线视频社区8| 久久热在线av| 精品人妻一区二区三区麻豆| 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 国产一区二区激情短视频 | 午夜久久久在线观看| 久久精品国产亚洲av涩爱| 国产精品一区二区在线不卡| 久热这里只有精品99| 久久久久久久精品精品| 日韩,欧美,国产一区二区三区| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区久久久樱花| 久久青草综合色| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 国产不卡av网站在线观看| 亚洲av成人精品一二三区| 亚洲熟女毛片儿| 这个男人来自地球电影免费观看| 久久精品久久久久久久性| 国产熟女欧美一区二区| 老司机在亚洲福利影院| 国产成人精品久久二区二区91| 老汉色∧v一级毛片| 两性夫妻黄色片| 国产日韩欧美亚洲二区| 亚洲av男天堂| 亚洲成人国产一区在线观看 | 婷婷成人精品国产| 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| 国产精品一区二区免费欧美 | 久久女婷五月综合色啪小说| 久热爱精品视频在线9| 人成视频在线观看免费观看| 悠悠久久av| 观看av在线不卡| 亚洲av成人不卡在线观看播放网 | 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 亚洲精品国产av成人精品| 色网站视频免费| 国产精品99久久99久久久不卡| 汤姆久久久久久久影院中文字幕| 精品人妻1区二区| 一级毛片 在线播放| 黄片小视频在线播放| 亚洲欧美日韩高清在线视频 | 妹子高潮喷水视频| 国产黄色免费在线视频| 国产亚洲精品第一综合不卡| 久久久久久亚洲精品国产蜜桃av| 国产91精品成人一区二区三区 | 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 国产精品 国内视频| 国产一级毛片在线| 亚洲人成电影免费在线| 热re99久久精品国产66热6| 国产欧美日韩综合在线一区二区| av欧美777| 国产激情久久老熟女| 亚洲成色77777| 日韩免费高清中文字幕av| 制服诱惑二区| 国产在线一区二区三区精| 青春草亚洲视频在线观看| 宅男免费午夜| 最近手机中文字幕大全| 亚洲国产精品一区二区三区在线| 婷婷成人精品国产| 又大又黄又爽视频免费| 国产av一区二区精品久久| 视频区图区小说| 国产日韩欧美视频二区| 国产免费现黄频在线看| 精品一区在线观看国产| 韩国精品一区二区三区| 99国产精品一区二区蜜桃av | 欧美激情极品国产一区二区三区| 中文字幕色久视频| 成年动漫av网址| av天堂久久9| 国产成人系列免费观看| www.精华液| 亚洲精品一二三| 高清av免费在线| 免费看不卡的av| 日韩大片免费观看网站| av欧美777| 亚洲成国产人片在线观看| 国产又爽黄色视频| 久久影院123| 久热这里只有精品99| 久久午夜综合久久蜜桃| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 在线精品无人区一区二区三|