• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrosynthesis of CuO Nanocrystal Array as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction

    2019-01-10 01:50:12WeilinXiongMuhammadImranAbdullahMingmingMa
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年6期

    Wei-lin Xiong,Muhammad Imran Abdullah,Ming-ming Ma

    CAS Key Laboratory of Soft Matter Chemistry,iChEM(Innovation Center of Chemistry for Energy Materials),Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Electrodeposition of active catalysts on electrodes appears as a convenient approach to prepare non-noble-metal based electrocatalysts with defined micro-and nano-structures.Herein we report a new strategy of fabricating a 3-D hierarchical CuO nanocrystal array(CuO NCA)on Cu foam through a two-step sacrifice-template method.This CuO NCA possesses high conductivity,great stability,and impressive catalytic activity for oxygen evolution reaction(OER)in alkaline electrolytes.The CuO NCA can achieve a high current density of 100 mA/cm2at a relatively low overpotential of 400 mV for OER,which shows a better performance than other Cu-based OER catalysts and IrO2.The high activity of CuO NCA is well retained during a 10-h OER test at a high current density around 270 mA/cm2,which is about 10 times higher than the current density achieved by IrO2(around 25 mA/cm2)with the same applied overpotential.According to our best knowledge,CuO NCA is currently the most efficient and stable Cu-based electrocatalyst for water oxidation in alkaline electrolytes.

    Key words:Nano catalyst,Copper oxide,Oxygen evolution reaction

    I.INTRODUCTION

    Energy conversion and storage based on electrochemical processes are considered as a sustainable approach to store renewable energy in the form of clean chemical fuels[1].Oxygen evolution reaction(OER)is one of the key reaction for water splitting and metal-air batteries[2].OER process is relatively slow and complicated in mechanism,which makes it the rate-determining step in many processes[3,4].Currently,the most widely used electrocatalysts for OER are based on noble metal oxides,such as RuO2and IrO2[5],but their high cost and scarcity have limited their large-scale applications.Recently,first row transition metals-based electrocatalysts for OER have attracted much interest for their earthabundance and impressive electrochemical properties,including oxides,hydroxides,sulfides and phosphides of Ni[6?8],Fe[9,10],Mn[11],Co[12?16,17].On the other hand,Cu is one of the most earth-abundant metal elements and has a wide range of accessible oxidation range(Cu0,CuI,CuII,CuIII,CuIV).Therefore,Cu based materials possess a great potential to catalyze various chemical reactions via single and multielectron transfer pathway,including OER[18?25].Several CuO-based OER electrocatalysts have been synthesized by thermal oxidation reactions at high temperatures[24].Formation of a compact film of CuO on Cu surface prevents anodic corrosion under the OER conditions[22].However,due to the relatively low catalytic activity of CuO for OER[22],the performance of these CuO-based catalysts for OER is typically much lower than that of noble-metal based electrocatalysts(such as IrO2)[24].

    FIG.1 Schematics of the preparation of CuO NCA.

    One eflective way to improve the performance of electrocatalysts is to assemble the active materials into defi ned micro-and nano-structure on the electrode,such as hollow structure[26]and vertical array structure[27].These nanostructure can be synthesized by hydrothermal[28],sol-gel[29],and chemical bath deposition methods[30,31].But there is often adhesion issue between the formed nanomaterials and the conductive substrate,which limits the loading amount of active materials and the stability of electrode during long time electrolysis[32].Electrodeposition of active catalysts on electrodes appears as a cheap,safe,and convenient approach to prepare non-noble-metal based electrocatalysts with defined micro-and nano-structures[33,34].The eflective adhesion and electrical contact between the active materials and the conductive substrate are ensured.The shape,size,and thickness of the active catalyst layer can be controlled with the adjustment of solution concentration and electrochemical deposition parameters.Herein we report an electrochemical approach to synthesize CuO nanocrystal arrays as an effi cient and robust electrocatalyst for OER in an alkaline electrolyte,whose performance exceeds that of IrO2.These CuO nanocrystal arrays are deposited on a Cu foam electrode through a simple,safe,and low-cost two-step procedure:Cu2Se nanoparticles are deposited on a Cu foam electrode and then converted into CuO nanocrystal array by electrochemical oxidation.The formation mechanism of the nanocrystal array structure could be similar to that of nanoporous anodic aluminum oxide[35],where the localized dissolution of Cu2Se and the growth of CuO nanocrystal are balanced to form the NCA structure.With the CuO NCA structure,three highly desired properties for high-performance electrocatalyst have been simultaneously achieved:(i)high mass-loading of active catalysts on Cu foam electrodes without using any binders,(ii)efficient mass transfer and charge transfer through the electrolyte,CuO NCA and Cu foam as conductive substrate,and(iii)efficient oxygen bubble releasing from the hydrophilic and nanostructured CuO NCA surface.For OER,CuO NCA electrode requires overpotentials of 150 mV and 400 mV to attain current densities of 10 mA/cm2and 100 mA/cm2,respectively,superior to the performance of IrO2.The performance of CuO NCA at a high current density around 270 mA/cm2is quite stable during a 10-h OER test.These data demonstrate that Cu NCA is an efficient and robust electrocatalyst for OER in alkaline electrolyte,superior to previously reported Cubased electrocatalysts(see Table S1 in supplementary materials for comparison).

    II.EXPERIMENTS

    A.Reagents and materials

    IrO2was purchased from Johnson-Matthey Inc.All the other chemicals were purchased from Sinopharm Chemical Reagent Co.Ltd.All used chemicals were of analytical grade.The deionized(DI)water was used to prepare solutions.

    B.Synthesis of CuO nanocatalyst array(CuO-NCA)

    Cu foam was repeatedly washed with acetone,distilled water,and 0.5 mmol/L H2SO4under ultrasonic radiation to remove the oil layer and oxide on its surface.A solution of 50 mmol/L CuSO4and 50 mmol/L SeO2was used for the electrodeposition of Cu2Se,and the area of active electrode is kept at 0.16 cm2.Cu2Se nanoparticles with diflerent particle sizes were deposited on the copper foam at diflerent voltages(?300,?450,and ?600 mV vs. SCE(SCE saturated calomel electrode)).After the preparation of the Cu2Se precursor,the Cu2Se-coated Cu foam electrode was electrochemically oxidized in 1 mol/L KOH under 700 mV vs.SCE for 1 h.During this process,Cu2Se nanoparticles were oxidized and converted to CuO nanocrystals.The CuO nanocrystal-coated electrode was washed in DI water and then used in the electrochemical test and characterization without any further processing(FIG.1).

    C.Preparation of IrO2electrode

    The IrO2electrode was prepared by dispersing 10 mg of IrO2in 2 mL ethanol through sonication for 10 min.A homogeneous catalyst ink was formed.Then,64μL IrO2ink was loaded on copper foam by drop-casting(Cu foam surface area:0.16 cm2).Consequently,the mass loading of IrO2on Cu foam was 2 mg/cm2.

    D.Material Characterization

    FIG.2(a,b)XRD patterns of the Cu2Se precursors and activated CuO on copper foam electrode.(c)XPS patterns of the Cu 2p of the Cu2Se precursors and CuO nanocrystals.

    X-ray powder diflraction(XRD)was carried out on a Rigaku D X-ray diflractometer with Cu Kα radiation(λ=1.54178 ?A)to confirm the crystalline structure and chemical composition of the materials.The X-ray photoelectron spectra(XPS)were recorded on a Thermos ESCALAB 250 using Al Kα (hν=1486.6 eV)radiation exciting source to collect the detailed information of the surface of the electrode.Field emission scanning electron microscope(FE-SEM,JEOL JSM-6700F)was used to observe the detailed morphology and structure.

    E.Electrochemical test

    Electrochemical tests were performed with a threeelectrode system using a CHI660 electrochemical workstation.A stainless steel sheet,SCE(saturated calomel electrode),and CuO-NCA were used as the counter electrode,reference electrode,and working electrode respectively. The 5 mV/s scan rate was used for Tafel plot and polarization curves.The electrochemical impedance spectroscopy(EIS)was performed with a 100 kHz to 0.05 Hz frequency range and 5 mV sinusoidal voltage.The ohmic drop during electrolysis process was calculated based on the contact resistance R?that was obtained through EIS data.The R?values for CuO NCA and IrO2were found very similar around 0.6 ?·cm2.The iR corrected potential vs.RHE was calculated via the(ERHE=ESCE+0.234 V+0.0591 pH?iR?)equation.The overpotential for water oxidation was obtained through ηOER=ERHE?1.23 V.

    F.Calculation of electrochemical double-layer capacitance(Cdl)

    The electrochemical active surface area of the catalysts was estimated based on the double-layer capacitance(Cdl)of the catalysts.Cyclic voltammetry(CV)in a potential window where no Faradaic processes took place was used to test the catalysts under diflerent scan rates.The relation between the scan rate(V),double layer capacitance(Cdl)and charging currents ja?jcis given in equation:ja?jc=2V ·Cdl.The Cdlcan be estimated as the slope of a straight line plot of charging currents ja?jcvs.scan rate.The test was performed in 1 mol/L KOH as electrolyte.

    III.RESULTS AND DISCUSSION

    A.Chemical composition

    The commercially purchased Cu foam was chosen as the substrate due to its low cost,excellent conductivity and porous structure.The 3D porous structure of Cu foam can provide a large loading of CuO nanocrystals and enough interspaces for the release of generated gas bubbles.The synthesis method of CuO nanocrystals has been illustrated in FIG.1.Cu2Se was deposited on Cu foam through a cathodic electro-deposition in the aqueous solution of CuSO4and SeO2.The identity of Cu2Se was confirmed by power X-ray diflraction(XRD)pattern(FIG.2(a)),which indicates a tetragonal phase Cu2Se(JCPDS No.46-1129).The X-ray photoelectron spectroscopy(XPS)spectrum(FIG.S1 in supplementary materials)shows the characteristic peaks of Cu and Se.The two peaks at 932.3 eV and 952.2 eV with no shoulder peaks in Cu 2p spectrum(FIG.2(c))correspond to Cu(I)species.The two broad peaks at 59.4 eV and 54.3 eV in the Se 3d spectrum(FIG.S1 in supplementary materials)correspond to Se 3d5/2and Se 3d3/2,which are the characteristic peaks of Se2?.

    The Cu2Se-coated Cu foam electrode was electrochemically oxidized(0.7 V vs.SCE)in 1 mol/L KOH electrolyte to yield a product,which was identified by X-ray diflraction(XRD)(FIG.2(b))to be CuO(JCPDS No.45-0937).The XRD patterns before and after the electro-oxidation clearly show that the dominant component of the deposited precursor Cu2Se has been converted to CuO,as shown in FIG.2(a,b).The characteristic satellite peaks in Cu 2p XPS spectrum also indicates that Cu atoms have been oxidized to CuII(FIG.2(c)).According to the XPS results,only tracing amount of Se was found in the form of selenide oxide on the surface of CuO nanocrystal after the electrooxidation(FIG.S1 in supplementary materials),which also indicates the conversion from Cu2Se to CuO.The XPS spectrum of O 1s also provides information about valance state of Cu,the peak at 529.4 eV is possibly from O element in CuO,and the peak at 532.1 eV indicates the chemisorbed water(FIG.S2 in supplementary materials)[36].

    FIG.3 SEM images of the Cu2Se precursors(a,c,e)and the corresponding CuO NCA(b,d,f).The Cu2Se precursors were deposited under diflerent voltage?450 mV(a,b),?300 mV(c,d)and?600 mV(e,f)vs.SCE.The CuO NCA was converted from Cu2Se by electrochemical oxidation in 1 mol/L KOH at 700 mV vs.SCE for 1 h.

    B.Control of the morphology of the CuO NCA

    By adjusting the voltage for electrodeposition,the size of Cu2Se nanoparticles deposited on the Cu foam can be easily controlled[37].After a systematic exploration,we have found that the Cu2Se nanoparticles deposited at the voltage of?450 mV vs.SCE are a layer of pyramid-like nanoparticles that are uniformly and densely packed on the copper foam substrate(FIG.3(a)). The in situ electro-oxidation of Cu2Se nanoparticles results in the ordered flower-like CuO NCA with an average crystal diameter of 200 nm(FIG.3(b)). The Cu2Se nanoparticle deposited at a higher voltage(e.g. ?300 mV vs. SCE)had a smaller particle size than that obtained at the voltage of?450 mV vs.SCE(FIG.3(c)).This Cu2Se nanoparticle with smaller size could also be oxidized to form CuO nanocrystals with smaller size(10?30 nm in crystal diameter),which showed a loosely packed porous structure(FIG.3(d)).On the other hand,the Cu2Se nanoparticle deposited at a lower voltage(e.g.?600 mV vs.SCE)had a much bigger particle size than that obtained at the voltage of?450 mV vs.SCE,where some big size polyhedral Cu2Se particles can be observed(FIG.3(e)).The obtained CuO nanocrystals from this bigger Cu2Se nanoparticles are also bigger in size(>400 nm in diameter,FIG.3(f)).This porous structure of CuO NCA could leave a large number of active sites exposed to the electrolyte solution and allow fast diflusion of solvents and ions through the micropores.The crystal size and morphology of three diflerent CuO NCA materials prepared from diflerent Cu2Se precursors indicate the activity and stability of these CuO NCA electrodes for OER,as discussed below.

    C.OER activity of CuO NCA electrodes

    The OER activity of as-prepared CuO NCA electrodes was evaluated in 1.0 mol/L KOH with the Tafel method under a scan rate of 5 mV/s(FIG.4(a)).As expected,the CuO NCA sample prepared from the Cu2Se precursor deposited at?600 mV vs.SCE showed the lowest OER activity,due to the large size of CuO nanocrystals.The other two CuO NCA samples prepared from the Cu2Se precursor deposited at?300 mV and?450 mV vs.SCE showed similar OER activities.However,the CuO NCA prepared from the Cu2Se precursor deposited at?300 mV vs.SCE showed a significant pseudocapacitance in the range of 1.3?1.6 V on the polarization curve,possibly due to small size of CuO nanocrystals.The contact resistance of this small size CuO NCA(0.82 ?·cm2)was higher than the other two CuO NCA materials(~0.6 ?·cm2)(FIG.S3 in supplementary materials).Therefore,the optimal CuO NCA material was the one prepared from the Cu2Se precursor deposited at?450 mV vs.SCE.And this optimal CuO NCA was used for the following tests.

    FIG.4 Electrochemical properties of CuO NCA electrodes.(a)Tafel plots of the CuO NCA derived from the Cu2Se deposited under diflerent voltages,(b)Tafel plots of CuO NCA,IrO2,and Cu foam with a scan rate of 5 mV/s in 1 mol/L KOH solution.(c)Calculation of the Tafel slope of CuO NCA and IrO2.(d,e)EIS test of CuO NCA,IrO2and Cu foam in 1 mol/L KOH solution.(e)the enlarged plot of(d).(f)Long term oxidation test of CuO NCA and IrO2in 1 mol/L KOH solution at a constant potential of 700 mV vs.SCE.

    A bare Cu foam,IrO2loaded on Cu foam,and the optimal CuO-NCA were tested under the same condition for comparison(FIG.4(b)).As expected,Cu foam showed a very low activity for OER in alkaline solution.Although the performance of previous CuO-based OER catalysts is not as good as that of IrO2[24],CuO NCA showed a much better performance than IrO2.The CuO NCA electrode can reach 100 mA/cm2with an overpotential of 400 mV,while most of the Cu based OER catalyst can only reach 10 mA/cm2at the similar overpotentials(Table S1 in supplementary materials).And the CuO NCA can reach 10 mA/cm2with an overpotential of only 150 mV.On the other hand,the IrO2on Cu foam required a 570 mV overpotential to achieve a current density of 100 mA/cm2,while CuO-NCA can drive the same current density at an overpotential of 400 mV,which is much lower than that of IrO2(FIG.4(b)).The Tafel slope of CuO NCA was 98 mV/dec,which was similar to that of IrO2(84 mV/dec)(FIG.4(c)),also indicating the high activity of CuO NCA electrode for OER.Based on the Nyquist plots(FIG.4(d,e)),the contact resistance of CuO NCA(0.59 ?·cm2)and IrO2(0.57 ?·cm2)are similar to each other,which indicates that both catalysts have a good electrical contact with the Cu foam.

    For many OER catalysts,the generated O2bubbles often stick to the electrode surface,hence limit the mass transport and reduce the active surface area[38].The electrode rotation and modification of the electrode surface can be used to partially solve this problem[39].The CuO NCA possesses a 3-dimensional flower-like structure with the hydrophilic nature of CuO,which can help the quick release of O2as tiny bubbles from the electrode surface.Thus,the CuO NCA electrode can drive high current densities at low overpotentials without stirring the solution or rotating the electrode,which makes it practically favorable for water oxidation.

    We also test the stability of CuO NCA during a longterm OER test at a large current density.An electrolysis voltage of 700 mV vs.SCE was applied on both CuO NCA and IrO2electrodes in 1 mol/L KOH electrolyte to guarantee that the catalyst can work under a large current density.As shown in FIG.4(f),the CuO NCA presents a superior performance as compared to IrO2.The CuO NCA can easily reach 280 mA/cm2at the start.After 1 h,the current density reached 300 mA/cm2and remained at a high current density above 270 mA/cm2throughout the 10-h electrolysis test.In contrast,IrO2can only reach 150 mA/cm2at the beginning,and the activity shows a fast decline to 40 mA/cm2in 1 h and remained at a low current density~25 mA/cm2throughout the 10-h electrolysis test.The comparison of Cu NCA with IrO2clearly reveals the superior stability of Cu NCA as electrocatalyst for OER in alkaline electrolyte.

    FIG.5 Estimation of the electrochemical active surface area of(a,b)bulk Cu foam and(c,d)optimal CuO NCA by performing CV in an electrochemical inert potential window to calculate the Cdl.The test was performed in 1 mol/L KOH.

    Theoretically,IrO2possesses better OER activity than CuO NCA,whereas the experimental results present an opposite conclusion.This is might be due to the limited mass loading of IrO2on the substrate(2 mg/cm2).At a higher mass loading of IrO2,the catalytic activity of IrO2compromises,because the electronic connection between IrO2nanoparticles and the Cu foam substrate is not sufficient.In addition,the activity of IrO2decreases during the long term OER test is due to the nanoparticles aggregate[27].In contrast,the CuO NCA flower-like structure is firmly connected to Cu foam,so their nanoparticles will not aggregate throughout the long-term electrolysis.The robust connection between the CuO nanocrystals and Cu foam electrode also enables a high mass loading of CuO NCA.The excellent OER activity of CuO NCA is also because of its flower-like morphology,which could provide a larger surface for catalysis.The electrochemical double layer capacitance method(Cdl)[40]was used to estimate the active surface area of CuO NCA electrode.The high Cdlelectrochemical active surface of 327 mF/cm2as compared to Cu foam(5.8 mF/cm2)was credited to flower-like morphology and the high mass loading of CuO NCA on Cu foam(FIG.5).The hierarchical nanostructure,the high mass loading,and the efficient electrical contact with the Cu foam account for the high OER activity of CuO NCA electrode.

    IV.CONCLUSION

    In summary,we present a general strategy of fabricating a CuO-based nanocrystal array as highly active electrocatalysts for OER in alkaline electrolytes.The two-step sacrifice-template method efficiently builds up a 3-D hierarchical CuO NCA with flower-like structure that is firmly connected to the Cu foam as a highly conductive substrate.Owing to the hierarchical nanostructure,the high mass loading and the efficient electrical contact with the Cu foam,the CuO NCA needs a low overpotential of 400 mV to drive a high current density of 100 mA/cm2and presents a great stability at a heavy-loading long-term OER test,whose performance is much better than that of IrO2,and also superior to other Cu based electrocatalysts for OER(Table S1 in supplementary materials).The high activity of CuO NCA is well retained during a 10-h OER test at a high current density around 270 mA/cm2,which is about 10 times higher than the current density of IrO2(~25 mA/cm2)with the same applied overpotential.In general,this facile sacrifice-template strategy may help in the modification and enhancement of many other electroactive materials.Cu based catalyst has always been considered as a good candidate for the electrochemical capacitor and catalyst for CO2reduction[41].Therefore,our CuO catalysts with promising activity and stability may be used in many other areas as an efficient electrocatalyst.

    Supplementary materials:FIG.S1 and FIG.S2 present the change of the XPS spectrum of the CuONCA and Cu2Se precursor.R?value of the CuONCA deposited under diflerent voltage can be found in FIG.S3.The OER performance of CuO-NCA stands out in the Cu-based OER electrocatalysts,which can be found in the Table S1 in the supplementary materials.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21474094 and No.21722406).Muhammad Imran Abdullah acknowledges the Chinese Academy of Science(CAS)and TWAS for supporting him for a Ph.D.degree from University of Science and Technology of China in the category of 2016 CAS-TWAS President’s Fellowship Awardee(Series No.2016-171).

    [1]Y.Zheng,Y.Jiao,Y.H.Zhu,L.H.Li,Y.Han,Y.Chen,A.J.Du,M.Jaroniec,and S.Z.Qiao,Nat.Commun.5,3783(2014).

    [2]J.Zhang,Z.Zhao,Z.Xia,and L.Dai,Nat.Nanotechnol.10,444(2015).

    [3]M.S.Burke,L.J.Enman,A.S.Batchellor,S.H.Zou,and S.W.Boettcher,Chem.Mater.27,7549(2015).

    [4]N.T.Suen,S.F.Hung,Q.Quan,N.Zhang,Y.J.Xu,and H.M.Chen,Chem.Soc.Rev.46,337(2017).

    [5]Y.Lee,J.Suntivich,K.J.May,E.E.Perry,and Y.Shao-Horn,J.Phys.Chem.Lett.3,399(2012).

    [6]W.X.Zhu,X.Y.Yue,W.T.Zhang,S.X.Yu,Y.H.Zhang,J.Wang,and J.L.Wang,Chem.Commun.52,1486(2016).

    [7]B.You,N.Jiang,M.L.Sheng,M.W.Bhushan,and Y.J.Sun,ACS Catal.6,714(2016).

    [8]N.Lu,W.H.Zhang,and X.J.Wu,Chin.J.Chem.Phys.30,553(2017).

    [9]Z.H.Li,M.F.Shao,H.L.An,Z.X.Wang,S.M.Xu,M.Wei,D.G.Evans,and X.Duan,Chem.Sci.6,6624(2015).

    [10]L.Trotochaud,S.L.Young,J.K.Ranney,and S.W.Boettcher,J.Am.Chem.Soc.136,6744(2014).

    [11]R.Subbaraman,D.Tripkovic,K.C.Chang,D.Strmcnik,A.P.Paulikas,P.Hirunsit,M.Chan,J.Greeley,V.Stamenkovic,and N.M.Markovic,Nat.Mater.11,550(2012).

    [12]V.Artero,M.Chavarot-Kerlidou,and M.Fontecave,Angew.Chem.Int.Edit.50,7238(2011).

    [13]X.J.Liu,Z.Chang,L.Luo,T.H.Xu,X.D.Lei,J.F.Liu,and X.M.Sun,Chem.Mater.26,1889(2014).

    [14]Q.Yang,Z.Y.Lu,T.Li,X.M.Sun,and J.F.Liu,Nano Energy 7,170(2014).

    [15]Q.Yang,T.Li,Z.Y.Lu,X.M.Sun,and J.F.Liu,Nanoscale 6,11789(2014).

    [16]N.Jiang,B.You,M.L.Sheng,and Y.J.Sun,Angew.Chem.Int.Ed.54,6251(2015).

    [17]B.R.Liu,N.Zhang,and M.M.Ma,J.Mater.Chem.A 5,17640(2017).

    [18]M.T.Zhang,Z.F.Chen,P.Kang,and T.J.Meyer,J.Am.Chem.Soc.135,2048(2013).

    [19]S.M.Pawar,B.S.Pawar,B.Hou,J.Kim,A.T.Aqueel Ahmed,H.S.Chavan,Y.Jo,S.Cho,A.I.Inamdar,J.L.Gunjakar,H.Kim,S.Cha,and H.Im,J.Mater.Chem.A 5,12747(2017).

    [20]C.C.Hou,C.J.Wang,Q.Q.Chen,X.J.Lv,W.F.Fu,and Y.Chen,Chem.Commun.52,14470(2016).

    [21]X.Q.Zhao,L.Liu,Y.Zhang,H.J.Zhang,and Y.Wang,Nanotechnology 28,345402(2017).

    [22]J.L.Du,Z.F.Chen,S.R.Ye,B.J.Wiley,and T.J.Meyer,Angew.Chem.Int.Edit.54,2073(2015).

    [23]C.C.Hou,W.F.Fu,and Y.Chen,Chem.Sus.Chem.9,2069(2016).

    [24]X.Liu,S.S.Cui,Z.J.Sun,Y.Ren,X.Y.Zhang,and P.W.Du,J.Phys.Chem.C 120,831(2016).

    [25]T.N.Huan,G.Rousse,S.Zanna,I.T.Lucas,X.Z.Xu,N.Menguy,V.Mougel,and M.Fontecave,Angew.Chem.Int.Ed.56,4792(2017).

    [26]B.Zhang,X.Zheng,O.Voznyy,R.Comin,M.Bajdich,M.Garca-Melchor,L.Han,J.Xu,M.Liu,and L.Zheng,Science 352,333(2016).

    [27]L.Zhang,B.Liu,N.Zhang,and M.Ma,Nano Res.11,323(2018).

    [28]B.Liu and H.C.Zeng,J.Am.Chem.Soc.125,4430(2003).

    [29]M.A.Ciciliati,M.F.Silva,D.M.Fernandes,M.A.C.de Melo,A.A.W.Hechenleitner,and E.A.G.Pineda,Mater.Lett.159,84(2015).

    [30]P.O’Brien and J.McAleese,J.Mater.Chem.8,2309(1998).

    [31]P.X.Yang,J.Zhang,L.Liu,and M.S An,Chin.J.Chem.Phys.28,206(2015).

    [32]D.Josell,D.Wheeler,C.Witt,and T.P.Moflat,Electrochem.Solid.St.6,C143(2003).

    [33]B.M.Quinn,C.Dekker,and S.G.Lemay,J.Am.Chem.Soc.127,6146(2005).

    [34]A.A.Mikhaylova,E.B.Molodkina,O.A.Khazova,and V.S.Bagotzky,J.Electroanal.Chem.509,119(2001).

    [35]J.P.Osullivan and G.C.Wood,Proc.R.Soc.London,Ser.A 317,511(1970).

    [36]N.S.Mcintyre,S.Sunder,D.W.Shoesmith,and F.W.Stanchell,J.Vac.Sci.Technol.18,714(1981).

    [37]K.K.Mishra and K.Rajeshwar,J.Electroanal.Chem.271,279(1989).

    [38]B.F.Cao,G.M.Veith,J.C.Neuefeind,R.R.Adzic,and P.G.Khalifah,J.Am.Chem.Soc.135,19186(2013).

    [39]Y.Kuang,G.Feng,P.S.Li,Y.M.Bi,Y.P.Li,and X.M.Sun,Angew.Chem.Int.Ed.55,693(2016).

    [40]D.Merki,H.Vrubel,L.Rovelli,S.Fierro,and X.L.Hu,Chem.Sci.3,2515(2012).

    [41]C.W.Li and M.W.Kanan,J.Am.Chem.Soc.134,7231(2012).

    丝袜在线中文字幕| 9191精品国产免费久久| 在线看a的网站| 91成人精品电影| 水蜜桃什么品种好| av天堂久久9| 丝袜人妻中文字幕| 亚洲国产日韩一区二区| 国产在线一区二区三区精| 久久国产亚洲av麻豆专区| 操美女的视频在线观看| 十八禁人妻一区二区| 老汉色av国产亚洲站长工具| 黑人巨大精品欧美一区二区蜜桃| 亚洲中文日韩欧美视频| 亚洲精品国产一区二区精华液| 黄片大片在线免费观看| 亚洲一码二码三码区别大吗| 岛国视频午夜一区免费看| 成人国产一区最新在线观看| 国产精品乱码一区二三区的特点 | 精品福利观看| 黑人欧美特级aaaaaa片| 99在线视频只有这里精品首页| 淫秽高清视频在线观看| 一级a爱片免费观看的视频| 亚洲中文字幕日韩| 免费在线观看视频国产中文字幕亚洲| 两个人看的免费小视频| 国产区一区二久久| 亚洲一卡2卡3卡4卡5卡精品中文| 69av精品久久久久久| 日韩三级视频一区二区三区| 久久精品国产亚洲av香蕉五月| 99久久久亚洲精品蜜臀av| 黄色成人免费大全| 香蕉久久夜色| 丰满人妻熟妇乱又伦精品不卡| 国产国语露脸激情在线看| 亚洲色图 男人天堂 中文字幕| 天天添夜夜摸| 90打野战视频偷拍视频| 久久天堂一区二区三区四区| 欧美+亚洲+日韩+国产| 亚洲欧美激情在线| av电影中文网址| 人人澡人人妻人| 国产亚洲欧美98| 丝袜人妻中文字幕| 免费人成视频x8x8入口观看| 19禁男女啪啪无遮挡网站| 男人舔女人下体高潮全视频| 色哟哟哟哟哟哟| 日日摸夜夜添夜夜添小说| 欧美黄色淫秽网站| 性色av乱码一区二区三区2| 亚洲视频免费观看视频| 精品人妻1区二区| av福利片在线| av超薄肉色丝袜交足视频| 男人舔女人下体高潮全视频| 乱人伦中国视频| 免费在线观看影片大全网站| 9热在线视频观看99| 久久久久久久久中文| 久久国产精品人妻蜜桃| 欧美日韩亚洲国产一区二区在线观看| 性少妇av在线| 99久久国产精品久久久| 青草久久国产| 这个男人来自地球电影免费观看| 国产一区二区三区在线臀色熟女| 久久天堂一区二区三区四区| 久久人人精品亚洲av| 精品电影一区二区在线| 精品一区二区三区视频在线观看免费| 99久久99久久久精品蜜桃| 中文字幕久久专区| 中文字幕最新亚洲高清| 欧美中文综合在线视频| 少妇的丰满在线观看| 很黄的视频免费| 在线观看免费午夜福利视频| 欧美成狂野欧美在线观看| 大香蕉久久成人网| 91国产中文字幕| 亚洲国产欧美一区二区综合| 大型av网站在线播放| 亚洲无线在线观看| 欧美激情 高清一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲成人精品中文字幕电影| 大型黄色视频在线免费观看| 麻豆久久精品国产亚洲av| 777久久人妻少妇嫩草av网站| 色婷婷久久久亚洲欧美| 9191精品国产免费久久| 看片在线看免费视频| 国内久久婷婷六月综合欲色啪| 国产精品秋霞免费鲁丝片| tocl精华| 69精品国产乱码久久久| 丝袜人妻中文字幕| 人人妻人人澡人人看| 午夜老司机福利片| 一本久久中文字幕| 男女之事视频高清在线观看| 国产成人精品在线电影| 90打野战视频偷拍视频| 极品教师在线免费播放| 亚洲性夜色夜夜综合| 长腿黑丝高跟| 国产免费av片在线观看野外av| 午夜福利一区二区在线看| av视频免费观看在线观看| 久久精品国产清高在天天线| 国产高清激情床上av| 99热只有精品国产| 欧美老熟妇乱子伦牲交| 午夜福利一区二区在线看| 男人舔女人下体高潮全视频| 国产一卡二卡三卡精品| 国产精品一区二区三区四区久久 | 国产高清videossex| www.精华液| aaaaa片日本免费| 女警被强在线播放| 成人手机av| 国产精华一区二区三区| 一级作爱视频免费观看| 一进一出抽搐动态| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国内视频| 欧美成人一区二区免费高清观看 | 美女高潮喷水抽搐中文字幕| 午夜福利一区二区在线看| 99re在线观看精品视频| 亚洲精品在线观看二区| 好男人电影高清在线观看| 日韩免费av在线播放| 麻豆成人av在线观看| 黄网站色视频无遮挡免费观看| 超碰成人久久| 欧美激情久久久久久爽电影 | 国产精品九九99| 亚洲精品久久成人aⅴ小说| 欧美激情极品国产一区二区三区| 免费高清在线观看日韩| 91精品三级在线观看| 亚洲第一av免费看| 身体一侧抽搐| 九色亚洲精品在线播放| 亚洲国产精品合色在线| 国产乱人伦免费视频| 久久国产精品影院| 在线观看免费视频日本深夜| 亚洲专区国产一区二区| 97人妻天天添夜夜摸| 成年版毛片免费区| 精品少妇一区二区三区视频日本电影| 成人国产综合亚洲| 一二三四在线观看免费中文在| 亚洲五月色婷婷综合| 欧美日韩精品网址| 亚洲精品一卡2卡三卡4卡5卡| 国产一级毛片七仙女欲春2 | 激情在线观看视频在线高清| 欧美日韩瑟瑟在线播放| 777久久人妻少妇嫩草av网站| 女性被躁到高潮视频| 亚洲三区欧美一区| 国产欧美日韩一区二区三区在线| 亚洲成人国产一区在线观看| 黄频高清免费视频| 非洲黑人性xxxx精品又粗又长| 法律面前人人平等表现在哪些方面| 给我免费播放毛片高清在线观看| 麻豆国产av国片精品| 国产成人一区二区三区免费视频网站| 大码成人一级视频| 丰满人妻熟妇乱又伦精品不卡| 久久人妻av系列| 久久久久久久久免费视频了| 人人澡人人妻人| 看黄色毛片网站| 久久久久久久久中文| 人妻丰满熟妇av一区二区三区| 淫妇啪啪啪对白视频| 亚洲精品国产色婷婷电影| 精品一区二区三区av网在线观看| 国产激情久久老熟女| 在线观看免费日韩欧美大片| 无人区码免费观看不卡| 久久久久国产一级毛片高清牌| 高潮久久久久久久久久久不卡| 男男h啪啪无遮挡| 精品久久久精品久久久| 精品久久久精品久久久| www日本在线高清视频| 变态另类成人亚洲欧美熟女 | 高清黄色对白视频在线免费看| 啪啪无遮挡十八禁网站| 日本 欧美在线| 国内毛片毛片毛片毛片毛片| 人成视频在线观看免费观看| 久久性视频一级片| 别揉我奶头~嗯~啊~动态视频| 99久久国产精品久久久| 操美女的视频在线观看| 欧美久久黑人一区二区| 精品国内亚洲2022精品成人| 成人精品一区二区免费| 中文字幕精品免费在线观看视频| 亚洲国产高清在线一区二区三 | 久久国产亚洲av麻豆专区| 不卡av一区二区三区| 国产成人欧美| 一区福利在线观看| 亚洲中文av在线| 亚洲精品久久国产高清桃花| aaaaa片日本免费| 精品第一国产精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 搡老岳熟女国产| 长腿黑丝高跟| 一个人观看的视频www高清免费观看 | 日本在线视频免费播放| 男男h啪啪无遮挡| 又紧又爽又黄一区二区| av中文乱码字幕在线| 国产欧美日韩一区二区三| 久久精品人人爽人人爽视色| 高清黄色对白视频在线免费看| 午夜精品在线福利| 十分钟在线观看高清视频www| 正在播放国产对白刺激| 91九色精品人成在线观看| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 久久久国产欧美日韩av| 在线观看免费视频网站a站| 国产精品爽爽va在线观看网站 | 久久人人精品亚洲av| 国产主播在线观看一区二区| 88av欧美| 日韩av在线大香蕉| 国产成人av教育| 久久人妻av系列| 亚洲 国产 在线| 悠悠久久av| 亚洲国产毛片av蜜桃av| 午夜福利,免费看| 国产精品九九99| 国产精品 国内视频| 可以在线观看的亚洲视频| 夜夜夜夜夜久久久久| 夜夜躁狠狠躁天天躁| 在线十欧美十亚洲十日本专区| 欧美成人午夜精品| 久久欧美精品欧美久久欧美| 亚洲久久久国产精品| 中文字幕另类日韩欧美亚洲嫩草| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久人人做人人爽| 国产精品一区二区三区四区久久 | 亚洲成人久久性| 欧美日本亚洲视频在线播放| 欧美av亚洲av综合av国产av| 日本精品一区二区三区蜜桃| 久久久久久久午夜电影| 视频在线观看一区二区三区| 久9热在线精品视频| √禁漫天堂资源中文www| 我的亚洲天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 乱人伦中国视频| 久久天堂一区二区三区四区| 午夜免费成人在线视频| 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 国产不卡一卡二| 亚洲男人天堂网一区| 老鸭窝网址在线观看| 18禁黄网站禁片午夜丰满| 在线av久久热| 国产熟女xx| 女人被躁到高潮嗷嗷叫费观| 99re在线观看精品视频| 国产精品av久久久久免费| 午夜精品久久久久久毛片777| 日本在线视频免费播放| 欧美激情久久久久久爽电影 | 亚洲国产欧美一区二区综合| 亚洲一区高清亚洲精品| 人人澡人人妻人| 国产欧美日韩一区二区精品| av在线播放免费不卡| 天天添夜夜摸| 69精品国产乱码久久久| 国产精品永久免费网站| 超碰成人久久| 久久久国产欧美日韩av| 俄罗斯特黄特色一大片| 非洲黑人性xxxx精品又粗又长| 黄色a级毛片大全视频| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 亚洲七黄色美女视频| 制服诱惑二区| 国产精品 欧美亚洲| 曰老女人黄片| 美女大奶头视频| 国产成人精品无人区| 女警被强在线播放| 国产片内射在线| 天天一区二区日本电影三级 | 国产一区二区在线av高清观看| 波多野结衣一区麻豆| 亚洲第一电影网av| 亚洲va日本ⅴa欧美va伊人久久| 97碰自拍视频| 国产一区二区三区综合在线观看| a级毛片在线看网站| 99久久综合精品五月天人人| 国产精品亚洲美女久久久| 国产精品综合久久久久久久免费 | 国产成人精品无人区| 成熟少妇高潮喷水视频| 亚洲色图综合在线观看| 国产精品综合久久久久久久免费 | 90打野战视频偷拍视频| 如日韩欧美国产精品一区二区三区| 最新美女视频免费是黄的| 亚洲欧美日韩另类电影网站| 国产私拍福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| www.精华液| 精品福利观看| 美女免费视频网站| 欧美日韩亚洲综合一区二区三区_| 日韩有码中文字幕| 色av中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 国产精品爽爽va在线观看网站 | 久久久久久大精品| 精品熟女少妇八av免费久了| 成人欧美大片| 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 大型av网站在线播放| 成人亚洲精品av一区二区| 美女国产高潮福利片在线看| 国产不卡一卡二| 日本 欧美在线| 国产人伦9x9x在线观看| 亚洲五月色婷婷综合| 99精品欧美一区二区三区四区| 久久香蕉激情| 无限看片的www在线观看| 亚洲国产精品sss在线观看| 69av精品久久久久久| 免费久久久久久久精品成人欧美视频| 天天一区二区日本电影三级 | 欧美黄色淫秽网站| 成人国产综合亚洲| 一进一出好大好爽视频| 禁无遮挡网站| 可以在线观看毛片的网站| 自线自在国产av| 欧美日韩乱码在线| 久久伊人香网站| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站 | 国产精品日韩av在线免费观看 | 91字幕亚洲| 男女之事视频高清在线观看| 亚洲avbb在线观看| 亚洲自偷自拍图片 自拍| 日韩成人在线观看一区二区三区| 亚洲av美国av| 国产麻豆成人av免费视频| 咕卡用的链子| 亚洲片人在线观看| 中国美女看黄片| 国内精品久久久久精免费| 乱人伦中国视频| 51午夜福利影视在线观看| 久久伊人香网站| 欧美日韩黄片免| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色 | 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 中文字幕人成人乱码亚洲影| 一级,二级,三级黄色视频| 亚洲在线自拍视频| 国产精品综合久久久久久久免费 | 久9热在线精品视频| 国产成人免费无遮挡视频| 国产野战对白在线观看| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 欧美一级毛片孕妇| 久久香蕉精品热| 琪琪午夜伦伦电影理论片6080| www国产在线视频色| 国语自产精品视频在线第100页| 亚洲久久久国产精品| 国产麻豆69| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 亚洲av日韩精品久久久久久密| 亚洲av电影不卡..在线观看| 久久国产精品影院| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 88av欧美| aaaaa片日本免费| 久热爱精品视频在线9| 国产精品九九99| 成年女人毛片免费观看观看9| 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 久久热在线av| 日韩成人在线观看一区二区三区| 中国美女看黄片| 久久久久久久久中文| 精品一品国产午夜福利视频| 无人区码免费观看不卡| 一级黄色大片毛片| 色综合站精品国产| 91大片在线观看| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区免费| 亚洲第一av免费看| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜 | 精品国产美女av久久久久小说| 日本vs欧美在线观看视频| 精品不卡国产一区二区三区| 露出奶头的视频| 国产精品 欧美亚洲| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦 在线观看视频| www.精华液| 午夜免费成人在线视频| 这个男人来自地球电影免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇中文字幕五十中出| 美女扒开内裤让男人捅视频| 日韩精品青青久久久久久| 99riav亚洲国产免费| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| 好男人电影高清在线观看| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 国产精品久久久久久精品电影 | 日韩有码中文字幕| 九色亚洲精品在线播放| 黄色视频不卡| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| av免费在线观看网站| 亚洲中文av在线| 91大片在线观看| 亚洲国产精品999在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 国产视频一区二区在线看| 黄频高清免费视频| 精品久久久久久久人妻蜜臀av | 国产精品 国内视频| 色综合婷婷激情| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 91国产中文字幕| 超碰成人久久| 久久中文字幕一级| 久久人人爽av亚洲精品天堂| 欧美黑人精品巨大| 女人被狂操c到高潮| 午夜精品国产一区二区电影| 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 日韩视频一区二区在线观看| 亚洲天堂国产精品一区在线| 一级a爱片免费观看的视频| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 极品教师在线免费播放| xxx96com| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清 | 亚洲精品中文字幕在线视频| 一个人观看的视频www高清免费观看 | 天堂√8在线中文| 国产高清videossex| 精品国产一区二区三区四区第35| 精品国产一区二区久久| ponron亚洲| 波多野结衣一区麻豆| 亚洲熟女毛片儿| 日本 欧美在线| 久久精品亚洲熟妇少妇任你| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 欧美一级毛片孕妇| 国产亚洲精品第一综合不卡| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 一级,二级,三级黄色视频| 岛国在线观看网站| 国产伦人伦偷精品视频| 精品国产国语对白av| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 国产精品久久久人人做人人爽| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| 久久这里只有精品19| 神马国产精品三级电影在线观看 | 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 亚洲国产高清在线一区二区三 | 宅男免费午夜| 黄色丝袜av网址大全| 国产av一区二区精品久久| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 成人三级做爰电影| 欧美在线黄色| 狂野欧美激情性xxxx| 久久人人精品亚洲av| 两人在一起打扑克的视频| 国产精品影院久久| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 日韩有码中文字幕| 亚洲成人久久性| 好男人在线观看高清免费视频 | 午夜两性在线视频| 久久性视频一级片| 在线观看www视频免费| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 69精品国产乱码久久久| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器 | 午夜久久久久精精品| 国产精品久久久久久精品电影 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一av免费看| 99久久综合精品五月天人人| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 国产三级在线视频| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜福利在线观看视频| 美女免费视频网站| 色综合欧美亚洲国产小说| av欧美777| 中文字幕最新亚洲高清| 欧美激情 高清一区二区三区| 91大片在线观看| 十八禁网站免费在线| 成在线人永久免费视频| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 91九色精品人成在线观看| 国内毛片毛片毛片毛片毛片| 国产精品乱码一区二三区的特点 | 色综合婷婷激情| 黑丝袜美女国产一区| 国产亚洲精品一区二区www| 搡老妇女老女人老熟妇| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 999久久久精品免费观看国产| 国产欧美日韩一区二区精品| 18禁观看日本| av超薄肉色丝袜交足视频| 一区二区三区激情视频| 可以在线观看的亚洲视频| 国产av在哪里看| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 精品久久久久久成人av| 久久中文看片网| 久久 成人 亚洲| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区三区|