• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    “Dry” NiCo2O4 Nanorods for Electrochemical Non-enzymatic Glucose Sensing

    2019-01-10 01:50:10FengchoSunJingtongZhngHoRenShutoWngYnZhouJunZhng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年6期

    Feng-cho Sun,Jing-tong Zhng,Ho Ren?,Shu-to Wng,Yn Zhou?,Jun Zhng

    a.College of Science,China University of Petroleum(East China),Qingdao 266580,China

    b.College of Chemical Engineering,China University of Petroleum(East China),Qingdao 266580,China

    A rod-like NiCo2O4 modified glassy carbon electrode was fabricated and used for nonenzymatic glucose sensing.The NiCo2O4 was prepared by a facile hydrothermal reaction and subsequently treated in a commercial microwave oven to eliminate the residual water introduced during the hydrothermal procedure.Structural analysis showed that there was no significant structural alteration before and after microwave treatment.The elimination of water residuals was confirmed by the stoichiometric ratio change by using element analysis.The microwave treated NiCo2O4 (M-NiCo2O4 )showed excellent performance as a glucose sensor(sensitivity 431.29 μA·mmol/L?1·cm?2).The sensing performance decreases dramatically by soaking the M-NiCo2O4 in water.This result indicates that the introduction of residual water during hydrothermal process strongly aflects the electrochemical performance and microwave pre-treatment is crucial for better sensory performance.

    Key words:Glucose sensor,Electrochemical,NiCo2O4 ,Hydrothermal

    I.INTRODUCTION

    Glucose sensing is a great demand for modern living due to the significant growing population of diabetics.In 2015,1.6 million deaths were caused by diabetes according to World Health Organization(WHO)data[1].Since the first generation of enzymatic glucose electrochemical biosensor was introduced by Clark et al.[2],there have been tremendous eflorts on the development of efficient and accurate enzymatic glucose sensors[3].The enzyme-based electrochemical sensor oflers high sensitivity and selectivity,as well as low detection limit,they still have some serious drawbacks such as low thermal stability,low chemical stability,and limited working conditions(temperature,pH value,oxygen partial pressure,etc.)[4].Therefore,the enzymefree electrode is considered as an alternative solution to solve the drawbacks of enzymatic sensors.

    Similar to the traditional enzymatic electrochemical sensor,enzyme-free sensors also rely on the glucose oxidation reaction promoted by electrocatalysis at the nonenzymatic electrode surface.The catalytic glucose oxidation on the electrode surface could cause increased Faradic current that should be detectable by the sensor.This working mechanism requires the electrode to be high conductive for efficient sensing.Transition metal oxide based non-enzymatic electrodes are the most intensively investigated electrocatalysts for electrochemical glucose sensing,as a consequence of the low costs,ease of fabrication,high abundance,and high electrochemical catalytic activities[5].For instance,transition metal oxide based electrocatalysts,such as Co3O4[6],CuO[7,8],Cu2O[9],NiO[10,11],ZnO[12,13],MnO2[14,15],Fe2O3[16]etc.,have been intensively studied and demonstrated excellent catalytic activities for glucose oxidation.Recently,bimetallic oxides,such as spinel NiCo2O4[17?25],outperformed the NiO or Co3O4based electrocatalysts due to their enhanced conductivity[26].In addition,rational design of the material structure can also boost the catalytic performance of NiCo2O4,such as nanosheets[19,5,23],hollow spheres[25,26],and nanocages[17].The high surface atom ratios lead to larger active surface areas and stronger current signals.In this context,lower dimensional rod-like structures would deliver higher surface atom ratios,and might further enhance the electrochemical performance for glucose oxidation.

    Hydrothermal synthesis is one of the most commonly used methods to fabricate metal oxides[27].This synthetic protocol oflers numerous advantages such as fast reaction,facile preparation,and high product yields[28]. In this work,we fabricated rod-like NiCo2O4by using the hydrothermal method.However,the hydrothermal based synthesis usually results in crystallized water residuals even after the annealing process.In order to eliminate the residual water in the asprepared NiCo2O4,microwave post-processing was per-formed for the NiCo2O4catalyst prior to glucose electrochemical sensing.We found that the residual water dramatically hindered the electrochemical catalytic process.This result explains the performance decrease of metal oxide based glucose sensors work in environments with high humidity.

    II.EXPERIMENTS

    A.Synthesis of NiCo2O4 NRs

    We used all reagents as received. The mixture of 0.3 mmol nickel(II)acetate tetrahydrate,0.6 mmol cobalt acetate tetrahydrate,and 4 mmol urea were dissolved in 30 mL deionized water and transferred into a 50 mL stainless steel autoclave with Teflon coating.The autoclave was heated for 6 h at 150?C.The product was then flushed with deionized water and ethanol after cooling.The obtained Ni-Co precursor was then annealed in air for 3 h at 300?C with a heating rate of 1?/min and the black NiCo2O4powder was obtained.

    Forthemicrowavetreatment,theas-prepared NiCo2O4was treated in a commercial microwave oven at a power of 700 W for 1 min.The microwave-treated NiCo2O4is referred as M-NiCo2O4hereafter.

    B.Instrumentation

    The X-ray diflraction(XRD)data were collected on a Philips X’Pert diflractometer with a Cu Kα source worked at 40 kV and 40 mA.High resolution transmission electron microscopic(HRTEM)measurements were performed by using a JEM-2100UHR transmission microscope(JEOL,Japan)at 200 kV.Scanning electron microscopy(SEM)measurements were performed on an S-4800 microscope(Hitachi).Elemental analysis was performed on an energy-dispersive X-ray spectroscopy(EDS Inca X-Max,UK).The X-ray photoelectron spectra(XPS)were characterized by using a VG ESCALABMK II spectrometer with an Al Kα(1486.6 eV)source.

    C.Preparation of NiCo2O4 /GCE and M-NiCo2O4 /GCE

    4 mg of either NiCo2O4or M-NiCo2O4were mixed with 10%Nafion and drop-casted on a carefully polished glassy carbon electrode(GCE).

    D.Electrochemical measurement

    A CHI 660E electrochemical workstation(CH Instruments,Shanghai)was used for electrochemical measurements with a standard three-electrode setup.The GCE and NiCo2O4or M-NiCo2O4modified GCE(5 mm in diameter)were used as the working electrode,while using Hg/HgO and a Pt plate as the reference and the counter electrodes,respectively.All the electrochemical tests were performed in 0.1 mol/L NaOH solution.

    III.RESULTS AND DISCUSSION

    A.Structural characterizations

    Since the microwave processing of the samples would eliminate the residual water in the NiCo2O4samples,we performed SEM,HRTEM,XRD,and EDS characterizations for the NiCo2O4and M-NiCo2O4samples to examine the variations in the morphologies,the crystalline symmetries,and the stoichiometric contents.All these measurements can be compared as depicted in FIG.1.As shown in FIG.1(a)and(b),the SEM images of NiCo2O4and M-NiCo2O4both show a long and thin rod-like structure,and there is no significant diflerence in the morphologies before and after microwave treatment.This result indicates that microwave pretreatment does not aflect the microscopic structure of the NiCo2O4samples.The NiCo2O4nanorods ofler high surface atom ratio and provide a large surface area,which might result in stronger redox current signals as the glucose oxidation occurs.The HRTEM image of the NiCo2O4nanorods after microwave treatment is depicted in FIG.1(c).It is clear that the crystal lattice distances of NiCo2O4are 0.25,0.48,and 0.30 nm,and these d-spacings originate from the(311),(111)and(220)crystal plane indices,respectively.These results agree well with the XRD data shown in FIG.1(d),where all the peaks of the NiCo2O4and the M-NiCo2O4samples match with the NiCo2O4reference data(PDF:No.20-0781).These characterizations indicate that the microwave treatment does not vary the crystal structure of NiCo2O4nanorods.FIG.1(e)and(f)depict the EDS patterns of NiCo2O4before and after the microwave treatment,respectively.The stoichiometric ratio between Ni,Co,and O changes from approximately 1:2:5 to 1:2:4 via microwave treatment.The loss of O content can be ascribed to the elimination of H2O.After the microwave treatment,the stoichiometric ratio coincides with the NiCo2O4formula. This suggests that NiCo2O4was successfully synthesized using the facile hydrothermal synthetic procedure followed by microwave treatment.Moreover,the EDS mapping of NiCo2O4confirms the co-existence of nickel,cobalt and oxygen elements in NiCo2O4and they are uniformly distributed(FIG.S1 in supplementary materials).

    FIG.1 SEM images of the NiCo2O4 before(a)and after(b)microwave treatment.(c)HRTEM image of the NiCo2O4 after microwave treatment.(d)XRD analysis of NiCo2O4 before and after microwave treatment.EDS patterns of NiCo2O4 before(e)and after(f)microwave treatment.

    FIG.2 XPS spectra of M-NiCo2O4 nanorods.(a)full spectrum,and in the Ni 2p(b),Co 2p(c),and O 1s(d)regions.

    FIG.3 Cyclic voltammetry curves of(a)NiCo2O4 and(c)M-NiCo2O4 modified GCE(0.1 mol/L NaOH)and their respective Randles-Sevick plots(b,d).

    The detailed chemical composition and corresponding electronic structures were analyzed with the help of XPS measurements.FIG.2(a)displays a complete survey of the XPS spectrum of the as-prepared MNiCo2O4,where all the element features can be clearly observed.The deconvoluted spectra in the Ni 2p region are shown in FIG.2(b),where the peaks consisting of binding energies 853.9 and 871.6 eV are ascribed to the Ni2+oxidation state and those at 855.4 and 873.1 eV originate from the Ni3+state.FIG.2(c)shows the Co 2p spectrum at a higher resolution with the spinorbit doublets has Co3+and Co2+characteristics and each is followed by a satellite feature.The peaks of 2p3/2and 2p1/2states of Co3+are shown at 779.7 and 794.9 eV and the Co2+2p3/2and 2p1/2signals appear at 781.4 and 796.8 eV.These results indicate that the as-synthesized M-NiCo2O4has mixed oxidation states both for the Co and the Ni elements,which agrees well with previous reports[29].Moreover,the deconvoluted O 1s spectrum shown in FIG.2(d)reveals three oxygen components at 529.4,531.0,and 533.4 eV,these features can be attributed to the metal-bonding oxygen,hydroxyl oxygen and oxygen appearing in moisture adsorptions,respectively[30].We also note that the XPS spectrum of NiCo2O4before microwave treatment shows almost identical features with that of the M-NiCo2O4(FIG.S2 in supplementary materials),indicating that microwave treatment does not alter the oxidation states and elemental compositions of NiCo2O4.

    B.Electrochemical characterization of NiCo2O4 modified electrode

    We first investigated the redox process of NiCo2O4in 0.1 mol/L NaOH with cyclic voltammetry(CV)scanning. As depicted in FIG.3(a),before microwave treatment,we observed the oxidation and cathodic peaks appear at+0.58 V and+0.43 V vs.Hg/HgO,respectively. The corresponding Randles-Sevick plot(FIG.3(b))shows that the peak current is linearly correlated with the square root of the scan rate.This result indicates that the electrode processes are diflusion controlled.In comparison,after microwave treatment,the CV curves of M-NiCo2O4show two anodic peaks at+0.51 and+0.63 V and one cathodic peak at+0.35 V.The anodic peak at+0.51 V can be attributed to the redox process of Ni2+/Ni3+,whereas the oxidation peak at+0.63 V originates from the redox process of Co2+/Co3+.The corresponding Randles-Sevick plot also indicates a diflusion controlled electrode process.The fact that only one oxidation peak was observed before microwave treatment suggests that the residual water in NiCo2O4might hinder the redox kinetics of Ni2+/Ni3+.It is worth noting that for both of NiCo2O4samples,the increasing scan rates leads to apparent shifting in peak potentials,indicating rather a sluggish electrode kinetics.This suggests a rather slow surface diflusion process of OH?or the semiconducting behavior of NiCo2O4.

    FIG.4 displays the CV curves of both NiCo2O4and M-NiCo2O4modified GCE in NaOH solution with a scan rate of 40 mV/s.Upon the addition of a diflerent amount of glucose,the oxidation peak current for both electrode materials increases,suggesting both the NiCo2O4coatings are responsive toward the detection of glucose.The redox-catalyzed electrode process can be summarized as follows:

    FIG.4 CV curves of(a)NiCo2O4 and(b)M-NiCo2O4 modified GCE at various glucose concentrations with scan rate 40 mV/s.

    It is obvious that the catalyzed oxidation process on M-NiCo2O4modified electrode requires lower potential than that of the NiCo2O4case.The lower catalytic oxidation potential is beneficial for sensitive glucose sensing at low operating potentials.

    The sensing performance of the NiCo2O4modified electrodes was evaluated by performing amperometric studies towards glucose detection by successively adding glucose withholding the NiCo2O4electrode at a constant potential.The amperometric responses of the M-NiCo2O4modified GCE at+0.5,+0.6,and+0.7 V vs.Hg/HgO are shown in FIG.5(a).With the increase of the glucose concentration,the current increases for all three measurements.The corresponding calibration graph is shown in FIG.5(b)?(d),with the linear region shown as inserts. The potential of+0.6 V is found to be optimal,with the highest sensitivity of 431.29 μA·mmol/L?1·cm?2.The limit of detection for the+0.6 V operating potential is 0.0126 mmol/L(S/N=3)and the recovery percentage of glucose lies between 95.83%(at glucose concentration of 0.24 mmol/L)and 83.73%(5.47 mmol/L)(see Table S1 in supplementary materials).The complete analytical data of the three diflerent operating potentials are shown in Table S2 in supplementary materials.In comparison,NiCo2O4was also used to modify the GCE surface followed by amperometric measurements.As shown in FIG.S3 in supplementary materials,similar to that of M-NiCo2O4modified GCE,NiCo2O4also responds to the successive addition of glucose.However,the sensitivity of the electrode modified by NiCo2O4is much lower than that of the M-NiCo2O4case.Again,the+0.6 V electrode potential oflers the highest sensitivity for the NiCo2O4modified electrode,but only 193.92 μA·mmol/L?1·cm?2is achieved.The recovery percentage of NiCo2O4modified GCE was found to be much lower than that of M-NiCo2O4,with only 66.67%recovery when glucose concentration was 0.24 mmol/L and 48.99%at 5.47 mmol/L(Table S1 in supplementary materials).Obviously,M-NiCo2O4oflers much better electrochemical performance than NiCo2O4,which confi rms the assumption that the residual water hinders the electrochemical catalytic activity.

    Since the sensing process would be interfered by other bio-organic molecules,we performed interference test for sensors with NiCo2O4and M-NiCo2O4modified electrodes.FIG.6 depicts the response of the current density to usual interferences,such as ascorbic acid and uric acid.These interference sources were added with the concentration of 0.1 mmol/L,which preserved the concentration ratio respect to glucose in plasma[31].It is obvious that the addition of small amount of ascorbic acid and uric acid only increases the current density slightly,whereas the addition of glucose dramatically raises the current density.This result suggests that M-NiCo2O4is a good inorganic catalytic material for glucose sensing with high robustness.

    In order to examine the eflect of residual water in NiCo2O4on the sensing performance,we soaked the M-NiCo2O4in water with various durations.As shown in FIG.7,the M-NiCo2O4modified electrode shows excellent sensitivity(431.29 μA·mmol/L?1·cm?2)towards glucose sensor when it was directly applied after microwave treatment(refer to 0 h in FIG.7).After soaking the M-NiCo2O4in water for 2 h,the sensitivity dramatically decreased to 118.00 μA·mmol/L?1·cm?2,which indicates that water strongly hindered the electrochemical activity of NiCo2O4. As the soaking time increases,the sensitivity fluctuates between 100?245 μA·mmol/L?1·cm?2,which is much lower than that of the as-prepared M-NiCo2O4modified electrodes.As shown in FIG.S4(a)(supplementary materials),EDS characterization confirmed the existence of residual water in the soaked samples.In general,the residual water aflects the electrochemical performance of NiCo2O4dramatically.The sample was then treated with microwave again after being soaked in water for 108 h.As expected,the sensitivity recovered and reached 410.09 μA·mmol/L?1·cm?2.FIG.S4(b)in supplementary materials shows the EDS analysis of MNiCo2O4after soaking in water followed by annealing at 300?C for 2 h.The molar ratio of O,Co,and Ni preserves at about 5:2:1.This is interesting that even at a high annealing temperature of 300?C,it is still unable to eliminate the residual water unless a microwave treatment is performed.This also suggests an efficient and economic approach to recover the sensor performance.

    FIG.5(a)Amperometric analysis of M-NiCo2O4 modified GCE upon consecutive addition of glucose at+0.5,+0.6,and+0.7 V vs.Hg/HgO.(b?d)The linear calibration plot of(a),the insertion shows the linear region of the calibration graph.

    FIG.6 Interference test of NiCo2O4 and M-NiCo2O4 nanorod modified GCE in 0.1 mol/L NaOH(aq)at+0.6 V vs.Hg/HgO with 0.5 mmol/L glucose,2.5 mmol/L glucose,0.1 mmol/L ascorbic acid,and 0.1 mmol/L uric acid.

    FIG.7 The glucose sensing sensitivities after soaking the M-NiCo2O4 in water.0 h denotes the M-NiCo2O4 was applied on the GCE directly after microwave-treatment,and post-108 denotes the microwave-retreated M-NiCo2O4 after soaking in water for 108 h.

    IV.CONCLUSION

    We synthesized NiCo2O4nanorods via hydrothermal reaction followed by annealing in air at 300?C for 3 h.The NiCo2O4was then treated in a commercial microwave oven at 700 W for 1 min to eliminate the residual water that may be introduced during the hydrothermal synthesis.The as-prepared M-NiCo2O4was drop-casted on a GCE and applied for glucose electrochemical sensing.Although there is no significant structural alteration before and after the microwave treatment,the elimination of residual water was confi rmed by the stoichiometric ratio change revealed by EDS analysis.The M-NiCo2O4showed excellent performance towards glucose sensoring with a sensitivity up to 431.29 μA·mmol/L?1·cm?2.By soaking the MNiCo2O4in water after various durations,the sensing performance reduced dramatically.The performance can be recovered by another microwave treatment.We found that the residual water is difficult to remove by conventional annealing process even with a temperature up to 300?C.This result showed that the introduction of residual water during the hydrothermal procedure strongly aflects the electrochemical performance.Microwave pre-treatment is crucial to eliminate the residual water and provides an efficient and economic approach to recovering the performance of the glucose sensors using NiCo2O4modified electrodes.

    Supplementary materials:SEM image and EDS mapping of M-NiCo2O4,XPS analysis of microwave untreated NiCo2O4nanorods,glucose sensing tests for untreated NiCo2O4nanorods,EDS analysis of MNiCo2O4after soaking in water,recovery test data and limit of detection data are presented in Supplementary materials.

    V.ACKNOWLEDGMENTS

    This work was supported by the Shandong Provincial Natural Science Foundation, China(No.ZR2017QB015),theNationalNaturalScience Foundation ofChina (No.21773309),and China University of Petroleum Student’s Platform for Innovation and Entrepreneurship Training Program(No.20161449).

    [1]WHO.URL:http://www.who.int/mediacentre/factshe ets/fs312/en/Accessed 2017/09/27.

    [2]L.C.Clark and C.Lyons,Ann.N.Y.Acad.Sci.102,29(1962).

    [3]J.Wang,Electroanalysis 13,983(2001).

    [4]H.Zhu,L.Li,W.Zhou,Z.Shao,and X.Chen,J.Mater.Chem.B 4,7333(2016).

    [5]K.Naik,A.Gangan,B.Chakraborty,S.K.Nayak,and C.S.Rout,ACS Appl.Mater.Interf.9,23894(2017).

    [6]L.Kang,D.He,L.Bie,and P.Jiang,Sens.Actuators.B 220,888(2015).

    [7]K.Li,G.Fan,L.Yang,and F.Li,Sens.Actuators.B 199,175(2014).

    [8]Y.Zhang,Y.Liu,L.Su,Z.Zhang,D.Huo,C.Hou,and Y.Lei,Sens.Actuators.B 191,86(2014).

    [9]C.Dong,H.Zhong,T.Kou,J.Frenzel,G.Eggeler,and Z.Zhang,ACS Appl.Mater.Interf.7,20215(2015)

    [10]Y.Ding,Y.Liu,L.Zhang,Y.Wang,M.Bellagamba,J.Parisi,C.M.Li,and Y.Lei,Electrochimi.Acta 58,209(2011).

    [11]S.Ci,T.Huang,Z.Wen,S.Cui,S.Mao,D.A.Steeber,and J.Chen,Biosens.Bioelectron.54,251(2014).

    [12]S.SoYoon,A.Ramadoss,B.Saravanakumar,and S.J.Kim,J.Electroanal.Chem.717,90(2014).

    [13]Y.Liu,H.Pang,C.Wei,M.Hao,S.Zheng,and M.Zheng,Microchimi.Acta 181,1581(2014).

    [14]C.Guo,H.Li,X.Zhang,H.Huo,and C.Xu,Sens.Actuators.B 206,407(2015).

    [15]F.Xiao,Y.Li,H.Gao,S.Ge,and H.Duan,Biosens.Bioelectron.41,417(2013).

    [16]X.Cao and N.Wang,Analyst 136,4241(2011).

    [17]B.Xue,K.Li,L.Feng,J.Lu,and L.Zhang,Electrochimi.Acta 239,36(2017).

    [18]M.U.Anu Prathap and R.Srivastava,Electrochimi.Acta 108,145(2013).

    [19]G.Ma,M.Yang,C.Li,H.Tan,L.Deng,S.Xie,F.Xu,L.Wang,and Y.Song,Electrochimi.Acta 220,545(2016).

    [20]S.Cui,L.Li,Y.Ding,J.Zhang,H.Yang,and Y.Wang,Talanta 164,291(2017).

    [21]Z.Yu,H.Li,X.Zhang,N.Liu,W.Tan,X.Zhang,and L.Zhang,Biosens.Bioelectron.75,161(2016).

    [22]J.Yang,M.Cho,and Y.Lee,Biosens.Bioelectron.75,15(2016).

    [23]K.K.Naik,S.Kumar,and C.S.Rout,RSC Adv.5,74585(2015).

    [24]H.Rao,Z.Zhang,H.Ge,X.Liu,P.Zou,X.Wang,and Y.Wang,New J.Chem.41,3667(2017).

    [25]W.Huang,T.Lin,Y.Cao,X.Lai,J.Peng,and J.Tu,Sens 17,217(2017).

    [26]W.Huang,Y.Cao,Y.Chen,J.Peng,X.Lai,and J.Tu,Appl.Surf.Sci.396,804(2017).

    [27]S.Feng and R.Xu,Acc.Chem.Res.34,239(2011).

    [28]Q.Yang,Z.Lu,J.Liu,X.Lei,Z.Chang,L.Luo,and X.Sun,Prog.Natl.Sci.Mater.Int.23,351(2013).

    [29]P.Wu,S.Cheng,M.Yao,L.Yang,Y.Zhu,P.Liu,O.Xing,J.Zhou,M.Wang,H.Luo,and M.Liu,Adv.Func.Mater.27,1702160(2017).

    [30]D.U.Lee,B.J.Kim,and Z.Chen,J.Mater.Chem.A 1,4754(2013).

    [31]H.A.Krebs,Annl.Rev.Biochem.19,409(1950).

    免费黄网站久久成人精品 | 欧美zozozo另类| 黄色日韩在线| 天堂影院成人在线观看| 99热6这里只有精品| 日韩欧美精品免费久久 | 又黄又爽又刺激的免费视频.| 一进一出抽搐动态| 国产黄色小视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 51国产日韩欧美| 午夜a级毛片| 精品人妻1区二区| 麻豆久久精品国产亚洲av| 亚洲av二区三区四区| 搡老熟女国产l中国老女人| 国产成人a区在线观看| 成熟少妇高潮喷水视频| 男人的好看免费观看在线视频| 少妇裸体淫交视频免费看高清| 九九久久精品国产亚洲av麻豆| 神马国产精品三级电影在线观看| 欧美区成人在线视频| 在线播放无遮挡| 国内久久婷婷六月综合欲色啪| 很黄的视频免费| 亚洲av免费高清在线观看| 欧美黑人巨大hd| 舔av片在线| 波多野结衣高清作品| av国产免费在线观看| 亚洲国产高清在线一区二区三| 波多野结衣巨乳人妻| 国产色爽女视频免费观看| 亚洲一区高清亚洲精品| 成年人黄色毛片网站| 嫩草影院入口| 免费观看人在逋| 舔av片在线| 听说在线观看完整版免费高清| 久久99热这里只有精品18| 自拍偷自拍亚洲精品老妇| 九九在线视频观看精品| 91九色精品人成在线观看| 天堂av国产一区二区熟女人妻| 国产又黄又爽又无遮挡在线| 精品99又大又爽又粗少妇毛片 | 日本a在线网址| 观看美女的网站| 欧美黄色片欧美黄色片| 91字幕亚洲| 一区二区三区高清视频在线| 欧美最新免费一区二区三区 | 精品一区二区三区视频在线观看免费| 麻豆成人av在线观看| 波野结衣二区三区在线| 国产精品98久久久久久宅男小说| netflix在线观看网站| 夜夜躁狠狠躁天天躁| 人妻久久中文字幕网| 国产成人欧美在线观看| 久久久久九九精品影院| 美女xxoo啪啪120秒动态图 | 级片在线观看| 最近最新免费中文字幕在线| 欧美一区二区精品小视频在线| 伊人久久精品亚洲午夜| 久久久久免费精品人妻一区二区| 天堂影院成人在线观看| 内地一区二区视频在线| 麻豆成人午夜福利视频| 最近最新免费中文字幕在线| 国产伦人伦偷精品视频| 噜噜噜噜噜久久久久久91| 麻豆国产97在线/欧美| 国产高清激情床上av| 国产三级在线视频| 91av网一区二区| 日韩中字成人| 亚洲国产精品sss在线观看| 12—13女人毛片做爰片一| 激情在线观看视频在线高清| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品av在线| 国产亚洲精品av在线| 欧美激情国产日韩精品一区| 韩国av一区二区三区四区| 真人做人爱边吃奶动态| 精品国内亚洲2022精品成人| 久久久久久久亚洲中文字幕 | 一进一出抽搐gif免费好疼| 亚洲专区中文字幕在线| 91字幕亚洲| 人人妻,人人澡人人爽秒播| 2021天堂中文幕一二区在线观| eeuss影院久久| 欧美在线黄色| 亚洲片人在线观看| 99热只有精品国产| 一级毛片久久久久久久久女| 欧美在线一区亚洲| 欧美xxxx黑人xx丫x性爽| 亚洲欧美清纯卡通| 熟女人妻精品中文字幕| 国产中年淑女户外野战色| 欧美丝袜亚洲另类 | 欧美成狂野欧美在线观看| 午夜福利视频1000在线观看| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 国产淫片久久久久久久久 | 亚洲欧美日韩高清在线视频| 亚洲男人的天堂狠狠| 色综合欧美亚洲国产小说| 老司机福利观看| 中文字幕免费在线视频6| 亚洲第一欧美日韩一区二区三区| 婷婷丁香在线五月| 一本精品99久久精品77| 亚洲在线自拍视频| 国产亚洲精品综合一区在线观看| 欧美绝顶高潮抽搐喷水| 国产老妇女一区| 午夜福利高清视频| 悠悠久久av| 精品人妻1区二区| 草草在线视频免费看| 哪里可以看免费的av片| 在线观看美女被高潮喷水网站 | 人妻丰满熟妇av一区二区三区| 午夜精品在线福利| 女生性感内裤真人,穿戴方法视频| 成人午夜高清在线视频| 国产成年人精品一区二区| 国产一区二区激情短视频| 国产黄a三级三级三级人| 国产欧美日韩精品亚洲av| 欧美性猛交╳xxx乱大交人| 免费搜索国产男女视频| bbb黄色大片| 99在线视频只有这里精品首页| 亚洲国产色片| 国产麻豆成人av免费视频| 99久久精品国产亚洲精品| 首页视频小说图片口味搜索| 国产v大片淫在线免费观看| 国产又黄又爽又无遮挡在线| 麻豆一二三区av精品| 日本熟妇午夜| 亚洲第一区二区三区不卡| 欧美三级亚洲精品| 欧美+亚洲+日韩+国产| 亚洲精品日韩av片在线观看| avwww免费| 日本精品一区二区三区蜜桃| a级毛片a级免费在线| 观看美女的网站| 97热精品久久久久久| 1024手机看黄色片| 成人国产一区最新在线观看| 久久国产精品影院| ponron亚洲| 人人妻人人澡欧美一区二区| 国产精品综合久久久久久久免费| 18禁黄网站禁片免费观看直播| 国产蜜桃级精品一区二区三区| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看| 国产精品自产拍在线观看55亚洲| 一级毛片久久久久久久久女| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 欧美色视频一区免费| 国产单亲对白刺激| 国内久久婷婷六月综合欲色啪| 久久99热6这里只有精品| 欧美极品一区二区三区四区| 亚洲欧美日韩高清专用| 欧美日韩福利视频一区二区| 老司机午夜十八禁免费视频| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3| 国产探花在线观看一区二区| 在线十欧美十亚洲十日本专区| 亚洲专区中文字幕在线| av欧美777| 一个人免费在线观看的高清视频| 99riav亚洲国产免费| 桃色一区二区三区在线观看| 免费av观看视频| 欧美zozozo另类| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 国产精品人妻久久久久久| 国内精品美女久久久久久| 丁香欧美五月| 国产精品三级大全| 亚洲精华国产精华精| 国产中年淑女户外野战色| 人妻丰满熟妇av一区二区三区| 757午夜福利合集在线观看| 欧美日韩黄片免| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 好男人在线观看高清免费视频| 黄色丝袜av网址大全| 少妇的逼水好多| 动漫黄色视频在线观看| 亚洲欧美日韩无卡精品| 免费高清视频大片| 亚洲精华国产精华精| 蜜桃亚洲精品一区二区三区| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩无卡精品| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频| 婷婷亚洲欧美| 国产真实伦视频高清在线观看 | 欧美又色又爽又黄视频| 精品国产三级普通话版| 超碰av人人做人人爽久久| 美女 人体艺术 gogo| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久亚洲中文字幕 | 99国产精品一区二区蜜桃av| 十八禁人妻一区二区| 久久精品国产99精品国产亚洲性色| 啦啦啦韩国在线观看视频| 日韩中文字幕欧美一区二区| 国产真实伦视频高清在线观看 | 女生性感内裤真人,穿戴方法视频| 欧美成人一区二区免费高清观看| 久久久国产成人免费| 国产大屁股一区二区在线视频| 内射极品少妇av片p| 久久精品人妻少妇| 国产av不卡久久| 一本久久中文字幕| 最新在线观看一区二区三区| 国产高清三级在线| 看十八女毛片水多多多| 日本免费一区二区三区高清不卡| 国产精品,欧美在线| 午夜老司机福利剧场| 国产中年淑女户外野战色| 久久久久精品国产欧美久久久| 亚洲一区二区三区不卡视频| 国产爱豆传媒在线观看| 欧美黑人欧美精品刺激| 性色av乱码一区二区三区2| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线| 日韩欧美国产在线观看| 久久久久国产精品人妻aⅴ院| 国内少妇人妻偷人精品xxx网站| 他把我摸到了高潮在线观看| 欧美日韩乱码在线| 51国产日韩欧美| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看| 国产午夜精品论理片| 国产高潮美女av| 久久久成人免费电影| 嫩草影院新地址| 国产精品美女特级片免费视频播放器| 国产精品爽爽va在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 亚洲在线观看片| 亚洲专区国产一区二区| 国产男靠女视频免费网站| 少妇的逼好多水| 嫩草影院入口| 亚洲第一欧美日韩一区二区三区| 在线国产一区二区在线| 成人av一区二区三区在线看| 91麻豆精品激情在线观看国产| 欧美性感艳星| 成人性生交大片免费视频hd| 欧美高清性xxxxhd video| 国产免费男女视频| 婷婷精品国产亚洲av在线| 精品乱码久久久久久99久播| 女人十人毛片免费观看3o分钟| 欧美3d第一页| 国产大屁股一区二区在线视频| 成人高潮视频无遮挡免费网站| 自拍偷自拍亚洲精品老妇| 亚洲国产欧美人成| 午夜精品久久久久久毛片777| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 国产淫片久久久久久久久 | 久久久久久久久中文| .国产精品久久| 黄色女人牲交| 欧美性猛交╳xxx乱大交人| 国内精品久久久久久久电影| 亚洲在线观看片| .国产精品久久| 久久亚洲精品不卡| 国产伦人伦偷精品视频| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| 精品人妻1区二区| 国产三级黄色录像| 给我免费播放毛片高清在线观看| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 欧美bdsm另类| 亚洲七黄色美女视频| 欧美色欧美亚洲另类二区| 赤兔流量卡办理| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 亚洲最大成人手机在线| 欧美潮喷喷水| 中文字幕av成人在线电影| 露出奶头的视频| 久久久久国内视频| 亚洲男人的天堂狠狠| 国产白丝娇喘喷水9色精品| 热99在线观看视频| 午夜老司机福利剧场| 直男gayav资源| 亚洲电影在线观看av| 香蕉av资源在线| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 哪里可以看免费的av片| 国产精品久久视频播放| 精品99又大又爽又粗少妇毛片 | 中文在线观看免费www的网站| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| a级毛片免费高清观看在线播放| 一级黄片播放器| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 免费观看人在逋| 国产精品久久久久久久久免 | 久久国产乱子伦精品免费另类| or卡值多少钱| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 精品人妻1区二区| 一区二区三区四区激情视频 | 最近在线观看免费完整版| 免费在线观看日本一区| 国产乱人视频| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 757午夜福利合集在线观看| 草草在线视频免费看| 国产人妻一区二区三区在| 亚洲在线自拍视频| 国产精品影院久久| 国产黄色小视频在线观看| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 亚州av有码| 老司机午夜福利在线观看视频| 亚洲欧美日韩东京热| 少妇被粗大猛烈的视频| 午夜福利视频1000在线观看| 成人欧美大片| 亚洲精品亚洲一区二区| 嫩草影院精品99| 亚洲久久久久久中文字幕| 永久网站在线| 亚洲精品粉嫩美女一区| 很黄的视频免费| 黄色配什么色好看| 国产精品免费一区二区三区在线| 日本一二三区视频观看| 国产亚洲精品综合一区在线观看| 亚洲成人中文字幕在线播放| 亚洲精华国产精华精| 亚洲三级黄色毛片| 男人舔奶头视频| 亚洲av熟女| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美日韩东京热| 91麻豆精品激情在线观看国产| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 草草在线视频免费看| x7x7x7水蜜桃| 熟女电影av网| 51午夜福利影视在线观看| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 日本黄大片高清| 国产高清有码在线观看视频| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 免费在线观看亚洲国产| 熟女电影av网| 一夜夜www| 99久久精品一区二区三区| 久久久成人免费电影| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 一本综合久久免费| 天堂√8在线中文| 国产在视频线在精品| 精品一区二区免费观看| 老女人水多毛片| 欧美精品国产亚洲| 亚洲午夜理论影院| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 毛片一级片免费看久久久久 | 999久久久精品免费观看国产| 久久九九热精品免费| 国内少妇人妻偷人精品xxx网站| 中文字幕精品亚洲无线码一区| 色在线成人网| 国产久久久一区二区三区| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 久久伊人香网站| 国产主播在线观看一区二区| 国产高清三级在线| 国产成人福利小说| 在线播放无遮挡| 俄罗斯特黄特色一大片| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 中文字幕精品亚洲无线码一区| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av天美| 国产91精品成人一区二区三区| 日韩大尺度精品在线看网址| 90打野战视频偷拍视频| 国产精品国产高清国产av| 日韩高清综合在线| 日韩免费av在线播放| 在线看三级毛片| av国产免费在线观看| 久久精品国产亚洲av天美| 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人| 99久久精品热视频| 丰满人妻熟妇乱又伦精品不卡| 久久婷婷人人爽人人干人人爱| 国产成人a区在线观看| 久久精品综合一区二区三区| 天天一区二区日本电影三级| 男人的好看免费观看在线视频| 成人av一区二区三区在线看| 成人鲁丝片一二三区免费| 婷婷六月久久综合丁香| 日韩大尺度精品在线看网址| 欧美一区二区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产精品嫩草影院av在线观看 | 男女下面进入的视频免费午夜| 一本精品99久久精品77| 亚洲无线在线观看| 欧美精品啪啪一区二区三区| 午夜福利视频1000在线观看| 亚洲精品在线观看二区| 欧美中文日本在线观看视频| 草草在线视频免费看| 午夜久久久久精精品| 国产成人福利小说| 亚洲欧美日韩东京热| 亚洲欧美清纯卡通| 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 国内毛片毛片毛片毛片毛片| 久久国产精品影院| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 久久国产精品人妻蜜桃| 乱人视频在线观看| 在线观看66精品国产| 欧美日韩福利视频一区二区| www日本黄色视频网| 乱码一卡2卡4卡精品| 亚洲av日韩精品久久久久久密| 天天一区二区日本电影三级| 亚洲av免费高清在线观看| av中文乱码字幕在线| 国产久久久一区二区三区| 哪里可以看免费的av片| 日韩国内少妇激情av| 午夜福利视频1000在线观看| 最好的美女福利视频网| 精品久久久久久久久久久久久| 有码 亚洲区| 国产精品99久久久久久久久| 禁无遮挡网站| 国产野战对白在线观看| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 1024手机看黄色片| 欧美在线黄色| 看免费av毛片| 一区二区三区四区激情视频 | 久久久国产成人免费| 成人三级黄色视频| 久久国产精品人妻蜜桃| 欧美一区二区亚洲| 亚洲电影在线观看av| 桃色一区二区三区在线观看| 国产精品久久久久久精品电影| 成人精品一区二区免费| 亚洲黑人精品在线| 亚洲 国产 在线| 免费黄网站久久成人精品 | 亚洲va日本ⅴa欧美va伊人久久| 嫁个100分男人电影在线观看| 日本五十路高清| 久久久久精品国产欧美久久久| 成人特级av手机在线观看| 国产白丝娇喘喷水9色精品| 精品人妻熟女av久视频| 日本 av在线| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 欧美不卡视频在线免费观看| 麻豆成人午夜福利视频| 最新中文字幕久久久久| 免费一级毛片在线播放高清视频| 日本 欧美在线| 91午夜精品亚洲一区二区三区 | 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 波多野结衣高清无吗| 久久久久精品国产欧美久久久| 国产精品爽爽va在线观看网站| 99久久九九国产精品国产免费| 简卡轻食公司| 久久99热这里只有精品18| 人人妻人人看人人澡| 中国美女看黄片| 欧美日本亚洲视频在线播放| 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 悠悠久久av| 成人亚洲精品av一区二区| 亚洲国产欧美人成| 三级男女做爰猛烈吃奶摸视频| 国产日本99.免费观看| 丰满人妻一区二区三区视频av| 国产成+人综合+亚洲专区| 在现免费观看毛片| 国产不卡一卡二| 精品国内亚洲2022精品成人| 一个人观看的视频www高清免费观看| 亚洲 国产 在线| 天堂影院成人在线观看| 免费看美女性在线毛片视频| 成年女人看的毛片在线观看| 婷婷丁香在线五月| 国产精品日韩av在线免费观看| 又紧又爽又黄一区二区| 色视频www国产| 免费高清视频大片| 国产乱人伦免费视频| 欧美色欧美亚洲另类二区| 亚州av有码| 欧美日韩瑟瑟在线播放| 美女 人体艺术 gogo| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 99在线视频只有这里精品首页| avwww免费| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 深夜a级毛片| 可以在线观看毛片的网站| 亚洲精华国产精华精| 亚洲乱码一区二区免费版| 成人美女网站在线观看视频| 免费搜索国产男女视频| 婷婷精品国产亚洲av在线| 婷婷色综合大香蕉| 精品久久久久久久人妻蜜臀av| a在线观看视频网站| 精品久久久久久久久亚洲 | 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 日本a在线网址| 国产三级中文精品| 日本一本二区三区精品| 亚洲七黄色美女视频| 亚洲av成人不卡在线观看播放网| 黄色丝袜av网址大全| 嫩草影院新地址| 亚洲 国产 在线| 久久久久久久亚洲中文字幕 | 免费在线观看影片大全网站| 直男gayav资源| 日本a在线网址|