• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast Investigation of Excited-State Dynamics in Trans-4-methoxyazobenzene Studied by Femtosecond Transient Absorption Spectroscopy

    2019-01-10 01:49:54pingWngChunhuLiBingZhngChenQinSongZhng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年6期

    Y-ping Wng,Chun-hu Li,Bing Zhng,Chen Qin,Song Zhng?

    a.School of Electronic Science&Applied Physics,Hefei University of Technology,Hefei 230009,China

    b.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    c.Key Laboratory of Mineral Luminescent Material and Microstructure of Xinjiang,School of Physics and Electronic Engineering,Xinjiang Normal University,Urumqi 830054,China

    The ultrafast photoisomerization and excited-state dynamics of trans-4-methoxyazobenzene(trans-4-MAB)in solutions were investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations.After being excited to the S2state,the two-dimensional transient absorptions spectra show that cis-4-MAB is produced and witnessed by the permanent positive absorption in 400?480 nm.Three decay components are determined to be 0.11,1.4 and 2.9 ps in ethanol,and 0.16,1.5 and 7.5 ps in ethylene glycol,respectively.The fast component is assigned to the internal conversion from the S2to S1state.The other relaxation pathways are correlated with the decay of the S1state via internal conversion and isomerization,and the vibrational cooling of the hot S0state of the cis-isomer.Comparing of the dynamics in diflerent solvents,it is demonstrated that the photoisomerization pathway undergoes the inversion mechanism rather than the rotation mechanism.

    Key words:Photoisomerization,Trans-4-methoxyazobenzene,Femtosecond transient absorption spectroscopy

    I.INTRODUCTION

    The trans-cis photoisomerization reaction of azobenzene and its derivatives has attracted significant attention in optical information storage,nonlinear optics,molecular switches,artificial photocontrolled proteins and DNA hybridization[1?10].The high potential of azobenzene compounds rests on the large changes in molecular structure,dipole moment,refractive index,absorption spectrum and dielectric constant by photoisomerization[11].Therefore,to reach many ambitious rational design goals for azobenzene devices,it is necessary to have detailed knowledge about reaction dynamics of the trans-cis photoisomerization behavior.

    The photoisomerization dynamics of azobenzene[12?22]and its derivatives[23?31]has been investigated by quantum chemistry calculation and various spectroscopies in recent decades.For azobenzene,there exist an intense ππ?band(the S2state)peaked at 316 nm and a weak nπ?band(the S1state)around 440 nm[12].In the 1980s,Rau proposed that upon nπ?excitation,trans-azobenzene isomerized via inversion with in-plane bending of a CNN bond;while upon ππ?excitation,a torsional reaction channel around the N=N double bond became active[13,14].However,Tahara and coworkers studied the excited-state dynamics on the S2state of trans-azobenenzene under ππ?excitation by femtosecond time-resolved fluorescence absorption,they concluded that no isomerization occurred in the S2state or during S2→S1relaxation and proposed inversion for the isomerization mechanism in the S1state regardless of diflerence in initial photoexcitation[15].As demonstrated here,there is a controversy about the isomerization dynamics with the ππ?excitation.

    For azobenzene derivatives,the diflerent substituent groups have been proven to lead the red shift of the ππ?state[23?31]. Ikeda and co-workers researched a liquid crystalline trans-azobenzene(4-butyl-4-methoxyazobenzene,abbreviated as BMAB)in solution by femtosecond transient absorption and picosecond single-photon timing fluorescence spectroscopies.Their results indicated that a fast internal conversion from the S2(ππ?)state to the S1(nπ?)state occurred within 200 fs and the photoisomerization occurring on theS1statewascompleted within 10 ps[23].However, Reid et al. studied the trans-4-dimethylaminoazobenzene (trans-4-DMAAB) with the ππ?state excitation by subpicosecond pump-probe spectroscopy.They observed a bi-exponential decay with time constants of~0.8 and~10 ps which are assigned to the lifetime of the lowest-lying ππ?state and the ground-state vibrational relaxation,respectively[24].Moreover,Hirose et al.determined that the nπ?state of trans-4-aminoazobenzene(trans-4-AAB)was populated from the initially excited ππ?state within 0.2 ps and then decayed with~0.6 and~2 ps which cannot be distinguished from the corresponding decay channels[25].These studies show that diflerent substituent groups can also aflect isomerization dynamics with the ππ?excitation.

    Recently,a methoxyl group substituted azobenzene,trans-4-methoxyazobenzene(trans-4-MAB)is of particular interest because of its many potential applications in portable information systems and electronics[32,33].The trans-4-MAB can be doped into a nematic liquid crystal to make the material which contains the 45?twisted nematic(TN)and the photoinduced isotropic(PHI)states. Both states can be rapidly switched to each other by the isomerization[32].Norikane and co-workers have reported that crystals of trans-4-methoxyazobenzene also can be used to make artificial self-propelled systems with the aid of photoisomerization[33].However,the isomerization dynamics of the trans-4-MAB in solution is still not clear.In this work,we investigate the ultrafast excited state dynamics and photoisomerization of trans-4-MAB in ethanol and ethylene glycol with the ππ?excitation by femtosecond transient absorption spectroscopy combined with quantum chemical calculations.The spectra are measured until the delay time up to 300 ps to obtain more complete dynamics information.The quantum chemical calculations are used to present the molecular orbitals,oscillator strength and static absorption spectra.Following the excitation at 345 nm,ultrafast excitedstate dynamics associated with the photoisomerization of trans-4-MAB are observed and analyzed in detail.

    II.EXPERIMENTAL AND COMPUTATIONAL DETAILS

    Commercially available trans-4-MAB(98%purity)was used for experiments without further purification.Ethanol and ethylene glycol(99%purity)with viscosities of 1.2 and 13.5 mPa·s at 20?C were used as solvents[34].The fresh sample was prepared for transient absorption with concentration of 1 mmol/L at room temperature.The steady absorption spectra were recorded with concentration of 0.25 mmol/L on the UV-Vis spectrometer(INESA,L6)in a 1-mm quartz cell.

    Femtosecond transient absorption apparatus which is based on the Ti:sapphire laser system has been described elsewhere[26,27].Briefly,the seed beam is generated by a commercial Ti:sapphire oscillator pumped by a CW second harmonic of an Nd:YVO4laser,and then is amplified by an Nd:YLF pumped regenerative amplifier to generate a 1-kHz pulse train centered at 800 nm with 35-fs pulse width and the energy up to 1 mJ/pulse as fundamental pulse.A fraction of the fundamental laser was focused into a 1 mm thick BBO crystal,yielding pulses at 400 nm with energy of 130μJ,which are used to pump the NOPA.The pulse with~610 nm from the NOPA needs to be temporally compressed in order to obtain the minimum pulse width compatible with their bandwidth.The excitation wavelength of 345 nm with energy of~1.5μJ was generated by sum frequency of the 800 nm fundamental pulse and the~610 nm from the compressed NOPA.The other fraction of the fundamental light at 800 nm was focused into a 1 mm sapphire to generate a white continuum(390?720 nm)which would be split into the probe and the reference beam by a metallic-coated beamsplitter.The pump and probe pulses were overlapped into the sample cell at an angle of<4?and the reference beam was focused on the sample at a diflerent spot.For eliminating polarization and photoselection eflects,the relative polarization between the pump and probe beam was set at the magic angle(54.7?)for all the measurements.A computer-controlled linear translation stage was used to set the pump-probe time delay.Each step from the linear translation stage represented the time delay of~2.08 fs.The transmitted probe and reference spectra were taken by a CCD camera(PI-MAX)equipped with a spectrometer(Princeton,SpectraPro 2500i).The pump-induced stimulated Raman scattering(SRS)and cross-phase modulation(XPM)signals were measured independently for the pure solvent.All the transient absorption spectra were obtained by subtracting the SRS and XPM contributions.The instrumental response function(IRF)of the system,determined by the SRS signal,was typically better than 200 fs.The temporal resolution in our experiments was estimated to be 40 fs which was about 20%of IRF.

    All quantum chemical calculations were performed by the Gaussian 09W software package[35].The ground geometries of the trans-and cis-4-MAB were optimized by ab initio density-functional theory with the B3LYP function and 6-311G++(d,p)basis set.The stationary points were verified by the vibrational frequencies analysis.The eflect of the bulk solvent was considered by the polarizable continuum model(PCM)[36].The molecular orbitals,vertical excitation energy,oscillator strengths,and absorption spectroscopy were also performed by the TD-DFT/B3LYP for trans-4-MAB and cis isomer.

    III.RESULTS AND DISCUSSION

    A.Quantum chemical calculations

    The two lowest excited singlet states of trans-4-MAB in ethanol and ethylene glycol were performed by DFTcalculations,respectively,as listed in Table I.The vertical excitation energies of the S1and S2states are 2.51 and 3.54 eV in ethanol,respectively,while they are 2.63 and 3.24 eV in ethylene glycol.In both solvents,thefirst transition is from HOMO?1 to LUMO and the oscillator strength is about the order of<10?4.And the second transition is from HOMO to LUMO with the oscillator strength of 0.8528 and 0.9611,respectively.From the CI coefficients,we can clearly obtain that thefirst transition(the S1state)is nπ?character while the second transition(the S2state)is ππ?character.FIG.1 shows the molecular orbitals of the HOMO?1,HOMO,and LUMO of trans-4-MAB in ethanol which present the n,π and π?character,respectively.Compared with the values in solvent-less environment,the vertical excitation energies of two states are obviously lower both in ethanol and ethylene glycol.

    TABLE I Orbital transition,vertical excitation energy,configuration-interaction(CI)coefficients and oscillator strength(f)of the two lowest excited singlet states of trans-4-MAB in ethanol and ethylene glycol calculated by the TD-DFT/B3LYP with 6-311G++(d,p)basis set.

    B.Steady absorption spectrum

    The steady absorption spectra of trans-4-MAB in ethanol and ethylene glycol were measured and shown in FIG.2.Both absorption spectra are very similar to each other.The first absorption band is a board band with a center wavelength of~430 nm and assigned to the S1state.In fact,the first absorption band can also be observed in the range of 400?480 nm in azobenzene[16,17]and other derivatives,such as trans-4-aminoazobenzene in ethanol[25]and 4-nitro-4′-(ethyl(2-hydroxyethyl)amino)azobenzene(DR1)in 2-fluorotoluene[28].For trans-azobenzene,the oscillator strength of the nπ?transition is measured to be the order of 10?2and larger than the calculated value[16].Compared with azobenzene,trans-4-MAB has a lower symmetry because of the substitution.And the experimental value of the oscillator strength by nπ?transition is estimated to be much larger than the calculated value.Although the calculated result is<10?4,the absorption in 400?480 nm is still attributed to the nπ?state(the S1state).The second absorption band with the center wavelength of~345 nm shows much more intensity and is attributed to the ππ?transition.In FIG.2,we can clearly observe that the energy gap between the S1and S2states of the trans-4-MAB is closer than that of azobenzene,in which the S1and S2states locate at~440 nm and 316 nm,respectively[12].It is probably deduced that the substitution destroys the symmetry and leads to a red-shift of the ππ?state.The steady absorption spectrum of cis-4-MAB in ethanol is also performed by calculations using TD-DFT/B3LYP,as shown in FIG.2(black line).The first and second absorption bands of cis-4-MAB locate in 400?500 nm and 260?350 nm,respectively,which is consistent with the experimental results measured by Scaiano et al.[37].In their experiments,they monitored the cis-trans(thermal)isomerization of methoxyazobenzene by UV-visible spectroscopy and obtained that the first absorption band of cis-4-MAB coupling with nanoparticles is in 400?500 nm and the second absorption band is about in 275?375 nm.

    FIG.1 Molecular orbitals of HOMO-1,HOMO,and LUMO of trans-4-DEAAB in ethanol calculated by B3LYP/6-311G++(d,p).

    FIG.2 Steady absorption and emission spectra of the trans-4-MAB in ethanol and ethylene glycol,and the calculated absorption spectrum of cis-4-MAB in ethanol.

    FIG.3 Two-dimensional transient absorption spectrum of trans-4-MAB in ethanol with delay time within 10 ps and 300 ps(insert).

    C.The ultrafast dynamics of trans-4-MAB

    The two-dimensional transient absorptions spectrum of trans-4-MAB in ethanol was obtained at λpump=345 nm with delay time up to 10 ps and 300 ps,respectively,shown in FIG.3.The pump wavelength coincides with the peak of the ππ?absorption band.The detection wavelengths range from 390 nm to 720 nm.The two-dimensional spectrum shows an intensive excited state absorption(ESA)in the range of 390?440 nm and a weak absorption in the longer wavelength.It is noticed that there is a much weaker positive signal in the range of 400?480 nm until the longest experimental delay time(?tmax=300 ps).This permanent signal is assigned to the product of isomerization,because the first absorption band of the cis-4-MAB has been proven to locate exactly in this range by our calculations and experiments[37].FIG.4 displays the absorption spectra of the time evolution at selected delay time.After being excited to the S2state by 345 nm,the absorption in the 550?720 nm arises immediately and reaches its maximum at delay time of~75 fs(FIG.4(a)). It indicates that the signal in this range includes the dynamic information of the initially excited S2state.Following that,the signal in 550?720 nm decreases along with the increase of signal in 390?450 nm which attains its maximum at~265 fs.It can be deduced that a direct dynamical conversion from the S2state into the other state occurs with the ultrafast timescale.FIG.4(b)also shows that the absorption in the shorter wavelength decays within~3 ps and maintains a constant(~0.003)in the 400?480 nm until the decay time up to 300 ps.

    FIG.4 Transient absorption spectra of trans-4-MAB in ethanol at diflerent delay times.The arrows indicate the tendency of the temporal evolution.

    FIG.5 Decay-associated diflerence spectra(DADS)and species-associated diflerent spectra(SADS)of trans-4-MAB in ethanol.

    FIG.6 Representative time traces of the transient absorption spectra of trans-4-MAB recorded upon excitation at 345 nm in ethanol(left)and ethylene glycol(right).The components of the 0.11,1.4 and 2.9 ps in ethanol are shown in violet,blue and green line,respectively.The components of the 0.16,1.5,and 7.5 ps in ethylene glycol are also shown in violet,blue and green line,respectively.

    To properly describe the dynamics of trans-4-MAB in ethanol,we performed singular value decomposition(SVD)analysis on the 2D data matrix.The resulting kinetic amplitude vectors were globally fitted.Decayassociated diflerence spectra(DADS)with three time components of 0.11,1.4,and 2.9 ps were obtained from the global analysis,as shown in FIG.5.The DADS reflects the relative spectral contributions of each time component.The global analysis result shows a good match with the experimental traces over the whole spectro-temporal range.The DADS with timescale of 0.11 ps presents the relatively large positive amplitudes in 550?720 nm.It is in accordance with the region of the transient absorption of the S2state.As a result,the 0.11-ps component is attributed to the decay of the S2state.Similar time scales of the S2state are also obtained in azobenzene and other derivatives[18,19,25,28].A large number of studies about azobenzene and its derivatives show that there may be two decay channels of the excited S2state(ππ?)[15,20,21,24?30].Thefirst channel is the internal conversion to the S1state of the trans-isomer and the second one is the isomerization to the cis-isomer.For trans-azobenzene,the isomerization time has been proven to be 0.5?12.5 ps depending on the solvents[15,19,22].The para-substitution group causing the heavier phenyl may make the isomerization even more difficult.In consequence,it is impossible that the isomerization of the trans-4-MAB completes in such a fast 0.11 ps timescale.Furthermore,Tahara et al.demonstrated that the quantum yield of the internal conversion from the S2state to the S1state of trans-azobenzene was almost unity by femtosecond time-resolved fluorescence technology[15].As mentioned above,a methoxyl-substitution makes the energy gap between ππ?(S2)and nπ?(S1)states much smaller than that of trans-azobenzene.Hence,the electronic relaxation of the S2→S1becomes easier in trans-4-MAB.It is concluded that the appropriate decay channel of the S2state in trans-4-MAB is the internal conversion to the S1state.FIG.4(a)shows that the signal in 550?720 nm originating from the S2state decreases with the increase of signal in 390?450 nm.Now,we can assume that the absorption in 390?450 nm originates from the S1state.The amplitude of the DADS with lifetime of 1.4 ps is positive and relatively stronger in the range of the 390?450 nm.It is clearly indicated that the 1.4-ps component is the contribution of the S1state which may decay by internal conversion to the trans-isomer S0state and isomerization to the cis-isomer S0state.The DADS with lifetime of the 2.9 ps shows the main absorption in the 400?450 nm which is the same region of the permanent absorption of the product.Moreover,it also corresponds to the first static absorption band of the cis-4-MAB approximately.In consequence,the 2.9-ps component is attributed to the vibration cooling in the electronic ground state of the cis-isomer.Similar results can be observed in DR1[28].The vibration cooling of the hot S0state in the region of the permanent absorption of cis-DR1 occurs in~6 ps.The species-associated diflerent spectra(SADS)are also presented in FIG.5.The species of the S2and S1states are contributed to be the most in the longer and shorter wavelength,respectively,while the species of the hot S0state of the cis isomer exists mainly in 400?500 nm.The results of the time evolutions of trans-4-MAB in ethanol at representative wavelengths are listed in Table II.Several representative decay traces at selected probe wavelengths of trans-4-MAB in ethanol are shown in FIG.6.Thefitting data are consistent well with the original data.

    The excited-state dynamics of trans-4-MAB in ethy-lene glycol has also been obtained to further elucidate a photoisomerization mechanism.The characters of the transient absorption spectra are much similar to those in ethanol and not shown here anymore.The global analysis also shows three components with lifetimes of 0.16,1.5 and 7.5 ps,listed in Table III.Several representative decay traces at selected probe wavelengths of trans-4-MAB in ethylene glycol are shown in FIG.6.The fitting results are consistent well with the experimental data.The components of 0.16 and 1.5 ps are assigned to the lifetime of the S2and S1state,respectively,which is consistent with those in ethanol.Although the viscosity of the ethylene glycol(13.5)is much diflerent from the ethanol(1.2),the S1-state lifetime still shows no obvious diflerence.It means that the nπ?(S1-state)lifetime is independent of the solvent viscosity.Sawada et al.pointed out that the eflect of the solvent viscosity was weaker on the inversion process than the rotation process because the change of the volume in the inversion process was smaller than that in the rotation process[25].Similar statement was proposed on the mechanism isomerization of transstilbene[38].Therefore,the solvent independence of the transient absorption spectra of the nπ?excited trans-4-MAB demonstrates that the photoisomerization pathway undergoes the inversion mechanism rather than the rotation mechanism.Moreover,the 7.5-ps component is attributed to the vibration cooling of the hot ground state of cis-4-MAB which is obviously diflerent from that in ethanol.It may be caused by diflerent state density of the hot S0state in diflerent solvents.

    TABLE II Results of the global fit analysis of the absorption-time profiles for trans-4-MAB in ethanol.

    TABLE III Time components obtained from global analysis for trans-4-MAB in ethanol and ethylene glycol.

    IV.CONCLUSION

    FIG.7 The general photoinduced isomerization mechanisms of the S2-excited trans-4-MAB in solutions.The numbers in brackets are lifetimes in ethylene glycol.

    In this work,we reported the ultrafast photoisomerization and excited-state dynamics of trans-4-methoxyazobenzene(trans-4-MAB)in ethanol and ethylene glycol by femtosecond transient absorption spectroscopy combined with quantum chemistry calculations. After being excited to the S2state,the two-dimensional transient absorptions spectra were obtained. The excited state absorption(ESA)of the S2and S1states were observed in diflerent range in the whole detected wavelength.The time evolutions of ππ?excited trans-4-MAB in both solvents were extracted and fitted by the global analysis.It shows three components with lifetimes of 0.11,1.4 and 2.9 ps in ethanol and 0.16,1.5 and 7.5 ps in ethylene glycol,respectively.The fast component in both solvents was assigned to the internal conversion from the S2state to the S1state.The 1.4 and 1.5 ps were correlated with the decay of the S1state by internal conversion and isomerization.The cis-4-MAB is produced and witnessed by the permanent positive absorption in the 400?480 nm.The solvent independence of the transient absorption spectra of the nπ?excited trans-4-MAB demonstrated that the photoisomerization pathway undergoes the inversion mechanism rather than the rotation mechanism.The slow component of 2.9 and 7.5 ps was attributed to the vibrational cooling of the hot S0state in the cis-isomer.The vibrational cooling of the hot S0state of cis-4-MAB in ethanol is obviously faster than that in ethylene glycol.It may be caused by diflerent state densities of the hot S0state in diflerent solvents.A general photoinduced mechanism for the S2-excited trans-4-MAB is drawn and shown in FIG.7.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21603049,No.11674355,No.11705043,No.21327804,No.11364043),the Fundamental Research Funds for the Central Universities(No.JZ2015HGBZ0532),the Industry-University-Research Fund of Hefei University of Technology Xuancheng Campus(No.XC2016JZBZ11),and the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2016D01A058).

    [1]T.Ikeda and O.Tsutsumi,Science 268,1873(1995).

    [2]D.Bl′eger,T.Liebig,R.Thiermann,M.Maskos,J.P.Rabe,and S.Hecht,Angew.Chem.Int.Ed.50,12559(2011).

    [3]K.G.Yager and C.J.Barrett,J.Photochem.Photobiol.A 182,250(2006).

    [4]H.Shoji,K.TsubakiI,M.Kondo,and N.Kawatsuki,Mol.Cryst.Liq.Cryst.563,131(2012).

    [5]J.Liou,T.Chang,T.Lin,and C.Yu,Opt.Express 19,6756(2011).

    [6]A.Khan,C.Kaiser,and S.Hecht,Angew.Chem.Int.Ed.45,1878(2006).

    [7]D.G.Flint,J.R.Kumita,O.S.Smart,and G.A.Woolley,Chem.Biol.9,391(2002).

    [8]G.A.Woolley,Acc.Chem.Res.38,486(2005).

    [9]X.G.Liang,K.Fujioka,Y.Tsuda,R.Wakuda,and H.Asanuma,Nucleic Acids Symp.Ser.52,19(2008).

    [10]H.Nishioka,X.Liang,and H.Asanuma,Chem.A Eur.J.16,2054(2010).

    [11]N.Tamai and H.Miyasaka,Chem.Rev.100,1875(2000).

    [12]M.Quick,A.L.Dobryakov,M.Gerecke,C.Richter,F.Berndt,I.N.Iofle,A.A.Granovsky,R.Mahrwald,N.P.Ernsting,and S.A.Kovalenko,J.Phys.Chem.B 118,8756(2014).

    [13]H.Rau and E.Lueddecke,J.Am.Chem.Soc.104,1616(1982).

    [14]H.Rau and Y.Q.Shen,J.Photochem.Photobiol.A:Chem.42,321(1988).

    [15]T.Fujino,S.Yu.Arzhantsev,and T.Tahara,J.Phys.Chem.A 105,8123(2001).

    [16]C.W.Chang,Y.C.Lu,T.T.Wang,and E.W.G.Diau,J.Am.Chem.Soc.126,10109(2004).

    [17]H.M.D.Bandara and S.C.Burdette,Chem.Soc.Rev.41,1809(2012).

    [18]J.Azuma,N.Tamai,A.Shishido,and T.Ikeda,Chem.Phys.Lett.288,77(1998).

    [19]T.Fujino,S.Y.Arzhansev,and T.Tahara,Bull.Chem.Soc.Jpn.75,1031(2002).

    [20]T.Schultz,J.Quenneville,B.Levine,A.Toniolo,and T.J.Martinez,J.Am.Chem.Soc.125,8098(2003).

    [21]I.Conti,M.Garavelli,and G.Orlandi,J.Am.Chem.Soc.130,5216(2008).

    [22]H.Satzger,S.Sp¨orlein,C.Root,J.Wachtveitl,W.Zinth,and P.Gilch,Chem.Phys.Lett.372,216(2003).

    [23]J.Azuma,N.Tamai,A.Shishido,and T.Ikeda,Chem.Phys.Lett.288,77(1998).

    [24]S.G.Mayer,C.L.Thomsen,M.P.Philpott,and P.J.Reid,Chem.Phys.Lett.314,246(1999)

    [25]Y.Hirose,H.Yui,and T.Sawada,J.Phys.Chem.A 106,3067(2002).

    [26]Y.Wang,S.Zhang,S.Sun,K.Liu,and B.Zhang,Chin.J.Chem.Phys.26,651(2013).

    [27]Y.Wang,S.Zhang,S.Sun,K.Liu,and B.Zhang,J.Photochem.Photobiol.A 309,1(2015).

    [28]J.Bahrenburg,K.R¨ottger,R.Siewertsen,F.Renth,and F.Temps,Photochem.Photobiol.Sci.11,1210(2012).

    [29]M.Hagiri,N.Ichinose,C.Zhao,H.Horiuchi,H.Hiratsuka,and T.Nakayama,Chem.Phys.Lett.391,297(2004).

    [30]Y.J.Lee,S.I.Yang,D.S.Kang,and S.Joo,Chem.Phys.361,176(2009).

    [31]J.Wachtveitl,T.N¨aggele,B.Puell,W.Ninth,M.Kr¨uger,S.Rudolph-B¨ohner,D.Oesterhelt,and L.Moroder,J.Photochem.Photobio.A 105,283(1997).

    [32]C.Wang,H.Jau,and T.Lin,Opt.Lett.37,2730(2012).

    [33]Y.Norikane,S.Tanaka,and E.Uchida,CrystEng-Comm 18,7225(2016).

    [34]M.A.Haidekker,T.P.Brady,D.Lichlyter,and E.A.Theodorakis,Bioorg.Chem.33,415(2005).

    [35]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochter-ski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian 09,Revision A02,Wallingford,CT:Gaussian Inc.,(2009).

    [36]J.Tomasi and M.Persico,Chem.Rev.94,2027(1994).

    [37]G.L.Hallett-Tapley,C.D′Alfonso,N.L.Pacioni,C.D.McTiernan,M.Gonz′alez-B′ejar,O.Lanzalunga,E.I.Alarcona,and J.C.Scaiano,Chem.Commun.49,10073(2013).

    [38]D.H.Waldeck,Chem.Rev.91,415(1991).

    老司机影院毛片| 校园人妻丝袜中文字幕| av国产免费在线观看| 精品不卡国产一区二区三区| 久久久久性生活片| 国产在视频线精品| 国产成人a∨麻豆精品| 日本av手机在线免费观看| 一区二区三区高清视频在线| 国产伦一二天堂av在线观看| 国产免费男女视频| 国产亚洲精品av在线| 久久亚洲国产成人精品v| 国语对白做爰xxxⅹ性视频网站| 亚洲美女视频黄频| av在线老鸭窝| 我要看日韩黄色一级片| 亚洲精品日韩在线中文字幕| 国产亚洲精品av在线| 老司机福利观看| 亚洲精品国产av成人精品| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 亚洲人成网站在线播| 国产精品久久久久久久久免| 国产一级毛片在线| av黄色大香蕉| 99久久精品一区二区三区| 秋霞伦理黄片| 日韩在线高清观看一区二区三区| 国产激情偷乱视频一区二区| 精品人妻熟女av久视频| 99在线人妻在线中文字幕| 亚洲av.av天堂| 久久久久久久久大av| 美女黄网站色视频| 国产女主播在线喷水免费视频网站 | 日本免费一区二区三区高清不卡| 亚洲第一区二区三区不卡| 中文字幕免费在线视频6| 99国产精品一区二区蜜桃av| 我的女老师完整版在线观看| av在线蜜桃| kizo精华| 级片在线观看| 精品无人区乱码1区二区| 两个人视频免费观看高清| 免费av毛片视频| 日韩高清综合在线| 国产三级在线视频| 欧美日韩综合久久久久久| 亚洲av中文字字幕乱码综合| 老女人水多毛片| 男插女下体视频免费在线播放| 色哟哟·www| 成人漫画全彩无遮挡| 日韩成人av中文字幕在线观看| 性插视频无遮挡在线免费观看| 天美传媒精品一区二区| 天美传媒精品一区二区| 久久综合国产亚洲精品| 97人妻精品一区二区三区麻豆| .国产精品久久| 国产精品一区二区在线观看99 | 欧美色视频一区免费| 我要搜黄色片| 菩萨蛮人人尽说江南好唐韦庄 | 日韩精品青青久久久久久| 日韩一本色道免费dvd| 久久欧美精品欧美久久欧美| 日日啪夜夜撸| 国产精品人妻久久久久久| 99久国产av精品| 国产老妇伦熟女老妇高清| 少妇猛男粗大的猛烈进出视频 | 精品人妻一区二区三区麻豆| 99久国产av精品| 中国国产av一级| 色噜噜av男人的天堂激情| 在线观看一区二区三区| 国产成年人精品一区二区| 久久久精品94久久精品| 亚洲av熟女| videossex国产| 成人性生交大片免费视频hd| 久久99热6这里只有精品| 日韩成人av中文字幕在线观看| 日韩一本色道免费dvd| 我的老师免费观看完整版| 午夜福利在线在线| 国产不卡一卡二| 免费av毛片视频| 人妻夜夜爽99麻豆av| 欧美日韩综合久久久久久| 91久久精品电影网| 亚洲欧美精品专区久久| 成人国产麻豆网| av在线蜜桃| 色5月婷婷丁香| 大又大粗又爽又黄少妇毛片口| 晚上一个人看的免费电影| 一级毛片我不卡| 一级毛片电影观看 | 国产精品一区二区三区四区久久| 日韩一本色道免费dvd| av.在线天堂| 日韩,欧美,国产一区二区三区 | 国产一区亚洲一区在线观看| 蜜臀久久99精品久久宅男| 国产av码专区亚洲av| 久久精品91蜜桃| 欧美一区二区精品小视频在线| 亚洲激情五月婷婷啪啪| 91aial.com中文字幕在线观看| 99久久精品热视频| 身体一侧抽搐| 91狼人影院| kizo精华| 亚洲,欧美,日韩| 国产熟女欧美一区二区| 久久久久久九九精品二区国产| 成人欧美大片| 国产日韩欧美在线精品| 两性午夜刺激爽爽歪歪视频在线观看| 一个人看的www免费观看视频| 欧美日韩一区二区视频在线观看视频在线 | 天美传媒精品一区二区| 亚洲精品色激情综合| 久久久久精品久久久久真实原创| 人人妻人人澡欧美一区二区| 久久久久久九九精品二区国产| 精品国产露脸久久av麻豆 | 亚洲欧美清纯卡通| 丝袜美腿在线中文| 中文字幕av在线有码专区| 久久精品国产亚洲av天美| 成人二区视频| 国产乱来视频区| 51国产日韩欧美| 亚洲国产色片| 久久国内精品自在自线图片| 欧美xxxx黑人xx丫x性爽| 岛国在线免费视频观看| 91久久精品国产一区二区三区| 听说在线观看完整版免费高清| 亚洲最大成人av| 高清日韩中文字幕在线| 亚洲精品乱久久久久久| 99九九线精品视频在线观看视频| 最后的刺客免费高清国语| 成人鲁丝片一二三区免费| 级片在线观看| 成人高潮视频无遮挡免费网站| 成人毛片a级毛片在线播放| 日日撸夜夜添| 久久久久久伊人网av| 黄片wwwwww| 免费观看a级毛片全部| 色噜噜av男人的天堂激情| 国产成人福利小说| 日日摸夜夜添夜夜爱| 乱系列少妇在线播放| 高清在线视频一区二区三区 | 中文资源天堂在线| 国产精品不卡视频一区二区| 欧美日韩综合久久久久久| 国产av在哪里看| 日韩三级伦理在线观看| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 免费av毛片视频| 日韩大片免费观看网站 | av在线天堂中文字幕| 久久久精品欧美日韩精品| 91久久精品国产一区二区三区| 欧美性猛交黑人性爽| 综合色av麻豆| 欧美一区二区亚洲| 欧美性猛交╳xxx乱大交人| 欧美性猛交╳xxx乱大交人| 免费大片18禁| 成人午夜高清在线视频| 91精品伊人久久大香线蕉| 国产精品久久视频播放| 国产精品久久久久久av不卡| 99久久无色码亚洲精品果冻| 国模一区二区三区四区视频| 深爱激情五月婷婷| 欧美性猛交黑人性爽| 天天躁日日操中文字幕| 国产白丝娇喘喷水9色精品| 热99在线观看视频| 淫秽高清视频在线观看| 国产一区二区在线av高清观看| av国产免费在线观看| av免费观看日本| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 久久精品熟女亚洲av麻豆精品 | 中国国产av一级| 啦啦啦啦在线视频资源| 国内精品一区二区在线观看| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 国产男人的电影天堂91| 韩国高清视频一区二区三区| 中文亚洲av片在线观看爽| 亚洲国产欧美人成| 亚洲图色成人| 国产三级中文精品| 亚洲va在线va天堂va国产| 看片在线看免费视频| av免费观看日本| 亚洲精品影视一区二区三区av| 国产探花在线观看一区二区| 久久精品国产自在天天线| 禁无遮挡网站| 国产毛片a区久久久久| av.在线天堂| 日韩欧美国产在线观看| 一二三四中文在线观看免费高清| 亚洲欧美日韩无卡精品| 2022亚洲国产成人精品| 久久精品91蜜桃| 亚洲在久久综合| 亚洲欧美成人精品一区二区| 欧美97在线视频| 久久久久性生活片| 丰满少妇做爰视频| 丰满乱子伦码专区| 欧美日韩精品成人综合77777| 成人高潮视频无遮挡免费网站| 特级一级黄色大片| 亚洲不卡免费看| 中文字幕亚洲精品专区| 亚洲不卡免费看| 国产又色又爽无遮挡免| 两性午夜刺激爽爽歪歪视频在线观看| 免费av不卡在线播放| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 日本黄色片子视频| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 亚洲人成网站在线观看播放| 在线免费观看的www视频| 女人被狂操c到高潮| av.在线天堂| 嫩草影院新地址| 一级爰片在线观看| 免费播放大片免费观看视频在线观看 | 亚洲国产最新在线播放| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 亚洲18禁久久av| 嘟嘟电影网在线观看| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 欧美97在线视频| 亚洲欧洲国产日韩| 成人二区视频| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 免费av不卡在线播放| 成人漫画全彩无遮挡| 欧美成人午夜免费资源| 国产真实伦视频高清在线观看| 男人的好看免费观看在线视频| 欧美+日韩+精品| 国产男人的电影天堂91| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线av高清观看| 高清在线视频一区二区三区 | 国产片特级美女逼逼视频| 亚洲色图av天堂| 国产精品精品国产色婷婷| 男女那种视频在线观看| 亚洲综合色惰| 国产精品久久电影中文字幕| 久久国产乱子免费精品| 免费在线观看成人毛片| 国产乱人视频| 精品人妻熟女av久视频| 亚洲中文字幕一区二区三区有码在线看| 日日摸夜夜添夜夜爱| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| av黄色大香蕉| 亚洲欧洲国产日韩| 国产91av在线免费观看| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 国内精品美女久久久久久| 天天躁日日操中文字幕| 国产精品一区二区三区四区免费观看| 亚洲av一区综合| 啦啦啦韩国在线观看视频| 亚洲综合色惰| 精品人妻一区二区三区麻豆| 国产伦精品一区二区三区视频9| 麻豆av噜噜一区二区三区| av在线蜜桃| 能在线免费看毛片的网站| 欧美激情国产日韩精品一区| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 日本wwww免费看| 亚洲精品456在线播放app| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 三级国产精品欧美在线观看| 大香蕉97超碰在线| 久久精品91蜜桃| 久久午夜福利片| 亚洲欧美日韩东京热| 中国国产av一级| 免费一级毛片在线播放高清视频| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 精品久久久久久电影网 | 国产成人免费观看mmmm| 高清在线视频一区二区三区 | 国产精品国产三级国产专区5o | 欧美极品一区二区三区四区| videos熟女内射| av播播在线观看一区| 亚洲人与动物交配视频| 国产三级中文精品| 99热全是精品| 国产精品福利在线免费观看| 成年免费大片在线观看| 国产精品福利在线免费观看| 免费看av在线观看网站| 黄片无遮挡物在线观看| 成人鲁丝片一二三区免费| 男的添女的下面高潮视频| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 久久综合国产亚洲精品| 亚洲,欧美,日韩| 深爱激情五月婷婷| 欧美+日韩+精品| 欧美性感艳星| 亚洲性久久影院| 日韩强制内射视频| 亚洲性久久影院| 一级二级三级毛片免费看| 人人妻人人看人人澡| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产高清国产精品国产三级 | 69人妻影院| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| 美女被艹到高潮喷水动态| 久久精品影院6| 亚洲在线自拍视频| 亚洲av成人av| 一级毛片aaaaaa免费看小| 亚洲av成人av| 欧美变态另类bdsm刘玥| 欧美性感艳星| 黄色配什么色好看| 91久久精品国产一区二区成人| 亚洲欧美日韩东京热| 一夜夜www| 看免费成人av毛片| 美女内射精品一级片tv| 小说图片视频综合网站| 男插女下体视频免费在线播放| 国产av码专区亚洲av| 午夜免费激情av| 日本免费在线观看一区| 欧美色视频一区免费| 一区二区三区高清视频在线| 欧美xxxx性猛交bbbb| 波多野结衣高清无吗| 日韩一区二区三区影片| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 91aial.com中文字幕在线观看| 成年免费大片在线观看| 久久精品国产自在天天线| 内地一区二区视频在线| 国产精品,欧美在线| videos熟女内射| 亚州av有码| 国产久久久一区二区三区| av在线观看视频网站免费| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 少妇人妻精品综合一区二区| 国产精品国产三级国产专区5o | 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 亚洲国产欧美人成| 一级黄片播放器| 久久亚洲国产成人精品v| 亚洲国产精品专区欧美| 国产美女午夜福利| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 一区二区三区高清视频在线| 日日摸夜夜添夜夜爱| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄 | 中文天堂在线官网| 性插视频无遮挡在线免费观看| 天堂av国产一区二区熟女人妻| 热99在线观看视频| 少妇熟女欧美另类| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| 毛片女人毛片| 大香蕉久久网| 九九热线精品视视频播放| 国产免费又黄又爽又色| 日本与韩国留学比较| 性插视频无遮挡在线免费观看| 黄色日韩在线| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站 | 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 国产视频内射| 色噜噜av男人的天堂激情| 三级国产精品片| 美女脱内裤让男人舔精品视频| 亚洲,欧美,日韩| 久久人妻av系列| 欧美精品一区二区大全| 亚洲自偷自拍三级| 乱系列少妇在线播放| 看黄色毛片网站| 婷婷六月久久综合丁香| 性色avwww在线观看| 国产一级毛片在线| 精品少妇黑人巨大在线播放 | 91在线精品国自产拍蜜月| a级毛色黄片| 久久久欧美国产精品| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩无卡精品| 18禁在线无遮挡免费观看视频| 看免费成人av毛片| 18禁在线播放成人免费| 免费一级毛片在线播放高清视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品国产精品| 日韩中字成人| 国产亚洲一区二区精品| 国产极品天堂在线| 国产精品一区www在线观看| 边亲边吃奶的免费视频| 1024手机看黄色片| 日本免费在线观看一区| 午夜老司机福利剧场| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区三区四区久久| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品成人久久久久久| 国产在线一区二区三区精 | 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 伦精品一区二区三区| av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看 | 久久99精品国语久久久| 亚洲美女搞黄在线观看| 亚洲内射少妇av| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 又粗又爽又猛毛片免费看| 极品教师在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲无线观看免费| 一区二区三区免费毛片| 国产乱人视频| 亚洲美女搞黄在线观看| 国产一区二区亚洲精品在线观看| a级一级毛片免费在线观看| 精品久久久久久久久av| 99热精品在线国产| 五月玫瑰六月丁香| 国产av一区在线观看免费| 日韩精品有码人妻一区| 三级国产精品片| 大话2 男鬼变身卡| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 最近的中文字幕免费完整| 精品国产露脸久久av麻豆 | 少妇被粗大猛烈的视频| 免费黄色在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 禁无遮挡网站| av福利片在线观看| 久久综合国产亚洲精品| 欧美97在线视频| 国产精品一区二区三区四区久久| 久久精品国产鲁丝片午夜精品| 男女下面进入的视频免费午夜| 超碰97精品在线观看| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 日本色播在线视频| 建设人人有责人人尽责人人享有的 | 高清视频免费观看一区二区 | 99热网站在线观看| av女优亚洲男人天堂| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 在线a可以看的网站| 久久国内精品自在自线图片| ponron亚洲| 色视频www国产| 在线观看一区二区三区| av线在线观看网站| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 精品久久久久久久久av| 少妇的逼水好多| 国产精品精品国产色婷婷| 亚洲性久久影院| 搡老妇女老女人老熟妇| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 天天一区二区日本电影三级| 性插视频无遮挡在线免费观看| 小说图片视频综合网站| 亚洲四区av| av在线蜜桃| 秋霞在线观看毛片| 91av网一区二区| 亚洲精品一区蜜桃| 亚洲av福利一区| 国产又色又爽无遮挡免| 日本免费a在线| 免费无遮挡裸体视频| 成人无遮挡网站| 日本免费在线观看一区| 久99久视频精品免费| av播播在线观看一区| 九九爱精品视频在线观看| 国产精品一及| 欧美潮喷喷水| 免费大片18禁| 亚洲经典国产精华液单| 美女内射精品一级片tv| 天堂中文最新版在线下载 | 伦理电影大哥的女人| 久久国内精品自在自线图片| 欧美精品一区二区大全| 久久久国产成人精品二区| 亚洲av免费在线观看| 国产又色又爽无遮挡免| 日韩av在线大香蕉| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 建设人人有责人人尽责人人享有的 | 1024手机看黄色片| 久久久久久九九精品二区国产| 久久久国产成人免费| 亚洲精品久久久久久婷婷小说 | 国产伦在线观看视频一区| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 51国产日韩欧美| av免费观看日本| 国产又黄又爽又无遮挡在线| 国产亚洲午夜精品一区二区久久 | 亚洲欧美中文字幕日韩二区| 黄片无遮挡物在线观看| 亚洲图色成人| 床上黄色一级片| 精品少妇黑人巨大在线播放 | 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| 国产在线一区二区三区精 | 久久人人爽人人片av| 欧美日韩在线观看h| 别揉我奶头 嗯啊视频| 九色成人免费人妻av| 久久久久免费精品人妻一区二区| 免费搜索国产男女视频| 三级国产精品欧美在线观看| 国产亚洲一区二区精品| 99久久精品热视频| 免费人成在线观看视频色| 国产亚洲最大av|