• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Imaging HNCO Photodissociation at 201 nm:State-to-State Correlations between CO(X1Σ+)and NH(a1?)

    2019-01-10 01:49:48ZhiguoZhngMinXinYnningWuShutoZhoYijiTngYngChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年6期

    Zhi-guo Zhng,Min Xin,Yn-ning Wu,Shu-to Zho,Yi-ji Tng,Yng Chen

    a.School of Physics and Electronic Engineering,Fuyang Normal University,Fuyang 236041,China

    b.Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    The NH(a1?)+CO(X1Σ+)product channel for the photodissociation of isocyanic acid(HNCO)on the first excited singlet state S1has been investigated by means of time-sliced ion velocity map imaging technique at photolysis wavelengths around 201 nm.The CO product was detected through(2+1)resonance enhanced multiphoton ionization(REMPI).Images were obtained for CO products formed in the ground and vibrational excited state(v=0 and v=1).The energy distributions and product angular distributions were obtained from the CO velocity imaging.The correlated NH(a1?)rovibrational state distributions were determined.The vibrational branching ratio of1NH(v=1/v=0)increases as the rotational state of CO(v=0)increases initially and decreases afterwards,which indicates a special state-tostate correlation between the 1NH and CO products.About half of the available energy was partitioned into the translational degree of freedom.The negative anisotropy parameter β indicates that it is a vertical direct dissociation process.

    Key words:HNCO,Ion velocity map imaging,Energy distributions

    I.INTRODUCTION

    As a simple four atom molecule,isocyanic acid(HNCO)has received considerable attention due to its significance for life and major constituents of chemical species in biology and chemistry.HNCO and its aqueous anion isocyanate have been shown to be toxic and linked to human health such as rheumatoid arthritis,cataracts and atherosclerosis through carbamylation reactions[1].Isocyanic acid is a product of various forms of combustion such as cigarette smoking,automobile exhaust,biomass burning,and cooking[1,2].Dixon et al.and Rabalais et al.have measured the ultraviolet absorption spectrum(180?280 nm)of HNCO[3?5],which has been assigned to an S1(1A′′)←S0(1A′)transition.The spectrum is difluse at wavelengths shorter than 265 nm and is unstructured below 244 nm.Photodissociation dynamics of HNCO has been the subject of wide investigations,both theoretically and experimentally,in the past few decades[6?33].The photodissociation dynamics of HNCO is quite complex.There are three low-lying electronic states relevant to the dissociation process.The main photodissociation channels are summarized below:

    For convenience,NH(a1?)and NH(X3Σ?)are denoted by1NH and3NH in the following sections.

    The spin-forbidden channel(1)has been studied by Reisler and co-workers[18,24]. The channel is observed at a wide range of excitation wavelengths(280?217 nm).By ion imaging technique,Reisler et al.probed CO product around 230 nm.Their results showed that the CO originating from channel(1)has isotropic angular distribution.The isotropic angular distributions of CO imply that the lifetime of the intermediate state exceeds 5 ps from S1to T1.They proposed that the most likely dissociation pathway to channel(1)is S1→S0→T1.The quantum yield is relatively small at a wide range of excitation wavelengths,but the channel is still the main dissociation channel in the range just above the opening of channel(2).

    Dissociation to spin-allowed channel(2)has attracted much attention.Spiglanin and co-workers[7]probed NCO product by laser-induced fluorescence(LIF)technique.Zhang et al.[14]researched this channel at 193 nm photolysis energy via the high-n Rydberg H atom time-of-flight(TOF)spectroscopy.Their results showed that the translation energy release peaked near the maximum available energy and accounted for about 70%of the total energy.The NCO product was extensive bending excited and an anisotropic angular distribution of β=?0.85 was observed.It suggested that the products of channel(2)accrued via direct dissociation on a repulsive potential energy surface.Crim et al.[11?13,31,32]studied this channel by LIF technique.Their study demonstrated that approximately 65%of the total available energy appeared in relative translation of the photoproducts near the channel(2)threshold,while about 30%went into vibration(dominated by the bending excitation of NCO)and 5%into rotation of NCO photoproducts.Furthermore,Crim’s group performed a series of experiments to investigate mode-selective dissociation dynamics to channel(2).Reisler and co-workers[15,17,24]studied this channel at excitation wavelengths in the range of 217?260 nm.They deduced that channel(2)dissociation proceeded not directly on S1,but rather via IC(internal conversion)to S0followed by decomposition on S0without a barrier near its threshold.The barrier on S1state to channel(2)direct dissociation was found to be at least 8140 cm?1.Using the hydrogen atom Rydberg tagging TOF technique,Yu and co-workers[28]reinvestigated this channel at excitation wavelengths in the region of 200?240 nm.They observed two competitive dissociation pathways.One was the indirect dissociation on the S0surface,following IC from S1to S0,which is consistent with Reisler’s results.The other was the direct dissociation on the S1surface.As the photon energy increased,the direct dissociation pathway became much more important.

    Photodissociation to spin-allowed channel(3)has been researched in the recent years.Fujimoto and coworkers[6]probed CO product with an average vibrational energy about 4.6 kcal/mol at 193 nm.Spiglanin and co-workers[7?10]examined the internal state distributions of1NH and CO following photodissociation of HNCO at several wavelengths between 193 nm and 230 nm.Their results showed that the rotational state distribution of the CO was hot,but the1NH rotational state distribution was cold.Reisler et al.[15,17,18,23?25]performed a series of experiments to investigate channel(3)at excitation wavelengths in the range of 217?230 nm.Their results indicated that channel(3)dissociation proceeded via predissociation on S0surface following IC from S1to S0,but after exceeding a small barrier of(470±60)cm?1,direct dissociation on S1surface commenced and quickly dominated.Recently,we studied channel(3)by sliced velocity map imaging technique.The1NH photoproduct was stateselectively probed via resonance enhanced multiphoton ionization(REMPI).We found that the rotational state distribution of CO(v)was bimodal.By full-dimensional theoretical calculation,Bonnet and co-workers reproduced the bimodality of CO[33].

    In this work,we further investigate channel(3)of HNCO photodissociation dynamics at 201 nm by the sliced velocity map ion imaging method probing the CO photoproduct.From the image of CO photoproduct,the1NH internal state populations,photoproduct total kinetic energy distributions,and the angular distributions are obtained.

    II.EXPERIMENTS

    The sliced velocity map ion imaging arrangement has been described in detail elsewhere[34,35],so a brief description of the experimental process will be given here.The repetition rate of the whole experiment is 10 Hz.A 2%mixture of HNCO and He with a stagnation pressure of 1 bar is expanded into vacuum through a pulsed valve(General valve series 9)with a 0.5 mm diameter nozzle orifice.About 22 mm downstream from the nozzle,the pulsed free jet expansion is collimated by a 1 mm diameter aperture skimmer and reaches the main chamber,where the HNCO/He beam is crossed at right angles by the focused photolysis and probe lasers pulses.

    The focused photolysis laser(0.5 mJ per pulse)is produced by the tripled output of a tunable dye laser,which is pumped by the second harmonic of a Nd:YAG laser.The CO photofragment is detected about 20 ns later by a focused probe laser beam(0.3 mJ per pulse)generated by doubling the output of a tunable dye laser,which is pumped by the third harmonic of a second Nd:YAG laser.The CO products are interrogated via the B1Σ+←←X1Σ+(2+1)REMPI process around 230 nm.The linearly polarized direction of the photolysis light is parallel to the detector plane,while that of the probe light is set to be perpendicular to the detector plane.

    The resulting CO ions are accelerated by the focusing electric fields of ion optics and pass through a 500 mm long time-of-flight tube before hitting a dual 40 mm diameter Chevron-type microchannel plates(MCP)coupled to a phosphor screen(P-47).A fast high-voltage switch is used to gate the central slice of the ion products at a specific mass.The typical pulse width is about 50 ns.The resulting electron avalanche strikes a P-47 phosphor screen,thereby creating the ion image,which is captured by a charge-coupled device(CCD)camera(ImagerPro2 M 640×480 pixels,LaVision)and transferred to a computer on an every shot basis for event counting[36]and data analysis.The final images are accumulated over 2×104laser shots or more,depending on the signal-to-noise ratio.The timing of the pulsed valve,the photolysis and probe lasers,and the gate pulse applied to the MCP detector are controlled by using two multichannel digital delay generators(DG645,SRS).

    III.RESULTS AND DISCUSSION

    FIG.1 Raw sliced images of CO(v=0|j)products after photodissociation of HNCO at 201 nm.The double arrow indicates the polarization direction of the photodissociation light.

    The CO product ion images of HNCO photodissociation were measured at 201 nm.The images were obtained by accumulating the CO+signals with probe laser tuned to the Q branch of B1Σ+←←X1Σ+transition of the CO product around 230 nm.All measured signals appearing in the images are pump-probe dependent.The background was taken with the photolysis light and molecular beam on.FIG.1 displays typical CO(v=0)sliced images after photodissociation of HNCO at 201 nm.The vertical red arrow indicates the polarization direction of the photolysis light.The polarization direction of the probe light is perpendicular to the image plane and the polarization direction of the photolysis light.No significant eflects are observed in the ion images when the polarization direction of the probe light is changed.As seen in FIG.1,two anisotropic rings are clearly displayed in the CO(v=0)sliced images.The outer ring corresponds to vibrational ground state1NH(v=0|j)partner product,while the inner ring corresponds to the vibrationally excited1NH(v=1|j)partner product.

    From the raw sliced images,the CO speed distributions were extracted and converted to the total translational energy distributions of1NH+CO.The energy information of the whole system is shown as the following:

    where Ehνdenotes the energy of photolysis light,D0represents the dissociation threshold energy of channel(3),ETis the photoproduct total kinetic energy,Eint(1NH)and Eint(CO)are the internal energy of1NH and CO products.

    FIG.2 Product total kinetic energy distributions for CO(v=0|j)after the photodissociation of HNCO at 201 nm.

    The corresponding center-of-mass total kinetic energy distributions for the individual rovibrational states of CO(v=0|j)are shown in FIG.2.It is obvious that FIG.2 reflects the rovibrational state distributions of the correlated1NH product.Two vibrational peaks(v=0 and 1)of1NH are clearly resolved.It is interesting that the proportion of vibrationally excited1NH(v=1)does not decrease monotonously with the increase of CO rotational energy.We have done a more in-depth analysis for this.

    To extract the vibrational branching ratio(v=1/v=0)of1NH products,a qualitative fitting of the total kinetic energy distributions was carried out.FIG.3 displays the correlation between vibrational branching ratio(v=1/v=0)of1NH products and rotational states of CO(v=0).As can be seen in the graph,the vibrational branching ratio(v=1/v=0)of1NH products increasesfirst and then decreases as the rotational excitation of CO(v=0)increases.At j=23 of CO(v=0),it reaches the maximum value.The vibrational excitation of the1NH products is not simply anti-correlated to the rotational excitation of CO(v=0),which indicates a special stateto-state correlation between the1NH and CO products.

    FIG.3Vibrational branching ratio(v=1/v=0)of1NH products for diflerent rotational states of CO(v=0).

    FIG.4 Raw sliced images of CO(v=1|j)products after photodissociation of HNCO at 201 nm.The double arrow indicates the polarization direction of the photodissociation light.

    FIG.4 shows vibrationally excited CO(v=1|j)sliced images of HNCO photodissociation at 201 nm.From the images,the ring sizes of vibrationally excited CO(v=1|j)become smaller compared with that of CO(v=0|j).For j=21 of CO(v=1),the intensity of the inner ring is very weak.FIG.5 displays the corresponding total kinetic energy distributions for the individual rovibrational states of CO(v=1|j).It can be seen that the correlated1NH products are mainly distributed in the vibrational ground state.The rotational excitation of1NH decreases as the CO rotational excitation increases.This result shows that the rotational excitation of the1NH products is anti-correlated to the rotational excitation of CO.

    FIG.5 Product total kinetic energy distributions for CO(v=1|j)after the photodissociation of HNCO at 201 nm.

    Our previous studies[29,30]found that the rotational state distributions of CO are bimodal,which is further confirmed by Bonnet and co-workers[33]via theoretical calculation.In this study,however,we did not find the bimodal rotational distribution of1NH from the image of CO product.It may be that the rotational energy of1NH is relatively low and it is not easy to observe the bimodal phenomenon.As seen in FIG.2 and FIG.5,the1NH products are mainly distributed in the low rotational states(j≈2?12),which is in consistence with the results of Spiglanin et al.[9]and Reisler et al.[15].

    Based on total kinetic energy distributions,excitation energy and bond dissociation energy,we obtained the ratio of the average total kinetic energy to the available energy,[ET]/Eavl,as shown in FIG.6(a)and(b).For the CO(v=0|j)product,about 50%of the available energy is partitioned into the translational degree of freedom.For the CO(v=1|j)product,about 40%of the available energy is partitioned into the translational degree of freedom.

    The angular distributions were obtained by integrating the imaging signals over the relevant radius region.FIG.6(c)and(d)display the corresponding anisotropy parameters.As seen in FIG.6(c),the anisotropy parameters are near?0.8 and ?0.6 for1NH(v=0 and v=1)+CO(v=0).The1NH+CO(v=1)products display a similar anisotropic angular distribution as shown in FIG.6(d). However,the1NH(v=1)+CO(v=1)anisotropy parameters are as low as?0.4,the low anisotropy should be due to the weak signal-to-noise ratio.The negative anisotropic angular distribution usually indicates that the dissociation process is fast.

    FIG.6 Ratio of the average total kinetic energy to the available energy for(a)the CO(v=0|j)product and(b)the CO(v=1|j)product.Anisotropy parameter for individual1NH vibrational state correlated to(c)CO(v=0|j)and(d)CO(v=1|j).

    Previous studies have shown that there are two diflerent dissociation pathways leading to1NH+CO channel[24].Near the threshold of channel(3),excited HNCO dissociates on S0surface by IC from S1to S0.At higher excitation energy,the barrier on S1surface to channel(3)will be exceeded and direct dissociation on S1prevails.It is obvious that the barrier on S1surface to channel(3)is exceeded at 201 nm.Under this condition,S1surface has a strong repulsive gradient along the C?N bond.So the photodissociation of HNCO should be a fast direct dissociation process at 201 nm.The negative anisotropic angular distribution further confirms this conclusion.

    IV.CONCLUSION

    The photodissociation dynamics of isocyanic acid for1NH+CO channel has been investigated by means of time-sliced velocity map imaging technique at photolysis wavelengths around 201 nm.The CO product has been detected by(2+1)REMPI.From analysis of the product total kinetic energy distributions,the correlated1NH rovibrational state distributions for CO(v=0 and v=1)products are obtained.The vibrational branching ratio of1NH(v=1/v=0)increases first and then goes down as the rotational state of CO(v=0)increases,which indicates a special state-to-state correlation between the binary1NH and CO products.Because of the low rotational energy of1NH,we do not observe the bimodal rotational distribution of1NH from the image of CO product.The negative anisotropy parameter β indicates that it is a vertical direct dissociation process at 201 nm.These results shown here provide a sensitive testing basis for the study of HNCO photodissociation dynamics.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Science Foundation of Anhui Province(No.1608085QA19),the National Science Foundation of China(No.11604052),the Natural Science Research Project of Education Department of Anhui Province(No.2014KJ020),the PhD Research Startup Foundation of Fuyang Normal University(No.FSB201501005),the Quality Engineering Project of Anhui Province(No.2017jyxm0277)and the Open Foundation of State Key Laboratory(Nos.SKLMRD-K201611,SKLMRD-K201711 and SKLMRD-K201810).

    [1]J.J.B.Wentzell,J.Liggio,S.M.Li,A.Vlasenko,R.Staebler,G.Lu,M.J.Poitras,T.Chan,and J.R.Brook,Environ.Sci.Technol.47,7663(2013).

    [2]J.M.Roberts,P.R.Veres,A.K.Cochran,C.Warneke,I.R.Burling,R.J.Yokelson,B.Lerner,J.B.Gilman,W.C.Kuster,R.Fall,and J.De Gouw,Proc.Natl.Acad.Sci.USA 108,17234(2011).

    [3]R.N.Dixon and G.H.Kirby,Trans.Faraday Soc.64,2002(1968).

    [4]J.W.Rabalais,J.R.Mcdonald,and S.P.Mcglynn,J.Chem.Phys.51,5103(1969).

    [5]J.W.Rabalais,J.R.McDonald,V.Scherr,and S.P.McGlvnn,Chem.Rev.71,73(1970).

    [6]G.T.Fujimoto,M.E.Umstead,and M.C.Lin,Chem.Phys.65,197(1982).

    [7]T.A.Spiglanin,R.A.Perry,and D.W.Chandler,J.Phys.Chem.90,6184(1986).

    [8]T.A.Spiglanin and D.W.Chandler,J.Chem.Phys.87,1577(1987).

    [9]T.A.Spiglanin,R.A.Perry,and D.W.Chandler,J.Chem.Phys.87,1568(1987).

    [10]T.A.Spiglanin and D.W.Chandler,Chem.Phys.Lett.141,428(1987).

    [11]S.S.Brown,C.M.Cheatum,D.A.Fitzwater,and F.F.Crim,J.Chem.Phys.105,10911(1996).

    [12]S.S.Brown,H.L.Berghout,and F.F.Crim,J.Chem.Phys.105,8103(1996).

    [13]S.S.Brown,H.L.Berghout,and F.F.Crim,J.Phys.Chem.100,7948(1996).

    [14]J.S.Zhang,M.Dulligan,and C.Wittig,J.Phys.Chem.99,7446(1995).

    [15]A.Sanov,T.DrozGeorget,M.Zyrianov,and H.Reisler,J.Chem.Phys.106,7013(1997).

    [16]J.J.Klossika,H.Flothmann,C.Beck,R.Schinke,and K.Yamashita,Chem.Phys.Lett.276,325(1997).

    [17]M.Zyrianov,T.DrozGeorget,A.Sanov,and H.Reisler,J.Chem.Phys.105,8111(1996).

    [18]M.Zyrianov,T.H.DrozGeorget,and H.Reisler,J.Chem.Phys.106,7454(1997).

    [19]M.J.Cofley,H.L.Berghout,E.Woods,and F.F.Crim,J.Chem.Phys.110,10850(1999).

    [20]J.E.Stevens,Q.Cui,and K.Morokuma,J.Chem.Phys.108,1452(1998).

    [21]J.J.Klossika,H.Flothmann,R.Schinke,and M.Bittererova,Chem.Phys.Lett.314,182(1999).

    [22]J.J.Klossika and R.Schinke,J.Chem.Phys.111,5882(1999).

    [23]M.Zyrianov,A.Sanov,T.Droz-Georget,and H.Reisler,J.Chem.Phys.110,10774(1999).

    [24]M.Zyrianov,T.Droz-Georget,and H.Reisler,J.Chem.Phys.110,2059(1999).

    [25]D.Conroy,V.Aristov,L.Feng,A.Sanov,and H.Reisler,Acc.Chem.Res.34,625(2001).

    [26]R.Schinke and M.Bittererova,Chem.Phys.Lett.332,611(2000).

    [27]H.Wang,S.L.Liu,J.Liu,F.Y.Wang,B.Jiang,and X.M.Yang,Chin.J.Chem.Phys.20,388(2007).

    [28]S.R.Yu,S.Su,Y.Dorenkamp,A.M.Wodtke,D.X.Dai,K.J.Yuan,and X.M.Yang,J.Phys.Chem.A 117,11673(2013).

    [29]Z.G.Zhang,Z.Chen,C.S.Huang,Y.Chen,D.X.Dai,D.H.Parker,and X.M.Yang,J.Phys.Chem.A 118,2413(2014).

    [30]Z.G.Zhang,M.Xin,S.T.Zhao,and Y.Chen,Chin.J.Chem.Phys.31,27(2018).

    [31]S.S.Brown,H.L.Berghout,and F.F.Crim,J.Chem.Phys.102,8440(1995).

    [32]S.S.Brown,R.B.Metz,H.L.Berghout,and F.F.Crim,J.Chem.Phys.105,6293(1996).

    [33]L.Bonnet,R.Linguerri,M.Hochlaf,O.Yazidi,P.Halvick,and J.S.Francisco,J.Phys.Chem.Lett.8,2420(2017).

    [34]Z.C.Chen,A.T.J.B.Eppink,B.Jiang,G.C.Groenenboom,X.M.Yang,and D.H.Parker,Phys.Chem.Chem.Phys.13,2350(2011).

    [35]Z.G.Zhang,Z.Chen,C.M.Zhang,Y.L.Jin,Q.Zhang,Y.Chen,C.S.Huang,and X.M.Yang,Chin.J.Chem.Phys.27,249(2014).

    [36]L.Dinu,A.T.J.B.Eppink,F.Rosca-Pruna,H.L.Oflerhaus,W.J.van der Zande,and M.J.J.Vrakking,Rev.Sci.Instrum.73,4206(2002).

    69精品国产乱码久久久| 精品久久久久久成人av| 亚洲情色 制服丝袜| 不卡av一区二区三区| 老汉色∧v一级毛片| 国产真人三级小视频在线观看| 国产精品一区二区三区四区久久 | 9热在线视频观看99| 午夜视频精品福利| 亚洲av成人av| av福利片在线| 亚洲精品久久午夜乱码| 国产高清视频在线播放一区| 欧美激情极品国产一区二区三区| 在线观看日韩欧美| 可以在线观看毛片的网站| 一二三四在线观看免费中文在| 亚洲国产精品sss在线观看 | 国产精品一区二区免费欧美| 亚洲精品国产区一区二| 18禁国产床啪视频网站| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 狠狠狠狠99中文字幕| 国产97色在线日韩免费| 久久精品亚洲精品国产色婷小说| 国产精品影院久久| 国产有黄有色有爽视频| 亚洲第一欧美日韩一区二区三区| 国产伦一二天堂av在线观看| 欧美在线黄色| 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| 国产精品国产高清国产av| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 欧美另类亚洲清纯唯美| 一边摸一边抽搐一进一出视频| 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女 | 亚洲欧美日韩无卡精品| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影| 精品乱码久久久久久99久播| 69精品国产乱码久久久| 午夜91福利影院| www.自偷自拍.com| 日韩欧美免费精品| 99久久精品国产亚洲精品| 美女福利国产在线| 亚洲专区中文字幕在线| 国产av精品麻豆| 精品国产一区二区久久| 一本大道久久a久久精品| 久久欧美精品欧美久久欧美| 午夜福利在线免费观看网站| 久久久国产成人精品二区 | 一级,二级,三级黄色视频| 亚洲avbb在线观看| 亚洲人成网站在线播放欧美日韩| 免费高清视频大片| 欧美日韩福利视频一区二区| 高潮久久久久久久久久久不卡| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 在线观看午夜福利视频| 久久国产精品人妻蜜桃| 动漫黄色视频在线观看| 色综合站精品国产| 国产成人欧美在线观看| 岛国在线观看网站| 黄色女人牲交| 成人黄色视频免费在线看| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 婷婷六月久久综合丁香| 欧美日韩视频精品一区| 韩国av一区二区三区四区| 久久久久亚洲av毛片大全| 91成年电影在线观看| x7x7x7水蜜桃| 亚洲国产精品合色在线| 亚洲成人国产一区在线观看| 99热国产这里只有精品6| 99国产精品99久久久久| 亚洲中文av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 亚洲成人精品中文字幕电影 | 亚洲精品av麻豆狂野| 12—13女人毛片做爰片一| 欧美日本中文国产一区发布| 久久这里只有精品19| 国产熟女xx| 午夜影院日韩av| 少妇裸体淫交视频免费看高清 | 999久久久国产精品视频| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 在线观看www视频免费| 88av欧美| av片东京热男人的天堂| 午夜激情av网站| 欧美黑人精品巨大| 欧美色视频一区免费| 国产激情欧美一区二区| 91成人精品电影| 成人亚洲精品一区在线观看| 亚洲avbb在线观看| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 女人精品久久久久毛片| 久久香蕉精品热| 亚洲久久久国产精品| 99精品久久久久人妻精品| 美女福利国产在线| 天天影视国产精品| 青草久久国产| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| av网站免费在线观看视频| 国产片内射在线| 超碰97精品在线观看| 国产黄a三级三级三级人| 国产成人av教育| 女人爽到高潮嗷嗷叫在线视频| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 久久人人爽av亚洲精品天堂| 亚洲精品一区av在线观看| 久久人妻熟女aⅴ| 熟女少妇亚洲综合色aaa.| 女同久久另类99精品国产91| 90打野战视频偷拍视频| 多毛熟女@视频| 亚洲中文字幕日韩| 女性生殖器流出的白浆| 精品日产1卡2卡| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 国产91精品成人一区二区三区| 如日韩欧美国产精品一区二区三区| 麻豆一二三区av精品| 国产野战对白在线观看| 一边摸一边抽搐一进一小说| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 欧美精品一区二区免费开放| av电影中文网址| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 看片在线看免费视频| 欧美av亚洲av综合av国产av| a在线观看视频网站| 窝窝影院91人妻| 最好的美女福利视频网| 日韩高清综合在线| 久久精品国产综合久久久| avwww免费| 大香蕉久久成人网| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 精品久久久久久电影网| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区 | 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 黄色成人免费大全| 香蕉丝袜av| svipshipincom国产片| 国产无遮挡羞羞视频在线观看| 淫秽高清视频在线观看| 中文字幕最新亚洲高清| 日韩精品青青久久久久久| 亚洲精品中文字幕一二三四区| 丰满人妻熟妇乱又伦精品不卡| 纯流量卡能插随身wifi吗| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 日本三级黄在线观看| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国内毛片毛片毛片毛片毛片| 久久久久久久久免费视频了| 欧美日本亚洲视频在线播放| 午夜免费激情av| 美女福利国产在线| 亚洲,欧美精品.| x7x7x7水蜜桃| 久久婷婷成人综合色麻豆| 极品教师在线免费播放| 精品国内亚洲2022精品成人| 日韩欧美一区视频在线观看| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| √禁漫天堂资源中文www| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 亚洲男人的天堂狠狠| 身体一侧抽搐| 中亚洲国语对白在线视频| 91精品国产国语对白视频| av在线播放免费不卡| 后天国语完整版免费观看| 欧美人与性动交α欧美软件| 十八禁网站免费在线| 精品欧美一区二区三区在线| 大型黄色视频在线免费观看| 中文欧美无线码| 国产熟女xx| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 国产成+人综合+亚洲专区| 国产三级在线视频| 久久九九热精品免费| 国产av一区在线观看免费| 999精品在线视频| 大型av网站在线播放| videosex国产| 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 亚洲av片天天在线观看| 日本黄色日本黄色录像| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 黑人巨大精品欧美一区二区蜜桃| 久9热在线精品视频| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| xxx96com| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 黄色成人免费大全| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 水蜜桃什么品种好| 亚洲性夜色夜夜综合| 国产精品一区二区在线不卡| 免费少妇av软件| bbb黄色大片| 久久香蕉精品热| 51午夜福利影视在线观看| 国产激情欧美一区二区| 久久精品国产亚洲av香蕉五月| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 男女之事视频高清在线观看| 窝窝影院91人妻| 一进一出好大好爽视频| 高清av免费在线| 久久欧美精品欧美久久欧美| 成年人黄色毛片网站| 亚洲av五月六月丁香网| 中文字幕人妻丝袜制服| 精品国产国语对白av| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 一级,二级,三级黄色视频| 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 成人18禁在线播放| 搡老岳熟女国产| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 国产成+人综合+亚洲专区| 精品国产美女av久久久久小说| 久久精品91无色码中文字幕| 国产99久久九九免费精品| 午夜影院日韩av| 亚洲欧美一区二区三区黑人| 久久久国产一区二区| 老司机在亚洲福利影院| 国产91精品成人一区二区三区| 国产熟女午夜一区二区三区| 精品卡一卡二卡四卡免费| 搡老岳熟女国产| 久久久久国内视频| 日韩大尺度精品在线看网址 | 无遮挡黄片免费观看| 亚洲黑人精品在线| 人人澡人人妻人| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 成人特级黄色片久久久久久久| 国产精品日韩av在线免费观看 | 99久久国产精品久久久| 高清欧美精品videossex| 精品人妻1区二区| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| 人成视频在线观看免费观看| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区激情| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 亚洲国产欧美网| 啦啦啦免费观看视频1| 欧美日韩乱码在线| svipshipincom国产片| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 香蕉久久夜色| 国产精品免费一区二区三区在线| 午夜老司机福利片| 老司机在亚洲福利影院| 国产精品日韩av在线免费观看 | 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 国产精品自产拍在线观看55亚洲| 免费久久久久久久精品成人欧美视频| 激情视频va一区二区三区| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 一夜夜www| 黄色怎么调成土黄色| 一级a爱片免费观看的视频| 18禁裸乳无遮挡免费网站照片 | 亚洲av成人不卡在线观看播放网| 日韩免费av在线播放| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 波多野结衣高清无吗| 亚洲中文av在线| 久久精品人人爽人人爽视色| 国产成人啪精品午夜网站| 亚洲自拍偷在线| 欧美乱妇无乱码| 中文字幕精品免费在线观看视频| 天堂动漫精品| 午夜久久久在线观看| 国产精品影院久久| 制服诱惑二区| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 波多野结衣一区麻豆| 国产精品免费视频内射| 国产精品av久久久久免费| 人妻丰满熟妇av一区二区三区| 天天影视国产精品| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 国产精品二区激情视频| 久久久久久亚洲精品国产蜜桃av| 午夜激情av网站| 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 999久久久精品免费观看国产| 免费在线观看亚洲国产| 国产精品免费视频内射| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 亚洲专区国产一区二区| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 国产三级在线视频| 成年人黄色毛片网站| 一本大道久久a久久精品| 少妇裸体淫交视频免费看高清 | 久久狼人影院| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产 | 亚洲狠狠婷婷综合久久图片| 精品久久久精品久久久| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 日韩高清综合在线| 黄色 视频免费看| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 在线av久久热| 国产高清激情床上av| 欧美中文综合在线视频| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 19禁男女啪啪无遮挡网站| 99国产精品99久久久久| 少妇裸体淫交视频免费看高清 | 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看 | 国产精品一区二区精品视频观看| 大香蕉久久成人网| 日韩免费av在线播放| 精品无人区乱码1区二区| 午夜影院日韩av| 精品午夜福利视频在线观看一区| 国产精品国产av在线观看| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 在线观看舔阴道视频| 51午夜福利影视在线观看| 亚洲色图av天堂| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸 | 黄色成人免费大全| 欧美色视频一区免费| 成人国产一区最新在线观看| 久久精品亚洲精品国产色婷小说| 99国产综合亚洲精品| 女性被躁到高潮视频| cao死你这个sao货| 欧美成人午夜精品| 亚洲人成电影免费在线| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 露出奶头的视频| 国产亚洲精品一区二区www| 51午夜福利影视在线观看| 国产精品1区2区在线观看.| 青草久久国产| 亚洲精品在线观看二区| 亚洲avbb在线观看| 亚洲久久久国产精品| 美女福利国产在线| 久久99一区二区三区| 国产视频一区二区在线看| 久9热在线精品视频| 婷婷精品国产亚洲av在线| 国产成人欧美在线观看| 两个人免费观看高清视频| 精品一区二区三区av网在线观看| 视频区欧美日本亚洲| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| av片东京热男人的天堂| 两个人免费观看高清视频| 午夜免费鲁丝| 久久人妻福利社区极品人妻图片| 老司机在亚洲福利影院| 久9热在线精品视频| 最好的美女福利视频网| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 在线观看舔阴道视频| 69av精品久久久久久| 国产视频一区二区在线看| 精品熟女少妇八av免费久了| 一级a爱片免费观看的视频| 成人影院久久| 久久久久久大精品| 国产精品国产高清国产av| 国产精华一区二区三区| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 88av欧美| 一本综合久久免费| 国产成人影院久久av| 大型黄色视频在线免费观看| 国产亚洲欧美精品永久| 天堂动漫精品| 高清欧美精品videossex| 这个男人来自地球电影免费观看| 国产欧美日韩一区二区三区在线| 欧美一级毛片孕妇| 日韩欧美三级三区| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 乱人伦中国视频| 亚洲国产中文字幕在线视频| 久久精品影院6| 中文字幕精品免费在线观看视频| 桃红色精品国产亚洲av| 亚洲少妇的诱惑av| 国产精品 欧美亚洲| 在线天堂中文资源库| 成人永久免费在线观看视频| 免费看十八禁软件| 波多野结衣高清无吗| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 国产精品乱码一区二三区的特点 | 亚洲欧美日韩高清在线视频| 欧美日韩乱码在线| 精品一区二区三区视频在线观看免费 | 丰满迷人的少妇在线观看| 亚洲av日韩精品久久久久久密| 日韩精品中文字幕看吧| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 午夜免费激情av| 夜夜看夜夜爽夜夜摸 | 久久久久久久久免费视频了| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 在线播放国产精品三级| 国产高清激情床上av| 多毛熟女@视频| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 亚洲精品一二三| 国产高清国产精品国产三级| 亚洲第一青青草原| 国产精品一区二区免费欧美| 国产一区二区三区综合在线观看| 啦啦啦在线免费观看视频4| 免费高清视频大片| 久久久久久亚洲精品国产蜜桃av| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 一级a爱视频在线免费观看| av超薄肉色丝袜交足视频| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 91av网站免费观看| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 在线观看舔阴道视频| 欧美激情高清一区二区三区| 又黄又爽又免费观看的视频| 人成视频在线观看免费观看| 国产精品一区二区精品视频观看| 麻豆av在线久日| 精品少妇一区二区三区视频日本电影| 久久久久九九精品影院| 在线观看www视频免费| 后天国语完整版免费观看| 国产成人欧美| 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 欧美最黄视频在线播放免费 | 男女下面插进去视频免费观看| 久久婷婷成人综合色麻豆| 色综合欧美亚洲国产小说| 女生性感内裤真人,穿戴方法视频| 曰老女人黄片| 精品无人区乱码1区二区| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 一级作爱视频免费观看| 日韩欧美一区视频在线观看| netflix在线观看网站| www.www免费av| 在线视频色国产色| 国产激情欧美一区二区| 一级,二级,三级黄色视频| 亚洲精品一区av在线观看| 人人澡人人妻人| 亚洲av熟女| 日韩精品青青久久久久久| 成人18禁高潮啪啪吃奶动态图| 久久人妻熟女aⅴ| 一进一出抽搐gif免费好疼 | 国产亚洲欧美在线一区二区| 变态另类成人亚洲欧美熟女 | 老司机深夜福利视频在线观看| 久久久国产成人免费| 久久精品aⅴ一区二区三区四区| 91在线观看av| 国产av又大| 精品一品国产午夜福利视频| 在线观看舔阴道视频| 久9热在线精品视频| 男女做爰动态图高潮gif福利片| 91九色精品人成在线观看| 禁无遮挡网站| av国产免费在线观看| 精品久久久久久久人妻蜜臀av| 18美女黄网站色大片免费观看| 久久国产乱子伦精品免费另类| 人妻丰满熟妇av一区二区三区| 欧美黑人巨大hd| 欧美日本亚洲视频在线播放| 欧美最黄视频在线播放免费| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩无卡精品| 免费一级毛片在线播放高清视频| a在线观看视频网站| 搡老岳熟女国产| 午夜免费男女啪啪视频观看 | 老鸭窝网址在线观看| 午夜影院日韩av| 可以在线观看毛片的网站| a在线观看视频网站| 少妇被粗大猛烈的视频| 亚洲成av人片在线播放无| 99在线视频只有这里精品首页| 久久99热这里只有精品18|