• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于非凸[lp]范數(shù)和G?范數(shù)的圖像去模糊模型

    2016-05-14 01:04:52張凱李敏
    現(xiàn)代電子技術(shù) 2016年5期
    關(guān)鍵詞:范數(shù)正則耦合

    張凱 李敏

    摘 要: 圖像去模糊一直是圖像修復中的重要問題,針對經(jīng)典的去模糊方法,提出一種耦合非凸[lp(0≤p<1)]范數(shù)和G范數(shù)的圖像去模糊方法。該方法利用[lp(0≤p<1)]范數(shù)作為正則項約束,保證了圖像的稀疏性要求;利用G范數(shù)作為保真項,保證在去模糊的同時有效抑制噪聲并保持圖像的細小特征,同時也給出新方法基于交替最小化的有效算法。實驗結(jié)果表明新模型是可行的。

    關(guān)鍵詞: 圖像去模糊; [lp(0≤p<1)]范數(shù); G范數(shù); 交替最小化

    中圖分類號: TN911.73?34 文獻標識碼: A 文章編號: 1004?373X(2016)05?0085?04

    3 結(jié) 語

    針對經(jīng)典的正則化去模糊方法,本文采用非凸[lp(0≤p<1)]范數(shù)作為正則項來保證圖像的稀疏性。同時選取G范數(shù)來刻畫噪聲成分,使得復原后的圖像含有較少的噪聲。對于耦合非凸[lp(0≤p<1)]范數(shù)和[G]范數(shù)的變分問題,本文給出基于交替最小化迭代的算法。數(shù)值實驗表明新算法是有效的。

    參考文獻

    [1] CHELLAPPA R, FAIN A. Markov random fields: theory and applications [M]. US: Academic Press, 1993.

    [2] BIOUCAS?DIAS J M. Bayesian wavelet?based image deconvolution: a GEM algorithm exploiting a class of heavy?tailed priors [J]. IEEE transaction on image processing, 2006, 15(4): 937?951.

    [3] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D?nonlinear phenomen, 1992, 60(1): 259?268.

    [4] BECK A, TEBOULLE M. A fast iterative shrinkage?threshol?ding algorithm for linear inverse problem [J]. SIAM journal on imaging sciences, 2009, 2(1): 183?202.

    [5] OLIVEIRA J P, BIOUCAS?DIAS J M, FIGUEIREDO M A T. Adaptive total variation image deblurring: a majorization minimization approach [J]. Signal processing, 2009, 89(9): 1683?1693.

    [6] MEYER Y. Oscillating pattern in image processing and nonlinear evolution equations [R]. Boston: American Mathematical Society, 2005.

    [7] AUJOL J F, AUBERT G, BLANC?FERAUD L, et al. Image decomposition application to SAR image [C]// Proceedings of 2003 4th International Conference on Scale Space. Isle of Skye: Springer Berlin Heidelberg, 2003: 297?312.

    [8] EKELAND I, TEMAM R. Analyse convexe and problems variationnels [M]. 2nd ed. French: Dunod, 1986.

    [9] ZUO Wangmeng, MENG Deyu, ZHANG Lei, et al. A genera?lized iterated shrinkage algorithm for non?convex sparse coding [C]// Proceedings of 2013 International Conference on Computer Vision. Sydney: IEEE, 2013: 217?224.

    [10] GILLES J, OSHER S. Bregman implementation of Meyer′s G?norm for cartoon+texture decomposition [R]. [S.l.]: UCLA CAM Report, 2001.

    [11] KRISHNAN D, FERGUS R. Fast image deconvolution using hyper?Laplacian priors [C]// Proceedings of 2009 23rd Annual Conference on Neural Information Processing Systems. Vancouver: IEEE, 2009: 1033?1041.

    [12] LAI M J, WANG J. An unconstrained [lp]minimization with 0<[p<1] for sparse solution of under?determined linear systems [J]. SIAM journal on optimization, 2009, 21(1): 82?101.

    [13] KUANG?CHIH L, JEFFREY H, KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting [J]. IEEE transaction on pattern analysis machine intelligence, 2005, 27(5): 684?698.

    [14] LEVIN A, FERGUS R, DURAND F, et al. Image and depth form a conventional camera with a code aperture [J]. ACM transaction on graphics, 2007, 26(3): 70?74.

    [15] QIN L, LIN Z, SHE Y, et al. A comparison of typical [lp]mi?nimization algorithms [J]. Neurocomputing, 2013, 119(16): 413?424.

    [16] MARJANOVIC G, SOLO V. On [lp]optimization and matrix completion [J]. IEEE transactions on signal processing, 2012, 60(11): 5714?5724.

    [17] GOLDSTEIN T, OSHER S. The split bregman method for [L1] regularized problems [J]. SIAM journal on imaging sciences, 2009, 2(2): 323?343.

    [18] OSHER S, YIN W, GOLDFARB D, et al. An iterative regularization method for total variation?based image restoration [J]. Multiscale modeling and simulation, 2005, 14(2): 460?489.

    猜你喜歡
    范數(shù)正則耦合
    非Lipschitz條件下超前帶跳倒向耦合隨機微分方程的Wong-Zakai逼近
    剩余有限Minimax可解群的4階正則自同構(gòu)
    類似于VNL環(huán)的環(huán)
    基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
    矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
    基于“殼-固”耦合方法模擬焊接裝配
    大型鑄鍛件(2015年5期)2015-12-16 11:43:20
    有限秩的可解群的正則自同構(gòu)
    一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
    求解奇異攝動Volterra積分微分方程的LDG-CFEM耦合方法
    非線性耦合KdV方程組的精確解
    团风县| 亳州市| 楚雄市| 大理市| 军事| 教育| 张家口市| 铜山县| 永兴县| 宝鸡市| 鄂伦春自治旗| 田东县| 九龙县| 峨眉山市| 比如县| 岗巴县| 尼木县| 沐川县| 石棉县| 津市市| 岫岩| 衡南县| 宜丰县| 金山区| SHOW| 油尖旺区| 通化县| 石景山区| 浠水县| 大埔区| 孟津县| 河北区| 武平县| 彩票| 宁德市| 儋州市| 寿宁县| 那曲县| 苏尼特右旗| 吉安县| 石河子市|