• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hopf Bifurcation of a Nonresident Computer Virus Model with Delay

    2019-01-08 00:58:10ZizhenZhangYougangWangandMassimilianoFerrara
    Analysis in Theory and Applications 2018年3期

    Zizhen Zhang,Yougang Wangand Massimiliano Ferrara

    1School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,Anhui,China

    2Department of Law,Economics and Human Sciences,Mediterranea University of Reggio Calabria,Via dei Bianchi 2,89127 Reggio Calabria,Italy

    Abstract.In this paper,a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed:latent computers have lower infection ability than infectious computers.With the aid of the bifurcation theory,sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established.In particular,explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations.Finally,a numerical example is given in order to show the feasibility of the obtained theoretical findings.

    Key Words:Computer virus,delay,Hopf bifurcation,SLA model,Periodic solution.

    1 Introduction

    With the advance of software and hardware technologies,computer viruses have been a major threat to our daily life[1].It is an important matter to understand the spread law of computer viruses over the network.To achieve this goal,many dynamical models,such as SIR model[2],SIRS model[3-5],SEIR model[6],SEIRS model[7,8]and SEIQRS model[9,10]have been established by scholars at home and abroad to characterize the propagation of computer viruses.

    Recently,the nonresident computer viruses that do not store or execute themselves from the computer memory have caused the attentions of many researchers[11].In order to analyze and protect against the nonresident computer viruses,Muroya and Kuniya proposed the following SLA computer virus model[12]:

    where S(t),L(t)and A(t)denote the numbers of uninfected computers,latent computers and infectious computers at time t,respectively;b is the number of external computers that are accessed to the network at time t;μ1,μ2and μ3are the rates at which the uninfected computers,latent computers and infectious computers are disconnected from the network;α1and α2are the rates of the nonresident computer viruses within latent computers are loaded into memory and nonresident computer viruses within infectious computers transfer control to the application program,respectively; β1and β2are the transmission rates of latent computers and infectious computers,respectively;γ1and γ2are the cure rates of latent computers and infectious computers,respectively.All the parameters in system(1.1)are positive constant.Muroya and Kuniya[12]investigated global stability and permanence of system(1.1).

    However,studies on dynamical systems not only involve stability and permanence,but also involve some others such as bifurcation phenomenon and periodic solutions.Particularly,Hopf bifurcation of the dynamical systems with time delay are of considerable interest[13-16].Motivated by the work above and considering that the nonresident computer viruses within latent computers need a period to be loaded into memory,we consider the following system with time delay:

    where τ1is the time delay due to the period that the nonresident computer viruses within latent computers need to be loaded into memory.

    The subsequent materials of this paper are organized as follows.In Section 2,stability of the infected equilibrium and existence of Hopf bifurcation are discussed by analyzing the characteristic equation of system(1.2).The formulas for determining the properties of the Hopf bifurcation are derived by using the normal form method and center manifold theory.Then,a numericalexample is carried outto illustrate the validity of the theoretical results.Finally,conclusions are given in the last section.

    2 Stability of the infected equilibrium and existence of Hopf bifurcation

    Based on the analysis in[12]and by a direct computation,we know that if

    then system(1.2)has a unique infected equilibrium E?(S?,L?,A?),where

    The Jacobian matrix of system(1.2)at the infected equilibrium E?is

    where

    The characteristic equation is

    where

    When τ=0,Eq.(2.1)reduces to

    Thus,Routh-Hurwitz criterion implies that E?is locally asymptotically stable without delay if the condition(H1)holds

    For τ>0.Substituting λ=i ω(ω>0)into Eq.(2.1)and separating the real and imaginary parts,we can obtain

    It is easy to see from Eq.(2.3)that

    where

    Let ω2=v,then

    Define f(v)=v3+a2v2+a1v+a0.Song et al.[17]obtained the following results on the distribution of roots of Eq.(2.5).

    Lemma 2.1.For the polynomial Eq.(2.5),

    (1)if a0<0,then Eq.(2.5)has at least one positive roots;

    (2)if a0≥0 and Δ=-3a1≤0,then Eq.(2.5)has no positive roots;

    (3)if a0≥0 and Δ=-3a1>0,then Eq.(2.5)has positive roots if and only ifand f()≤0.

    Next,we assume that the coefficients in Eq.(2.5)satisfy the following condition

    Thus,Eq.(2.4)has at least one positive root such that Eq.(2.1)has a pair of purely imaginary roots ±iω0.The corresponding critical value τ0can be obtained from Eq.(2.3)

    Taking derivative with respect to τ on both sides of Eq.(2.1),we obtain

    Further,we have

    Thus,if the condition(H3):holds,thenwhich implies that the transversality conditions is satisfied.From the discussions above and according to the Hopf bifurcation theorem in[18],we have the following.

    Theorem 2.1.For system(1.2),if the conditions(H1)-(H3)hold,then the infected equilibrium E?(S?,L?,A?)of system(1.2)is locally asymptotically stable for τ ∈ [0,τ0)and system(1.2)undergoes a Hopf bifurcation at the positive equilibrium E?(S?,L?,A?)when τ =τ0,where τ0is defined in Eq.(2.6).

    3 Direction and stability of the Hopf bifurcation

    Let u1(t)=S(t)-S?,u2(t)=L(t)-L?,u3(t)=A(t)-A?,τ=τ0+μ,μ∈R.Then,wecanknow thatμ=0 is the Hopf bifurcation value for system(1.2).Rescale the time by t→(t/τ)to normalize the time delay so that system(1.2)can be rewritten as

    where ut=(u1(t),u2(t),u3(t))T∈C=C([-1,0],R3),

    and

    where

    AAccording to the representation theorem, there exists a 3×3 matrix function with bounded variation components η(θ,μ),θ∈[-1,0]such that

    In fact,we choose

    where δ is the Dirac delta function.

    For φ∈C([-1,0],R3),define

    and

    Then system(3.1)is equivalent to

    For ? ∈C1([0,1]),(R3)?,the adjoint operator A?of A is defined as

    and a bilinear inner product is defined by

    where η(θ)=η(θ,0).

    Let q(θ)=(1,q2,q3)Teiω0τ0θbe the eigenvector of A(0)belonging to+iω0τ0and q?(s)=D(1,,)eiω0τ0sbe the eigenvector of A?(0)belonging to-iω0τ0.By a direct computation,we can get

    From Eq.(3.2),we can get

    Then we choose

    such that〈q?,q〉=1.

    Next,we can obtain the coefficients by using the method introduced in[18]and a computation process similar as that in[13]:

    with

    where E1and E2are given by the following equations,respectively

    Then,we can get the following coefficients which determine the properties of the Hopf bifurcation:

    In conclusion,we have the following results.

    Theorem 3.1.For system(1.2),Ifμ2>0(μ2<0),then the Hopf bifurcation is supercritical(subcritical).If β2<0(β2>0),then the bifurcating periodic solutions are stable(unstable).If T2>0(T2<00),then the bifurcating periodic solutions increase(decrease).

    4 Numerical simulation

    In order to verify the analytical predictions obtained in our paper,we present some numerical simulations in this section.By extracting some values from[12]and taking the conditions for the existence of the Hopf bifurcation into account,we consider the following special case of system(1.2)with the parameters b=10,α1=4,α2=1.5,β1=1,β2=2.5,γ1=0.25,γ2=0.75,μ1=1,μ2=1.5,μ3=2.Then,we get the following system:

    By means of Matlab 7.0,we get R0=7.7288 and that system(4.1)has a unique infected equilibrium E?(1.2939,2.5740,2.4226).Then,wehave a00+b00=163.6174,a01+b01=92.8527,a02+b02=18.3366.Obviously,The condition(H1)is satisfied for system(4.1).Further,we can validate that the condition(H2)is satisfied and we can obtain ω0=0.9623,τ0=1.8150 and f′()=152.6377>0.That is,the condition(H3)holds.Thus,according to Lemma 2.1,we can conclude that E?(1.2939,2.5740,2.4226)is locally asymptotically stable when τ ∈ [0,τ0=1.8150).However,when the time delay passes through τ0,E?(1.2939,2.5740,2.4226)loses its stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from E?(1.2939,2.5740,2.4226).The bifurcation phenomenon of system(4.1)can be illustrated by the computer simulation in Fig.1.

    5 Conclusions

    In this paper,a delayed nonresident computer virus model is investigated by incorporating the time delay due to the period used to load the nonresident virus within latent computers into memory into the SLA model proposed in[12].Compared with the conventional computer virus models such as SIRS model[3-5],the SEIRS model[7,8]and SEIQRS model[9,10],we not only consider the infection ability of the infective computers but also the infection ability of the latent computers.That is,the model considered in this paper is more realistic.On the other hand,the main purpose of this paper is to investigate the effect of the time delay on the model compared with the work in[12].

    Figure 1:The bifurcation diagram with respect to τ.

    It is found that,under moderate conditions,the infected equilibrium of the model is locally asymptotically stable when the value of the delay is suitable small(τ < τ0),which implies that propagation of the computer virus can be predicted and controlled effectively.However,a Hopf bifurcation emerges when the delay passes through the critical value τ0.This means that the state of the computer virus prevalence changes from the infected equilibrium to a limit cycle.Namely,the propagation of the computer virus is out of control.Therefore,we can conclude that we should take some measures to postpone the occurrence of the Hopf bifurcation in order to control the propagation of the computer virus.From the numerical simulation,we find that onset of the Hopf bifurcation can be delayed if the values of the parameter γ1and γ2increase,which can be realized by means of strengthening the immunization of the new computers connected to the network.Thus,we can conclude that the managers of the network should strengthen the immunization of the new computers connected to the network so as to predict and control the propagation of the computer virus in the network easily.Furthermore,the properties of the Hopf bifurcation have also been investigated in the paper.

    Acknowledgements

    The author would like to thank the editor and the anonymous referees for their valuable comments and suggestions on the paper.This work was supported by Natural Science Foundation of Anhui Province(Nos.1608085QF145,1608085QF151)and Project of Support Program for Excellent Youth Talent in Colleges and Universities of Anhui Province(No.gxyqZD2018044).

    中文字幕免费在线视频6| 五月玫瑰六月丁香| freevideosex欧美| 日韩,欧美,国产一区二区三区| 久久久久久久久久久丰满| 五月天丁香电影| 亚洲精品久久午夜乱码| av免费在线看不卡| 永久免费av网站大全| 少妇的逼水好多| 美女内射精品一级片tv| 一区二区三区免费毛片| 男女国产视频网站| 精品一区二区免费观看| 午夜日本视频在线| 亚洲人成77777在线视频| 午夜福利视频在线观看免费| 亚洲精品第二区| 久久 成人 亚洲| 亚洲欧洲精品一区二区精品久久久 | 国产白丝娇喘喷水9色精品| 国产在线一区二区三区精| 青春草国产在线视频| 最近的中文字幕免费完整| 免费日韩欧美在线观看| 最后的刺客免费高清国语| av国产精品久久久久影院| 欧美精品一区二区免费开放| 人妻夜夜爽99麻豆av| 久久国产精品大桥未久av| 精品熟女少妇av免费看| 国产有黄有色有爽视频| 中文天堂在线官网| 伊人亚洲综合成人网| 成人毛片60女人毛片免费| 国产日韩欧美在线精品| 久久久久久久久久久丰满| 飞空精品影院首页| 在线天堂最新版资源| 亚洲欧美一区二区三区黑人 | 99热这里只有是精品在线观看| 亚洲第一av免费看| 国产成人精品福利久久| 久久99精品国语久久久| 男女边吃奶边做爰视频| 成人无遮挡网站| 99热全是精品| videos熟女内射| 亚洲国产精品999| 亚洲av日韩在线播放| 亚洲熟女精品中文字幕| 日韩大片免费观看网站| 青青草视频在线视频观看| 下体分泌物呈黄色| 亚洲国产精品国产精品| 伦精品一区二区三区| 国产黄色免费在线视频| 国产精品人妻久久久影院| 久久97久久精品| 秋霞在线观看毛片| 久久国产精品男人的天堂亚洲 | 纵有疾风起免费观看全集完整版| 日本vs欧美在线观看视频| av又黄又爽大尺度在线免费看| 成人漫画全彩无遮挡| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 少妇高潮的动态图| 最新的欧美精品一区二区| 免费av中文字幕在线| 精品久久久精品久久久| 乱人伦中国视频| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 日本vs欧美在线观看视频| 日本爱情动作片www.在线观看| 亚洲精品成人av观看孕妇| 一级毛片aaaaaa免费看小| 久久人妻熟女aⅴ| 国产精品秋霞免费鲁丝片| 视频中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲丝袜综合中文字幕| 欧美xxⅹ黑人| 99热网站在线观看| 天美传媒精品一区二区| 久久人人爽人人片av| 欧美97在线视频| 亚洲欧美一区二区三区黑人 | 亚洲在久久综合| 亚洲精品aⅴ在线观看| 在线观看免费视频网站a站| 精品人妻熟女毛片av久久网站| 美女大奶头黄色视频| 777米奇影视久久| 2021少妇久久久久久久久久久| 久久精品国产亚洲av天美| 黄色一级大片看看| a级毛片在线看网站| 亚洲一级一片aⅴ在线观看| 国产高清有码在线观看视频| 久久精品久久久久久久性| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 国产欧美日韩综合在线一区二区| 啦啦啦在线观看免费高清www| 免费观看无遮挡的男女| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 91午夜精品亚洲一区二区三区| 蜜臀久久99精品久久宅男| 99热网站在线观看| av天堂久久9| 王馨瑶露胸无遮挡在线观看| 秋霞在线观看毛片| 久久久久久久久久久丰满| 高清视频免费观看一区二区| 制服丝袜香蕉在线| 亚洲av成人精品一二三区| av天堂久久9| a级毛片黄视频| 乱人伦中国视频| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 各种免费的搞黄视频| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 国产成人91sexporn| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 一本一本综合久久| 日日摸夜夜添夜夜添av毛片| 日韩伦理黄色片| 一本久久精品| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 水蜜桃什么品种好| 亚洲经典国产精华液单| 一级毛片电影观看| 新久久久久国产一级毛片| 91久久精品电影网| 日日爽夜夜爽网站| 午夜影院在线不卡| 亚洲精品日韩av片在线观看| 老司机亚洲免费影院| 少妇的逼水好多| 国产一区二区在线观看日韩| 午夜激情av网站| 99re6热这里在线精品视频| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 亚洲人成77777在线视频| 日韩av免费高清视频| 国产精品国产三级国产专区5o| 国产在线免费精品| 国产亚洲午夜精品一区二区久久| 丝袜在线中文字幕| 边亲边吃奶的免费视频| 色视频在线一区二区三区| 伊人久久国产一区二区| 国产精品 国内视频| 黄色怎么调成土黄色| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 久热这里只有精品99| 国产 一区精品| 午夜老司机福利剧场| 考比视频在线观看| 亚洲综合色惰| 超碰97精品在线观看| a级毛片免费高清观看在线播放| 亚洲国产精品成人久久小说| 久久女婷五月综合色啪小说| 在线观看国产h片| 18禁观看日本| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 在线观看免费视频网站a站| 亚洲色图 男人天堂 中文字幕 | 下体分泌物呈黄色| 久久久国产精品麻豆| 国产男女内射视频| 18禁动态无遮挡网站| 男女免费视频国产| 91精品伊人久久大香线蕉| 欧美97在线视频| 日本色播在线视频| 狂野欧美激情性bbbbbb| 在线天堂最新版资源| 久久久久人妻精品一区果冻| 黄色欧美视频在线观看| 极品人妻少妇av视频| 国产精品99久久99久久久不卡 | 简卡轻食公司| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 午夜免费男女啪啪视频观看| 亚洲av福利一区| 国产无遮挡羞羞视频在线观看| 精品国产露脸久久av麻豆| 成人漫画全彩无遮挡| 精品亚洲成a人片在线观看| 超色免费av| 亚洲国产最新在线播放| 免费大片黄手机在线观看| 亚洲综合色网址| 久久久久久久国产电影| 母亲3免费完整高清在线观看 | 美女国产视频在线观看| 国产一级毛片在线| 亚洲av中文av极速乱| 成人无遮挡网站| 欧美激情 高清一区二区三区| 久久久久久伊人网av| 国产精品国产三级国产专区5o| 伦精品一区二区三区| av又黄又爽大尺度在线免费看| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 亚洲国产最新在线播放| 少妇高潮的动态图| 人人澡人人妻人| 国产日韩欧美在线精品| 极品人妻少妇av视频| 国产视频内射| 亚洲av日韩在线播放| 日日爽夜夜爽网站| 欧美人与善性xxx| 午夜激情久久久久久久| 97在线人人人人妻| 国产极品粉嫩免费观看在线 | 久久人妻熟女aⅴ| 久久久久久久精品精品| 国产精品国产av在线观看| 十分钟在线观看高清视频www| 亚洲成人一二三区av| 99视频精品全部免费 在线| 777米奇影视久久| 丰满饥渴人妻一区二区三| 国产 一区精品| 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 精品熟女少妇av免费看| 精品一区在线观看国产| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看| 亚洲内射少妇av| 久久精品国产亚洲网站| 岛国毛片在线播放| 亚洲欧洲国产日韩| 插阴视频在线观看视频| 亚洲av在线观看美女高潮| 欧美日韩综合久久久久久| 草草在线视频免费看| 久久 成人 亚洲| 亚洲精品乱码久久久v下载方式| videosex国产| 成人国语在线视频| 美女国产高潮福利片在线看| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 韩国av在线不卡| 亚洲,欧美,日韩| 一区二区av电影网| 久久久久国产精品人妻一区二区| 成年美女黄网站色视频大全免费 | 午夜福利,免费看| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线 | 亚洲人成网站在线播| 啦啦啦在线观看免费高清www| 国产高清有码在线观看视频| 亚洲在久久综合| 男女高潮啪啪啪动态图| 久久这里有精品视频免费| www.色视频.com| 亚洲av综合色区一区| 美女大奶头黄色视频| 婷婷色综合www| 大香蕉久久网| 久久人人爽av亚洲精品天堂| 国产精品不卡视频一区二区| 中文字幕最新亚洲高清| 免费看不卡的av| 高清av免费在线| 国产乱人偷精品视频| 国产熟女午夜一区二区三区 | 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 午夜av观看不卡| 国产黄色视频一区二区在线观看| 边亲边吃奶的免费视频| 男人爽女人下面视频在线观看| .国产精品久久| 最近中文字幕高清免费大全6| 在线播放无遮挡| 午夜激情久久久久久久| 亚洲三级黄色毛片| 国产亚洲欧美精品永久| 免费少妇av软件| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线 | 日韩一本色道免费dvd| 免费日韩欧美在线观看| 免费观看av网站的网址| 亚洲精品国产av成人精品| 国产成人精品在线电影| 嫩草影院入口| 老司机影院毛片| 91久久精品国产一区二区成人| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 日本爱情动作片www.在线观看| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 成人二区视频| 国产 一区精品| 国产精品一二三区在线看| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 色网站视频免费| 中文字幕av电影在线播放| 久久久久久久久久成人| 最近中文字幕高清免费大全6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近中文字幕2019免费版| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| 国产综合精华液| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 国产av一区二区精品久久| 中文精品一卡2卡3卡4更新| 乱码一卡2卡4卡精品| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 国产成人91sexporn| 亚洲图色成人| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 日韩不卡一区二区三区视频在线| 乱人伦中国视频| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕 | 国产亚洲av片在线观看秒播厂| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 亚洲不卡免费看| 最新中文字幕久久久久| 亚洲图色成人| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 97在线视频观看| 考比视频在线观看| 亚洲国产精品一区三区| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 免费大片黄手机在线观看| 亚洲精品av麻豆狂野| 欧美激情极品国产一区二区三区 | 成年av动漫网址| 少妇丰满av| 亚洲人成网站在线播| 成人国产麻豆网| 内地一区二区视频在线| 日日撸夜夜添| 免费少妇av软件| 大片电影免费在线观看免费| 午夜免费观看性视频| 欧美另类一区| 老司机影院成人| 人成视频在线观看免费观看| 秋霞在线观看毛片| 国产一区二区三区av在线| 成人二区视频| 搡女人真爽免费视频火全软件| av线在线观看网站| 久久久久视频综合| 一区二区日韩欧美中文字幕 | 在线观看免费高清a一片| 色94色欧美一区二区| 99九九在线精品视频| 全区人妻精品视频| 丝袜脚勾引网站| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 日本午夜av视频| 久久久久久人妻| 国产成人91sexporn| 午夜福利视频在线观看免费| 国产精品免费大片| 国产伦理片在线播放av一区| 日日爽夜夜爽网站| 插逼视频在线观看| 国内精品宾馆在线| 亚洲av中文av极速乱| 丰满饥渴人妻一区二区三| 日本色播在线视频| 十八禁高潮呻吟视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 日韩在线高清观看一区二区三区| 久久青草综合色| 久久久国产精品麻豆| 人妻人人澡人人爽人人| 伊人亚洲综合成人网| 99热全是精品| 精品国产乱码久久久久久小说| 乱人伦中国视频| 各种免费的搞黄视频| 日韩精品免费视频一区二区三区 | 大片免费播放器 马上看| 99国产综合亚洲精品| 国产亚洲精品久久久com| 永久网站在线| 国产乱来视频区| 欧美日韩在线观看h| 18禁动态无遮挡网站| 日本vs欧美在线观看视频| 久久久国产一区二区| av视频免费观看在线观看| 中国国产av一级| 成年人免费黄色播放视频| 一区二区三区免费毛片| 交换朋友夫妻互换小说| 欧美3d第一页| 国产成人91sexporn| 夜夜爽夜夜爽视频| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 成人二区视频| 亚洲av.av天堂| 久久久a久久爽久久v久久| 国产精品三级大全| 亚洲精品美女久久av网站| 午夜91福利影院| 午夜福利网站1000一区二区三区| 三级国产精品片| 看非洲黑人一级黄片| 极品少妇高潮喷水抽搐| 欧美国产精品一级二级三级| 国产精品一区www在线观看| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 如日韩欧美国产精品一区二区三区 | 久久久久久久久久成人| 丝袜美足系列| 亚洲精品aⅴ在线观看| 国产精品一二三区在线看| 免费播放大片免费观看视频在线观看| 日本欧美视频一区| 黄片播放在线免费| 黑丝袜美女国产一区| 国产精品久久久久久精品电影小说| 久久99精品国语久久久| 国产在线一区二区三区精| 一边亲一边摸免费视频| 一个人看视频在线观看www免费| 热re99久久国产66热| 久久国产精品大桥未久av| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 十八禁高潮呻吟视频| 国产精品三级大全| www.av在线官网国产| av电影中文网址| 亚洲精品乱码久久久久久按摩| 国产精品蜜桃在线观看| 国产一区亚洲一区在线观看| 久久av网站| videossex国产| 91久久精品电影网| 特大巨黑吊av在线直播| 777米奇影视久久| 久久av网站| 欧美日韩国产mv在线观看视频| 人成视频在线观看免费观看| 欧美 日韩 精品 国产| 各种免费的搞黄视频| 在线播放无遮挡| 大片免费播放器 马上看| av网站免费在线观看视频| 91精品国产九色| 亚洲精品色激情综合| 国产不卡av网站在线观看| 国产精品久久久久久av不卡| 国产永久视频网站| 欧美 日韩 精品 国产| 国产精品人妻久久久影院| 亚洲国产精品999| 丰满少妇做爰视频| 汤姆久久久久久久影院中文字幕| 亚洲国产精品国产精品| 黑人猛操日本美女一级片| 国产在线免费精品| 简卡轻食公司| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 欧美丝袜亚洲另类| 18禁裸乳无遮挡动漫免费视频| 国产精品不卡视频一区二区| 一级毛片我不卡| 日产精品乱码卡一卡2卡三| 亚洲国产精品国产精品| 国产高清国产精品国产三级| 老司机影院毛片| 亚洲欧美日韩另类电影网站| 亚洲国产精品专区欧美| 亚洲欧美成人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 汤姆久久久久久久影院中文字幕| 新久久久久国产一级毛片| 国产高清国产精品国产三级| 99国产综合亚洲精品| 国产日韩欧美视频二区| 我的女老师完整版在线观看| 亚洲性久久影院| 99久久精品国产国产毛片| 欧美精品一区二区免费开放| 天天影视国产精品| 国产高清有码在线观看视频| 91久久精品电影网| 高清毛片免费看| 欧美国产精品一级二级三级| 欧美最新免费一区二区三区| 99热全是精品| 国产精品国产三级国产av玫瑰| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本wwww免费看| 日韩欧美一区视频在线观看| 好男人视频免费观看在线| 久久久午夜欧美精品| 97在线人人人人妻| 免费大片18禁| 亚洲欧美一区二区三区黑人 | 99热这里只有是精品在线观看| 色吧在线观看| 国产探花极品一区二区| 色婷婷久久久亚洲欧美| 国产一区二区在线观看日韩| 80岁老熟妇乱子伦牲交| 午夜老司机福利剧场| 久久99蜜桃精品久久| 天天影视国产精品| 黄色毛片三级朝国网站| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 成人国产av品久久久| 18禁在线播放成人免费| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 黄色一级大片看看| 午夜老司机福利剧场| 永久免费av网站大全| 熟女人妻精品中文字幕| 只有这里有精品99| 爱豆传媒免费全集在线观看| 黄色欧美视频在线观看| 亚洲精品国产色婷婷电影| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 久久久午夜欧美精品| 九九爱精品视频在线观看| 亚州av有码| 日韩成人伦理影院| 嫩草影院入口| 两个人的视频大全免费| 亚洲欧美一区二区三区国产| 日韩中字成人| 成人综合一区亚洲| 天堂8中文在线网| 99国产综合亚洲精品| 亚洲精品成人av观看孕妇| 成人国产麻豆网| 日韩精品免费视频一区二区三区 | 国产成人91sexporn| 国产淫语在线视频| 天美传媒精品一区二区| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频 | 日本色播在线视频| 在线观看人妻少妇| 亚洲内射少妇av| 高清视频免费观看一区二区| 嫩草影院入口| 久久免费观看电影| 亚洲精品乱码久久久v下载方式| 欧美精品国产亚洲| 高清视频免费观看一区二区| 国产免费一区二区三区四区乱码|