• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The hypothalamic-spinal dopaminergic system:a target for pain modulation

    2019-01-04 03:43:17MichelinoPuopolo

    Michelino Puopolo

    Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA

    Abstract Nociceptive signals conveyed to the dorsal horn of the spinal cord by primary nociceptors are subject to extensive modulation by local neurons and by supraspinal descending pathways to the spinal cord before being relayed to higher brain centers. Descending modulatory pathways to the spinal cord comprise,among others, noradrenergic, serotonergic, γ-aminobutyric acid (GABA)ergic, and dopaminergic fibers.The contributions of noradrenaline, serotonin, and GABA to pain modulation have been extensively investigated. In contrast, the contributions of dopamine to pain modulation remain poorly understood.The focus of this review is to summarize the current knowledge of the contributions of dopamine to pain modulation. Hypothalamic A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine. Dopamine receptors are expressed in primary nociceptors as well as in spinal neurons located in different laminae in the dorsal horn of the spinal cord, suggesting that dopamine can modulate pain signals by acting at both presynaptic and postsynaptic targets. Here, I will review the literature on the effects of dopamine and dopamine receptor agonists/antagonists on the excitability of primary nociceptors, the effects of dopamine on the synaptic transmission between primary nociceptors and dorsal horn neurons, and the effects of dopamine on pain in rodents. Published data support both anti-nociceptive effects of dopamine mediated by D2-like receptors and pro-nociceptive effects mediated by D1-like receptors.

    Key Words: A11 nucleus; descending modulation; dopamine; dorsal horn; dorsal root ganglia; D2 receptors;D1 receptors; nociceptors; pain; spinal cord

    Introduction

    Noxious stimuli are detected and transduced into electrical signals by the peripheral terminals of primary nociceptors(pain-sensing neurons) whose cell body is located in the dorsal root ganglia (DRG) (Caterina and Julius, 1999; Julius and Basbaum, 2001; Woolf and Ma, 2007; Basbaum et al.,2009). This initial pain signal is then conveyed by primary nociceptors to the dorsal horn of the spinal cord (DHSC),the first relay station in the pain pathway where pain signals are modulated and integrated by local neurons and by descending pathways from supraspinal nuclei before being relayed to higher brain centers by dorsal horn projection neurons (Basbaum and Fields, 1984; Millan, 2002; Todd,2010). There is strong consensus that after the initial activation of nociceptors, the final experience of pain is the result of complex interactions between the dorsal horn neuronal circuits engaged to transduce and transmit the pain signals and the modulatory actions from higher brain centers whose activity can be in fluenced by emotion, motivation, anxiety,and other cognitive states that can ultimately exacerbate or mitigate the overall pain experience associated with specific noxious stimuli.

    Neuronal pathways involved in the descending modulation of pain originate mainly from the hypothalamus, the amygdala, and the anterior cingulate cortex with projections to the midbrain periaqueductal gray and to brainstem nuclei such as the locus coeruleus and the rostral ventral medulla.Descending pathways projecting to the spinal cord include,among others, noradrenergic, serotonergic, γ-aminobutyric acid (GABA)ergic, and dopaminergic fibers. For the contributions of descending noradrenergic, serotonergic, and GABAergic pathways to pain modulation I refer to some excellent and extensive papers and reviews (Basbaum and Fields, 1984; Fields et al., 1991; Porreca et al., 2001; Millan,2002; Benarroch, 2008; Ossipov et al., 2010, 2014; Bannister and Dickenson, 2016; Chen et al., 2017; Francois et al.,2017). Here I will focus on the contribution of the descending dopaminergic pathway to pain modulation in the DHSC.The A11 nucleus located in the periventricular, posterior region of the hypothalamus contains at least three neurochemical-distinct types of neurons: neurons expressing tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of catecholamines, necessary to synthetize L-3,4-dihydroxyphenylalanine; neurons expressing calbindin; and neurons expressing both TH and calbindin (Ozawa et al., 2017).TH-expressing neurons in the A11 nucleus also express the aromatic L-amino acid decarboxylase, the enzyme that converts L-3,4-dihydroxyphenylalanine to dopamine, and the vesicular monoamine transporter 2 which is necessary for packaging dopamine into vesicles, strongly supporting the dopaminergic phenotype of the TH-expressing neurons in the A11 nucleus. In contrast, TH-expressing neurons in the A11 nucleus lack the dopamine transporter and D2 receptors (Pappas et al., 2008; Barraud et al., 2010; Koblinger et al., 2014). Hypothalamic A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine (Bjorklund and Skagerberg, 1979; Swanson and Kuypers, 1980; Skagerberg et al., 1982; Skagerberg and Lindvall, 1985; Holstege and Kuypers, 1987; Mouchet et al., 1992; Ridet et al., 1992; Holstege et al., 1996; Qu et al.,2006; Benarroch, 2008; Koblinger et al., 2014). Descending fibers from the A11 nucleus terminate both in the dorsal and ventral horn of the spinal cord and establish axodendritic synapses or terminate sparsely, suggesting, in addition to the classical synaptic transmission, also the possibility of volume transmission (Ridet et al., 1992). In turn, the hypothalamic A11 nucleus receives innervation from midbrain and brainstem nuclei involved in pain modulation, such as the periaqueductal gray and the parabrachial nucleus, and from cortical areas, including the cingulate cortex, infralimbic cortex,and striata terminalis (Abrahamson and Moore, 2001; Qu et al., 2006), involved in the affective and emotional aspects of pain and the behavioral responses to aversive or threatening stimuli (Rainville et al., 1997; Johansen et al., 2001; Oertel et al., 2008; King et al., 2009; Qu et al., 2011; Hayes and Northoff, 2012; Thibault et al., 2014). Although beyond the focus of this review, it should be noted that different populations of DRG neurons, including the C low threshold mechanoreceptors specialized in detecting low-threshold mechanosensory stimuli (Seal et al., 2009; Olausson et al., 2010; Li et al., 2011) and those innervating pelvic organs (Price and Mudge, 1983; Philippe et al., 1993; Brumovsky et al., 2006,2012), as well as some spinal interneurons (Hou et al., 2016),express TH and thus might provide an additional source of spinal dopamine. Nonetheless, it remains to be determined which catecholamine(s) are synthetized and released from these TH-expressing neurons (Lackovic and Neff, 1980;Philippe et al., 1993; Weil-Fugazza et al., 1993). The author has performed a PubMed literature search of articles published in the period 1970-2018 with the key words: descending pain modulation; neuropathic pain; in flammatory pain;chronic pain; dopamine; hypothalamus; A11 nucleus; spinal cord; dorsal horn; dorsal root ganglia; D1 receptors; D2 receptors; D3 receptors; D4 receptors; nociceptors.

    Dopamine Receptors

    Two families of dopamine receptors mediate the function of dopamine: D1-like receptors (comprising D1 and D5 receptors) and D2-like receptors (comprising D2, D3, and D4 receptors). D1 and D5 receptors are coupled to Gαsproteins which stimulate the activity of adenylyl cyclase and the production of 3′,5′-cyclic adenosine monophosphate; D2, D3,and D4 receptors are coupled to Gαi/oproteins which inhibit the activity of adenylyl cyclase and the production of 3′,5′-cyclic adenosine monophosphate (Missale et al., 1998; Vallone et al., 2000; Beaulieu et al., 2015). All dopamine receptors are expressed in the spinal cord and in the mesencephalic trigeminal nucleus (a structure functionally equivalent to the DHSC), with the density and the level of expression that may change in different laminae (Dubois et al., 1986; Bhargava and Gulati, 1990; Yokoyama et al., 1994; Matsumoto et al., 1996; van Dijken et al., 1996; Lazarov and Pilgrim, 1997;Ciliax et al., 2000; Levant and McCarson, 2001; Bergerot et al., 2007; Zhu et al., 2007; Charbit et al., 2009). In addition to the spinal cord and the mesencephalic trigeminal nucleus, it has been shown that dopamine receptors are expressed also in DRG neurons (Xie et al., 1998; Galbavy et al., 2013) and in the trigeminal ganglion neurons (functionally equivalent to DRG neurons) (Peterfreund et al., 1995), suggesting the possibility that they are also expressed on primary afferent fibers making synaptic contacts in the dorsal horn of the spinal cord. The expression of dopamine receptors on primary afferent fibers is of particular significance because it suggests that dopamine exerts its effects not only at postsynaptic sites, but also at presynaptic sites.

    Effects of Dopamine on Dorsal Root Ganglia Neurons and Spinal Neurons

    In vitro studies have provided compelling evidence that dopamine can modulate the intrinsic excitability and the synaptic transmission of DRG neurons and spinal neurons involved in pain signaling. In the dorsal root ganglia, dopamine regulates the intrinsic excitability of DRG neurons(Gallagher et al., 1980; Abramets and Samoilovich, 1991;Molokanova and Tamarova, 1995; Galbavy et al., 2013), the activity of calcium channels (Marchetti et al., 1986; Formenti et al., 1993, 1998), tetrodotoxin-sensitive sodium channels (Galbavy et al., 2013), and transient receptor potential vanilloid type 1 receptors (Lee et al., 2015; Chakraborty et al., 2016). In the DHSC, dopamine inhibits the excitatory postsynaptic potential (Garraway and Hochman, 2001) and the extracellular field potential (Garcia-Ramirez et al., 2014)recorded from deep dorsal horn neurons, as well as the action potentials evoked in substantia gelatinosa neurons upon stimulation of the dorsal root (Tamae et al., 2005).Inhibitory effects of dopamine have been also reported on spinal reflexes using the intact spinal cord preparation in vitro. Electrical stimulation of the dorsal root elicits a monosynaptic stretch reflex potential (MSR) followed by a slow ventral root potential at the corresponding ventral root. The MSR is an A fiber-(group I muscle spindle afferents) evoked response. On the other hand, the slow ventral root potential is a C fiber-evoked polysynaptic response believed to reflect nociceptive transmission in the spinal cord. In one study,low doses of dopamine (1 μM) decreased the MSR amplitude in wild-type mice and increased it in D3 knockout mice(Clemens and Hochman, 2004). The D3 receptor agonists pergolide and PD 128907 reduced the MSR amplitude in wild-type but not D3 knockout mice, while the D3 receptor antagonists GR 103691 and nafadotride increased the MSR in wild-type but not in D3 knockout mice. In comparison,the D2 agonists bromocriptine and quinpirole depressed the MSR in both groups (Clemens and Hochman, 2004). In another study, low doses of dopamine (1 μM or less) were found to depress the slow ventral root potential, while no effects were reported on the MSR. The inhibitory effects of dopamine on the slow ventral root potential were attenuated in the presence of D1-like receptor antagonists (SCH23390 and LE300) and mimicked by D1-like receptor agonists(SKF83959 and SKF81297) (Kawamoto et al., 2012), suggesting an anti-nociceptive effect upon activation of D1-like receptors in the ventral root. These observations raise the intriguing possibility that activation of D1-like receptors may have opposite effects according to their localization,with pro-nociceptive effects in the DHSC versus anti-nociceptive effects in the ventral horn. In a recent study carried out in horizontal spinal cord slices in vitro (Lu et al., 2018),dopamine was found to inhibit the excitatory postsynaptic currents recorded from lamina I projection neurons upon stimulation of the L4—5 dorsal root. This study provided three additional pieces of evidence to support a role for dopamine in the modulation of pain signaling in the DHSC.First, dopamine was found to inhibit the excitatory postsynaptic currents elicited by stimulation of high threshold Aδand C- fiber nociceptors, both at baseline and after peripheral in flammation induced by injection of complete Freund's adjuvant in the ipsilateral hindpaw. Second, it was shown that dopamine can inhibit the synaptic transmission from primary nociceptors to lamina I projection neurons ascending to the parabrachial nucleus, a well-established spinal cord circuit for pain transmission from the spinal cord to supraspinal nuclei (Marshall et al., 1996; Todd et al., 2000;Spike et al., 2003; Li et al., 2015). Third, this study provided the first clear demonstration that dopamine can modulate pain signals by acting on presynaptic targets (D3 and D4 receptors) in addition to postsynaptic targets. The findings of the above in vitro studies are well complemented by electrophysiological recordings in vivo. Electrical or pharmacological stimulation of the A11 nucleus were found to inhibit the nociceptive responses recorded from spinal dorsal neurons or trigeminocervical complex neurons (Fleetwood-Walker et al., 1988; Bergerot et al., 2007; Charbit et al., 2009; Taniguchi et al., 2011). Similarly, C- fiber-evoked action potential firing of trigeminal wide dynamic range neurons was inhibited or enhanced by D2-like receptor agonists or antagonists,respectively (Lapirot et al., 2011). In addition, the levels of dopamine in the lumbar spinal cord are decreased following lesion of A11 nuclei with 6-hydroxydopamine (Zhao et al.,2007). Taken together, these studies well support a role for the A11 nucleus and the descending dopaminergic pathway to modulation of pain signaling in the DHSC.

    Functional Studies In Vivo

    Several behavioral studies in vivo support the anti-nociceptive effects of dopamine in the DHSC, and there is consensus that these effects are mediated by activation of postsynaptic D2-like receptors, in line with their coupling to inhibition of adenylyl cyclase and subsequent reduction in 3′,5′-cyclic adenosine monophosphate levels. These studies include: 1)electrical stimulation of the A11 nucleus selectively inhibited the nociceptive response of spinothalamic and spinomesencephalic neurons located in laminae III-V of the dorsal horn, and this effect could be mimicked by D2 agonists and blocked by D2 antagonists (Fleetwood-Walker et al., 1988).2) Intrathecal administration of apomorphine increased the hot plate response latency and the tail flick latency, an effect that was reversed by prior intrathecal administration of cis- flupenthixol (D2 antagonist) (Jensen and Smith, 1982;Jensen and Yaksh, 1984). 3) Intrathecal administration of apomorphine increased the tail flick latency, an effect that was mimicked by LY171555 (D2 agonist), but not by SKF38393 (D1/D5 agonist), and blocked by D2 antagonists(Barasi and Duggal, 1985; Barasi et al., 1987). 4) A similar increase in the tail flick latency was observed upon intrathecal administration of dopamine, an effect that was reversed by sulpiride (D2 antagonist), but not SCH23390 (D1/D5 antagonist) (Liu et al., 1992). 5) Intrathecal administration of dopamine or quinpirole (D2 agonist), but not SKF38393(D1/D5 agonist), increased the mechanical threshold measured with the von Frey anesthesiometer (Tamae et al., 2005). 6) Intrathecal administration of LY171555 (D2 agonist), but not SKF38393 (D1/D5 agonist), rescued the thermal withdrawal latency measured with the Hargreaves apparatus in a model of carrageenan-induced peripheral inflammation (Gao et al., 2001). 7) Intrathecal administration of quinpirole (D2 agonist) increased the mechanical threshold measured with the von Frey anesthesiometer, while no effects were observed on the thermal withdraw latency measured with the Hargreaves apparatus, and the effect was reversed by a mix of D2, D3, and D4 antagonists (Almanza et al., 2015). These findings point to a contribution of D3 and D4 receptors, in addition to D2 receptors, in mediating the effects of dopamine in the DHSC, and are consistent with recent findings in spinal cord slices in vitro (Lu et al., 2018).8) A decreased thermal withdraw latency was reported in two studies carried out in D3 knockout mice, suggesting a contribution of D3 receptors to thermal stimuli as well(Keeler et al., 2012; Meneely et al., 2018), in addition to mechanical stimuli reported by Alamnza et al. (2015). Nonetheless, these results in the global D3 knockout mice need to be confirmed in conditional D3 knockout mice to exclude possible developmental changes of dopamine receptors. 9)Activation of D2-like receptors with quinpirole inhibited,whereas blocking D2-like receptors with sulpiride enhanced both facial formalin- and capsaicin-evoked pain behavior and C- fiber-evoked action potential firing of trigeminal wide dynamic range neurons (Lapirot et al., 2011).

    Behavioral studies in vivo also support a role for dopamine and D2-like receptors in the modulation of neuropathic pain. These studies include: 1) intrathecal administration of levodopa produced a decrease in tactile and cold allodynia measured with the von Frey anesthesiometer and acetone drop, respectively, in the chronic constriction injury model of the sciatic nerve, an effect that was blocked by sulpiride(D2 antagonist) (Cobacho et al., 2010). 2) In a follow up study from the same group, quinpirole (D2 agonist) decreased both tactile and cold allodynia in the chronic constriction injury model of the sciatic nerve (Cobacho et al.,2014). 3) In a recent paper, using a trigeminal neuropathic pain model in mice, it was shown that stimulation of A11 dopaminergic neurons with designer receptor exclusively activated by designer drug was able to attenuate trigeminal neuropathic pain via activation of D2 receptors (Liu et al.,2018). Nonetheless, the authors used a dopamine transporter-Cre mouse to express designer receptor exclusively activated by designer drugs in A11 dopaminergic neurons and did not provide any data to support the selectivity of this approach. This may raise some concerns considering that other groups have provided evidence for the lack of dopamine transporter expression in TH-expressing neurons in the A11 nucleus (Barraud et al., 2010; Koblinger et al., 2014).

    There are also studies that have reported pro-nociceptive effects of dopamine mediated by postsynaptic D1/D5 receptors, consistent with their coupling to activation of adenylyl cyclase and subsequent increase in 3′,5′-cyclic adenosine monophosphate levels. These studies include: 1)intrathecal administration of SCH23390 (D1/D5 antagonist) was shown to reduce the thermal hyperalgesia induced by intra plantar injection of carrageenan (Gao et al., 2001),consistent with the interpretation that activation of D1/D5 receptor by dopamine promotes a pro-nociceptive effect. 2)Activation of D1/D5 receptors with SKF38393 was shown to induce long term potentiation of C-fibers evoked field potentials in the DHSC in vivo, and the effect was abolished by pretreatment with SCH23390 (D1/D5 antagonist) (Yang et al., 2005). 3) In two recent publications from the same group, it was suggested that activation of postsynaptic D1/D5 receptors may promote the transition to chronic pain in a model of hyperalgesic priming (Kim et al., 2015; Megat et al., 2018).

    Conclusions

    A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine. A11 dopaminergic neurons are predominantly sensory driven,responding to tactile and visual sensory modalities (Reinig et al., 2017). Like other midbrain and brainstem nuclei involved in the descending modulation of pain, the A11 nucleus is interconnected with higher cortical areas devoted to encoding the affective and emotional aspects of pain, providing a mechanistic basis to explain how exogenous factors can act on the dopaminergic, noradrenergic, and serotonergic systems to in fluence the overall experience of pain.

    Based on the data reported in the literature, there is a consensus that dopamine can exert both anti-nociceptive and pro-nociceptive effects, with activation of D2-like receptors mediating the anti-nociceptive effects, and activation of D1-like receptors mediating the pro-nociceptive effects. Although some recent studies have suggested that activation of D3 and D4 receptors, in addition to D2 receptors, may mediate the anti-nociceptive effects of dopamine in the DHSC(Almanza et al., 2015; Lu et al., 2018), additional pharmacological studies, possibly combined with genetic tools, are needed to determine the contributions of specific dopamine receptors to pain modulation. For future translational aspects, it will be beneficial to fully characterize the expression of dopamine receptors in specific cell types in the DHSC and DRG neurons, and establish how different dopamine receptors will modulate the activity of specific neurons and dorsal horn neuronal circuits involved in pain signaling.

    Dysregulation or disengagement of the descending inhibitory pain modulatory systems may be responsible for promoting and/or maintaining chronic pain. A better understanding of the mechanisms by which dopamine modulates pain can provide novel therapeutic targets to treat or ameliorate chronic pain.

    Author contributions:Data collection, manuscript writing, and manuscript revising: MP.

    Conflicts of interest:The authors declare that there are no conflicts of interest.

    Financial support:This work was supported by internal funds to MP from the Department of Anesthesiology, Stony Brook Medicine, USA.

    Copyright license agreement:The Copyright License Agreement has been signed by the author before publication.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix,tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    国产毛片在线视频| 国产成人午夜福利电影在线观看| 亚洲欧美一区二区三区国产| av不卡在线播放| 看免费av毛片| 久久久久人妻精品一区果冻| 色哟哟·www| 色吧在线观看| 99香蕉大伊视频| 超色免费av| 欧美日韩成人在线一区二区| av网站免费在线观看视频| 老司机影院毛片| videosex国产| 欧美激情极品国产一区二区三区| 亚洲精品一二三| 亚洲精品一二三| 一区二区日韩欧美中文字幕| 日韩欧美一区视频在线观看| 精品国产一区二区三区四区第35| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 亚洲图色成人| 亚洲国产欧美日韩在线播放| 香蕉精品网在线| 亚洲av综合色区一区| 热re99久久精品国产66热6| 青春草国产在线视频| 丰满饥渴人妻一区二区三| 香蕉精品网在线| 亚洲av综合色区一区| 欧美成人午夜精品| 少妇 在线观看| 精品少妇一区二区三区视频日本电影 | 五月天丁香电影| 一级毛片我不卡| 婷婷色综合www| 99九九在线精品视频| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区久久| av国产久精品久网站免费入址| 毛片一级片免费看久久久久| 精品国产国语对白av| 丰满少妇做爰视频| 精品卡一卡二卡四卡免费| 国产成人免费无遮挡视频| 黄色怎么调成土黄色| av在线播放精品| 日本av手机在线免费观看| 美女xxoo啪啪120秒动态图| 日本av手机在线免费观看| 美女xxoo啪啪120秒动态图| 国产成人av激情在线播放| 国产精品一区二区在线不卡| 男女国产视频网站| 黑人欧美特级aaaaaa片| 狠狠婷婷综合久久久久久88av| 亚洲欧美精品自产自拍| 国产成人精品久久二区二区91 | 亚洲精品成人av观看孕妇| 丰满饥渴人妻一区二区三| 自线自在国产av| 九九爱精品视频在线观看| 欧美成人午夜免费资源| 国产亚洲精品第一综合不卡| 伊人久久国产一区二区| 99久久人妻综合| 亚洲国产成人一精品久久久| 在线亚洲精品国产二区图片欧美| 国产深夜福利视频在线观看| 老女人水多毛片| 青春草视频在线免费观看| 青春草视频在线免费观看| 两个人免费观看高清视频| h视频一区二区三区| 亚洲欧美成人精品一区二区| 99精国产麻豆久久婷婷| 国产成人精品久久久久久| 边亲边吃奶的免费视频| 亚洲人成电影观看| 波多野结衣一区麻豆| 精品一区二区三区四区五区乱码 | 午夜福利视频精品| 一级毛片我不卡| 国产乱来视频区| 久久久久久人妻| 老女人水多毛片| 青春草视频在线免费观看| 熟女av电影| 久久鲁丝午夜福利片| 精品国产露脸久久av麻豆| 午夜福利在线观看免费完整高清在| 美女大奶头黄色视频| 久久久亚洲精品成人影院| 观看av在线不卡| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 97在线视频观看| av在线播放精品| 中文字幕精品免费在线观看视频| 又黄又粗又硬又大视频| 男人爽女人下面视频在线观看| 一二三四在线观看免费中文在| 麻豆乱淫一区二区| 三上悠亚av全集在线观看| 18禁观看日本| 国产乱人偷精品视频| 久久狼人影院| 久久久欧美国产精品| 捣出白浆h1v1| 国产有黄有色有爽视频| 亚洲欧美一区二区三区黑人 | av卡一久久| 高清欧美精品videossex| 美女国产高潮福利片在线看| 9热在线视频观看99| 日韩一区二区三区影片| 亚洲av在线观看美女高潮| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 久久精品人人爽人人爽视色| av网站免费在线观看视频| 日本av免费视频播放| 国产成人免费观看mmmm| 少妇的丰满在线观看| 有码 亚洲区| 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 成年人午夜在线观看视频| 国产精品久久久久久精品电影小说| 三级国产精品片| 人妻系列 视频| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃| 午夜免费观看性视频| 中文字幕人妻丝袜一区二区 | 国产一区二区三区综合在线观看| 亚洲精品美女久久av网站| 永久网站在线| 国产精品偷伦视频观看了| 国产精品亚洲av一区麻豆 | 大码成人一级视频| 夫妻午夜视频| av在线播放精品| 亚洲国产精品成人久久小说| 性色av一级| 国产亚洲av片在线观看秒播厂| 欧美变态另类bdsm刘玥| 亚洲av电影在线进入| 满18在线观看网站| 久久久久精品久久久久真实原创| 精品午夜福利在线看| 成人漫画全彩无遮挡| 嫩草影院入口| 亚洲精品成人av观看孕妇| 久久人人97超碰香蕉20202| 国产淫语在线视频| 亚洲精品在线美女| 亚洲精品一区蜜桃| 精品人妻在线不人妻| 久久久久国产网址| 亚洲欧美精品自产自拍| 男人操女人黄网站| 欧美中文综合在线视频| 日日摸夜夜添夜夜爱| 欧美精品亚洲一区二区| 欧美成人午夜免费资源| 国产午夜精品一二区理论片| 久久精品人人爽人人爽视色| 久久精品亚洲av国产电影网| 亚洲综合色惰| 激情五月婷婷亚洲| 欧美日韩国产mv在线观看视频| 日韩中文字幕欧美一区二区 | 69精品国产乱码久久久| 日韩中文字幕视频在线看片| 国产日韩一区二区三区精品不卡| av在线播放精品| 99久国产av精品国产电影| 女性被躁到高潮视频| 国产精品一二三区在线看| 国产在线一区二区三区精| 久久亚洲国产成人精品v| 大陆偷拍与自拍| 欧美亚洲 丝袜 人妻 在线| 精品一区二区免费观看| 人人澡人人妻人| 女性被躁到高潮视频| 韩国精品一区二区三区| 亚洲人成网站在线观看播放| 欧美激情高清一区二区三区 | 视频在线观看一区二区三区| 久久久久久伊人网av| 国产综合精华液| 中文乱码字字幕精品一区二区三区| 999久久久国产精品视频| 欧美变态另类bdsm刘玥| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合大香蕉| 97在线视频观看| av电影中文网址| 香蕉精品网在线| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 欧美bdsm另类| 国产成人精品婷婷| 亚洲国产欧美网| 国产日韩欧美视频二区| 精品人妻一区二区三区麻豆| 人妻 亚洲 视频| 伦理电影大哥的女人| 一级,二级,三级黄色视频| 欧美bdsm另类| 午夜免费鲁丝| 欧美精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲第一区二区三区不卡| 久久免费观看电影| av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 好男人视频免费观看在线| 日韩中文字幕欧美一区二区 | 亚洲国产欧美在线一区| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 大陆偷拍与自拍| 日本午夜av视频| 国产人伦9x9x在线观看 | 国产精品av久久久久免费| 国产熟女午夜一区二区三区| 久久ye,这里只有精品| 久久久久网色| 妹子高潮喷水视频| 亚洲,欧美,日韩| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 伊人久久大香线蕉亚洲五| 老司机影院毛片| 国产一区亚洲一区在线观看| 狂野欧美激情性bbbbbb| 免费看不卡的av| 91国产中文字幕| 国产亚洲欧美精品永久| 曰老女人黄片| 美女中出高潮动态图| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 亚洲国产欧美网| 亚洲精品国产av蜜桃| 欧美老熟妇乱子伦牲交| 国产福利在线免费观看视频| 人人妻人人澡人人看| 国产视频首页在线观看| 丝袜脚勾引网站| 一个人免费看片子| 国产高清不卡午夜福利| 日韩伦理黄色片| 在线观看美女被高潮喷水网站| 一区二区三区激情视频| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 国产成人aa在线观看| 波多野结衣av一区二区av| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 夜夜骑夜夜射夜夜干| 国产野战对白在线观看| 亚洲第一区二区三区不卡| 精品国产超薄肉色丝袜足j| 久久久精品免费免费高清| 母亲3免费完整高清在线观看 | 最近手机中文字幕大全| 久久精品国产a三级三级三级| videosex国产| 视频区图区小说| 久久韩国三级中文字幕| 国产爽快片一区二区三区| 国产一区二区激情短视频 | 久久综合国产亚洲精品| 国产精品免费视频内射| 久久毛片免费看一区二区三区| 精品人妻偷拍中文字幕| 免费av中文字幕在线| 国产成人aa在线观看| 国产午夜精品一二区理论片| 国产极品天堂在线| 成人影院久久| 在线 av 中文字幕| 男女无遮挡免费网站观看| 国产福利在线免费观看视频| 午夜久久久在线观看| 欧美日韩av久久| 少妇被粗大的猛进出69影院| 欧美亚洲 丝袜 人妻 在线| 午夜免费鲁丝| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 街头女战士在线观看网站| 日本av手机在线免费观看| 妹子高潮喷水视频| av有码第一页| 亚洲一级一片aⅴ在线观看| 欧美国产精品va在线观看不卡| 一区二区日韩欧美中文字幕| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 九色亚洲精品在线播放| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 久久青草综合色| av线在线观看网站| 国产免费福利视频在线观看| 久久久国产一区二区| 亚洲欧美精品综合一区二区三区 | 久久免费观看电影| 成人18禁高潮啪啪吃奶动态图| 晚上一个人看的免费电影| 亚洲人成77777在线视频| 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 久久亚洲国产成人精品v| 国产极品粉嫩免费观看在线| 丝袜美足系列| 一级爰片在线观看| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 国产在线免费精品| 最新中文字幕久久久久| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 亚洲美女视频黄频| 丰满少妇做爰视频| 久久婷婷青草| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频| av线在线观看网站| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 国产 精品1| 亚洲第一青青草原| 制服诱惑二区| 嫩草影院入口| 久久精品aⅴ一区二区三区四区 | 国产片内射在线| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 1024香蕉在线观看| 看非洲黑人一级黄片| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 青草久久国产| 国产成人免费无遮挡视频| 久久久国产欧美日韩av| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 日韩一区二区视频免费看| 国产极品天堂在线| 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 午夜福利网站1000一区二区三区| 9色porny在线观看| 男人舔女人的私密视频| 亚洲欧美一区二区三区黑人 | 国产精品香港三级国产av潘金莲 | 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 男女国产视频网站| 黄色 视频免费看| 最近中文字幕2019免费版| 免费av中文字幕在线| 国产精品蜜桃在线观看| 你懂的网址亚洲精品在线观看| 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 精品午夜福利在线看| 十八禁网站网址无遮挡| 久久人人97超碰香蕉20202| 狂野欧美激情性bbbbbb| 夜夜骑夜夜射夜夜干| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 久久久久久久国产电影| 国产免费福利视频在线观看| 制服人妻中文乱码| videos熟女内射| 大香蕉久久成人网| 黄色一级大片看看| 国产精品人妻久久久影院| 久久久久久人人人人人| 人成视频在线观看免费观看| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品| 国产成人a∨麻豆精品| 精品一区二区三卡| 如日韩欧美国产精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区四区第35| av免费观看日本| 99久久精品国产国产毛片| 亚洲,欧美精品.| 亚洲av福利一区| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 国产不卡av网站在线观看| 国产精品亚洲av一区麻豆 | 在线观看www视频免费| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 亚洲欧美精品综合一区二区三区 | 婷婷色综合大香蕉| 午夜激情av网站| 欧美最新免费一区二区三区| 中文字幕最新亚洲高清| 国产乱人偷精品视频| 18在线观看网站| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 极品人妻少妇av视频| 久久精品久久久久久久性| 天堂中文最新版在线下载| 精品少妇内射三级| 免费在线观看完整版高清| 精品午夜福利在线看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品久久久久久婷婷小说| 人妻人人澡人人爽人人| 欧美+日韩+精品| 国产男人的电影天堂91| 亚洲国产欧美日韩在线播放| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| 一区福利在线观看| 制服诱惑二区| 亚洲国产色片| 肉色欧美久久久久久久蜜桃| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 国产av精品麻豆| av在线播放精品| 久久久欧美国产精品| xxx大片免费视频| 精品亚洲乱码少妇综合久久| 91aial.com中文字幕在线观看| 午夜激情av网站| 免费观看av网站的网址| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 99精国产麻豆久久婷婷| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 男女午夜视频在线观看| 99香蕉大伊视频| 久久精品久久久久久久性| 国产精品 国内视频| 日本欧美国产在线视频| 午夜福利在线免费观看网站| 日本av手机在线免费观看| 80岁老熟妇乱子伦牲交| 各种免费的搞黄视频| 国产乱人偷精品视频| 午夜av观看不卡| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 成年人午夜在线观看视频| 黄频高清免费视频| 亚洲国产最新在线播放| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 欧美+日韩+精品| 成人18禁高潮啪啪吃奶动态图| 成年动漫av网址| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av男天堂| 丁香六月天网| 各种免费的搞黄视频| 亚洲第一av免费看| 中文字幕色久视频| 国产又爽黄色视频| 国产男女内射视频| av视频免费观看在线观看| 黄色视频在线播放观看不卡| 欧美+日韩+精品| 制服人妻中文乱码| 男人添女人高潮全过程视频| 中文字幕色久视频| 新久久久久国产一级毛片| 一区二区av电影网| 久久久久久人妻| 久久精品久久久久久噜噜老黄| 在线观看www视频免费| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| 老汉色av国产亚洲站长工具| 黄片播放在线免费| 少妇被粗大的猛进出69影院| 国产亚洲午夜精品一区二区久久| 日韩视频在线欧美| 亚洲国产欧美在线一区| 国产精品久久久av美女十八| 日日撸夜夜添| 国产亚洲精品第一综合不卡| 亚洲av.av天堂| 国产野战对白在线观看| 精品国产一区二区久久| 蜜桃国产av成人99| 制服诱惑二区| 18禁动态无遮挡网站| 午夜av观看不卡| 国产精品久久久久久精品古装| 国产精品无大码| 欧美亚洲日本最大视频资源| 超色免费av| 少妇熟女欧美另类| 这个男人来自地球电影免费观看 | 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 天美传媒精品一区二区| 国产精品二区激情视频| 青青草视频在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 春色校园在线视频观看| 国产av精品麻豆| 亚洲欧美清纯卡通| 免费观看在线日韩| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人 | 亚洲欧美精品自产自拍| 免费日韩欧美在线观看| 国产成人精品无人区| a 毛片基地| 视频在线观看一区二区三区| 少妇熟女欧美另类| 91国产中文字幕| 如何舔出高潮| 久久久精品国产亚洲av高清涩受| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 亚洲精品国产一区二区精华液| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看 | 久久影院123| 亚洲,欧美精品.| xxxhd国产人妻xxx| 看十八女毛片水多多多| 91精品国产国语对白视频| 99国产综合亚洲精品| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 久久精品国产亚洲av天美| 少妇的丰满在线观看| 成年动漫av网址| 成人18禁高潮啪啪吃奶动态图| 久久久久精品人妻al黑| 午夜日韩欧美国产| 寂寞人妻少妇视频99o| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 18在线观看网站| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| 丝瓜视频免费看黄片| 777米奇影视久久| 久久久欧美国产精品| 人人澡人人妻人| www.av在线官网国产| 丰满少妇做爰视频| 边亲边吃奶的免费视频| 青春草国产在线视频| 成人国产麻豆网| 日本欧美视频一区| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 午夜老司机福利剧场| 伊人亚洲综合成人网| 黄色 视频免费看| 成人国语在线视频| 蜜桃在线观看..|