• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Call Characteristics of Two Sympatric and Morphologically Similar Tree Frogs Species, Polypedates megacephalus and Polypedates mutus (Anura: Rhacophoridae), from Hainan, China

    2018-12-29 06:29:52QiuchengLIUTongliangWANGXiaofeiZHAIandJichaoWANG
    Asian Herpetological Research 2018年4期

    Qiucheng LIU, Tongliang WANG, Xiaofei ZHAI and Jichao WANG

    Ministry of Education Key Laboratory for Tropical Island Ecology, College of Life Sciences, Hainan Normal University,Haikou 571158, China

    Abstract Anuran calls are usually species-specific and therefore valued as a tool for species identification. Call characteristics are a potential honest signal in sexual selection because they often re flect male body size. Polypedates megacephalus and P. mutus are two sympatric and morphologically similar tree frogs, but it remains unknown whether their calls are associated with body size. In this study, we compared call characteristics of these two species and investigated any potential relationships with body size. We found that P. megacephalus, males produced six call types which consisting of three distinct notes, while P. mutus males produced five types consisting of two types of notes.Dominant frequency, note duration, pulse duration, and call duration exhibited signi ficant interspeci fic differences. In P. megacephalus, one note exhibited a dominant frequency that was negatively correlated with body mass, snout-vent length, head length, and head width. In P. mutus, the duration of one note type was positively correlated with body mass and head width. These differences in call characteristics may play an important role in interspeci fic recognition.Additionally, because interspeci fic acoustic variation re flects body size, calls may be relevant for sexual selection. Taken together, our results con firmed that calls are a valid tool for distinguishing between the two tree-frog species in the field.

    Keywords body size, call characteristics, Polypedates, sexual selection

    1. Introduction

    Amphibian communication is primarily dependent on vocalizations (Gerhardt and Huber, 2002; Cui et al.,2011). In most anurans, acoustic interactions are key to male-male competition and female choice (Narins et al., 2006; Xu et al., 2011). The spectral and temporal parameters of acoustic calls are species-specific, and hence can be used for species identification and for determining phylogenetic relationships (Jiang et al.,2002; Heyer and Barrio-Amorós, 2009). Thus, acoustic studies are an important tool for clarifying the taxonomy of sympatric and morphologically similar species.

    Body size may affect the outcomes of sexual selection through male-male competition and female choice.Larger males usually defeat smaller males in aggressive encounters, and females often preferentially choose larger males (Wells, 1978; Given, 1988; Richardson et al., 2010;Liao and Lu, 2011; Rausch et al., 2014). Previous studies have shown that the spectral and temporal parameters of calls could re flect frog body size (Martin, 1972; Gerhardt,1994; Wang et al., 2012; Wei et al., 2012; Zhu et al.,2016a). However, other studies suggest that acoustic properties and morphological characteristics are unrelated in some frog species (Penna, 2004; Márquez et al., 2005).

    Polypedates megacephalus and P. mutus (family Rhacophoridae) are tree frogs common throughout southern China and Southeast Asia (Fei et al., 2012).The two species have controversial taxonomic status. In China, Hong Kong populations previously considered to be P. leucomystax were named as P. megacephalus,a new species (Hallowell, 1861), a classification that subsequent taxonomists conferred to all P. leucomystax populations in continental China (Matsui et al., 1986;Zhao and Adler, 1993; Fei, 1999; Fei et al., 2005, 2009).Polypedates mutus was identified from Hekou Yunnan,China, based on samples with a “striped” morphology and the lack of a vocal sac (Liu et al., 1960); this species was later found throughout southern China (Inger et al.,1999). Recent phylogenetic and taxonomic evidence supports the presence of P. megacephalus and P. mutus in southern China, including Hainan (Kuraishi et al.,2012; Pan et al., 2013). Acoustic call characteristics of both species have been previously described (Xu,2005), but limited samples allowed only a few simple analyses of acoustic parameters and structure. A later study identi fied three note types in the complex call of P.megacephalus from Hong Kong (type locality) (Kuraishi et al., 2011). However, no comprehensive comparison of call characteristics has been made between the two species thus far. It also remains unknown whether their calls reflect body size. This missing information complicates field identification of these two sympatric and morphologically similar species.

    The objective of the present study was to compare the spectral and temporal parameters of vocalizations from sympatric P. megacephalus and P. mutus. We investigated the relationship between call characteristics and male body size. Our study contributes to existing knowledge of vocal repertoires across tree frog species and provides comprehensive data that will help to distinguish interspeci fic call types.

    2. Materials and Methods

    2.1. Study species Snout-vent lengths of adult P.megacephalus males and females are 41–48 and 57–65 mm, respectively (Table 1). No black or brown spots are present on the sides of the body, but spots are arranged in reticulate patterns along the posterior (Figure 1A).Numerous small reticulate structures are present on the back (Figure 1C) (Liu et al., 2018). Hind legs are stout and tibial-tarsal joints stretch between the eyes and nostrils. Male frogs have a pair of pharyngeal subcapsular structures. Polypedates megacephalus inhabits altitudes ranging between 80 and 2200 m (Fei et al., 2012; Wang et al., 2014).

    Figure 1 Morphological characteristics of Polypedates megacephalus (left) and P. mutus (right).

    Snout-vent lengths of adult males and females of P.mutus are 52–63 and 53–77 mm, respectively (Table 1).Large and dark brown spots are arranged continuously on the sides of the body, and the posterior lacks any reticulate patterns (Figure 1B). A few large reticulate structures are present on the back (Figure 1D) (Liu et al., 2018).Hind legs are slender, with tibial-tarsal joints stretching to the snout or nostrils, and male frogs lack a vocal sac.Polypedates mutus inhabits altitudes ranging between 340 and 1100 m (Fei et al., 2012; Wang et al., 2014).

    2.2. Vocalization recording and analyses From June 10 to July 9, 2015, we recorded male P. megacephalus and P. mutus vocalizations in their original habitat of Mt. Diaoluo National Nature Reserve (18°43'22.02" N,109°52'6.19" E, 933 m a.s.l.), Hainan, China. Recorded calls were always of isolated individuals and never from a mixed chorus. Vocalizations were recorded from 19:30 to 23:30 h (air temperature: 20.7 ± 1.4 °C, relative humidity:94.5% ± 5.3%). Each recording lasted 10 min per male,using a directional microphone (Sennheiser ME-66 with K6 power module; Sennheiser, Wedemark, Germany)connected to a digital recorder (PMD-660, 16 bit, 44.1 kHz; Marantz, Kanagawa, Japan), placed approximately 1 m away from the subject. Calls of individuals from both species were recorded on the same night as far as possible. Actual species recorded was decided based on whichever individuals were found in one night. Data were saved as wav files.

    Call parameters were defined and illustrated based on K?hler et al. (2017). Dominant frequency was sound energy concentrated within the whole power spectrum,while fundamental frequency was the base or lowest frequency band in each note. Acoustic parameters measured included the following temporal and spectral properties: note duration (ND), call duration (CD), note number (NN), pulse number (PN), pulse duration (PD),fundamental frequency (FF), and dominant frequency(DF). According to the recording quality, we selected 6–41 and 1–10 calls used for each individual of P.megacephalus and P. mutus, respectively. Oscillograms and spectrograms were prepared in PRAAT (version 5.1.11; Boersma and Weenink, 2017). Body mass, snouttovent length (SVL), head length (HL), and head width(HW) were measured after the calls were recorded,respectively. Correlation analyses between morphological indexes and call parameters were conducted.

    Table 1 Body size and call properties of male Polypedates megacephalus and P. mutus.

    The ratio of CVb(between-male coefficients of variation) to CVw(within-male coef ficients of variability)was calculated to find relative variability of between and within individuals’ variation (Pettitt et al., 2013; Fang et al., 2018). If CVb/CVw> 1.0 for a call trait, there is more variability among males and this may have behavioral consequences for individual recognition (Bee et al., 2001;Robisson et al., 2010; Pettitt et al., 2013). In the present study, when the number of calls > 1 from recorded individual, this subject was used to calculate CVw.

    2.3. Statistical analysis Data were statistically analyzed using SPSS 19.0 (IBM Corp., Chicago, IL, USA). To compare the differences of DF, FF or ND among the three note types in P. megacephalus, Friedman test was used. If the main effect was significant, Wilcoxon test was used to determine the difference for each parameter.Wilcoxon test was also conducted for each parameter in P. mutus. Mann-Whitney U tests were used to compare the differences in DF, FF, ND, CD, PN, and PD between species. Spearman’s correlation analysis was used to detect possible relationships between vocalization characters and body size. Prior to statistical analyses,we calculated the average value for each call trait of each male frog, and then used those average values to calculate mean ± SD which represented the trait value of one species frog. Data are expressed as the mean ± SD,and P < 0.05 and P < 0.001 were considered statistically signi ficant and highly statistically signi ficant.

    3. Results

    3.1. Call characteristics Calls consisting of a single note type are simple calls, and calls consisting of different note types are complex calls (K?hler et al., 2017). We recorded and analyzed spontaneous vocalizations from 18 P. megacephalus and 13 P. mutus. Male P. megacephalus produced six call types: I (note A), II (note B), III (note C), IV (note A + B), V (note B + A), and VI (note C + B),where notes A–C are three distinct note types. Male P.mutus produced five call types: VII (note D), VIII (note E), IX (note D + E), X (note E + D), and XI (note D + E+ D), with notes D and E being distinct. Call waveforms and spectrograms are presented in Figures 2 and 3. The seven acoustic characteristics (DF, FF, ND, NN, PN, PD,and CD) are summarized in Table 1.

    Polypedates megacephalus Call type I (Figure 2A) is a simple call, consisting of 1–23 (average 6.01 ± 1.80)note-A renditions, CD ranging from 21.00–1684.00 ms (n= 18). The ND, DF, and FF of note A were 26.08 ± 3.78 ms (n = 18), 1281.23 ± 315.23 Hz (n = 18), and 227.86 ±21.03 Hz (n = 18), respectively.

    Call type II (Figure 2B) is a simple call, consisting of 1–9 (average 2.77 ± 1.14) note-B renditions, CD ranging from 63.80–2670.60 ms (n = 18). The ND, DF, and FF of note B were 124.16 ± 26.06 ms (n = 18), 1134.94 ±353.94 Hz (n = 18), and 213.81 ± 18.94 Hz (n = 18),respectively. Calls exhibited 6.54 ± 1.07 pulses, with a PD of 13.11 ± 1.00 ms.

    Call type III (Figure 2C) is a simple call, consisting of 2–4 (average 3.58 ± 0.58) note-C renditions, CD ranging from 111.00 – 416.00 ms (n = 12). The ND, DF, and FF of note C were 30.15 ± 4.23 ms (n = 12), 1963.64 ± 110.35 Hz (n = 12), and 236.65 ± 34.14 Hz (n = 12) respectively,with clear harmonics.

    Call type IV (Figure 2D) is a complex call, with 2.00± 0.71 renditions of note A, followed by 2.00 ± 1.41 renditions of note B (n = 4).

    Call type V (Figure 2E) is a complex call, with 2.75± 0.96 renditions of note B, followed by 8.75 ± 7.89 renditions of note A (n = 4).

    Call type VI (Figure 2F) has 3.27 ± 0.70 renditions of note C, followed by 2.96 ± 1.20 renditions of note B (n =14).

    Type II calls were dominant across 18 individuals(57.43%), followed by type I (25.69%), type VI (7.50%),type III (6.60%), type IV (1.50%), and type V (1.30%).Friedman test results showed that DF and ND differed significantly among notes A, B, and C (P < 0.001), but FF (P = 0.083) did not. Wilcoxon tests revealed that DF differed signi ficantly between notes A and C (P < 0.002),as well as note B and C (P < 0.002), but not between notes A and B (P = 0.170). Signi ficant differences in ND were observed between notes A and B (P < 0.001), A and C (P < 0.05), as well as B and C (P = 0.002).

    Polypedates mutus Call type VII (Figure 3A) is a simple call, consisting of 1–33 (average 14.14 ± 5.84) note-D renditions, CD ranging from 18.00–7731.00 ms (n = 13).The ND, DF, and FF of note D were 20.32 ± 1.93 ms (n= 13), 1155.32 ± 123.10 Hz (n = 13), and 209.44 ± 19.36 Hz (n = 13), respectively, with clear harmonics.

    Call type VIII (Figure 3B) consisted of 2–4 (average 3.00 ± 0.71) note-E renditions, CD ranging from 421.00–971.00 ms (n = 5). The ND of note E was 133.96 ± 29.95 ms (n = 5), and its DF and FF were 1088.22 ± 111.69 Hz(n = 5) and 217.65 ± 18.14 Hz (n = 5), respectively, with 6.98 ± 1.11 pulses and PD was 16.60 ± 1.35 ms.

    Figure 2 Amplitude-modulated waveforms and spectrograms of Polypedates megacephalus calls: (A) call type I, (B) call type II, (C) call type III, (D) call type IV, (E) call type V, and (F) call type VI.

    Call type IX (Figure 3C) is complex, with 7 ± 8.7 renditions of note D, followed by 1.33 ± 0.58 renditions of note E (n = 3).

    Call type X (Figure 3D) included 2.90 ± 0.74 renditions of note E, followed by 15.47 ± 8.98 renditions of note D (n = 5).

    Call type XI (Figure 3E) was 12.33 ± 18.77 renditions of note D, followed by 1.67 ± 0.58 renditions of note E and 14.33 ± 3.51 renditions of note D (n = 4).

    Call type VII was dominant across 13 individuals(66.67%), followed by type X (15.50%), type XI (9.50%),type IX (4.80%), and type VIII (3.60%).Wilcoxon tests revealed that note D and E differed signi ficantly in ND (P= 0.043), but not in DF (P = 0.345) or FF (P = 0.225) .

    3.2. Comparisons of acoustic characteristics for simple calls in the two species of tree frogs The results of the Mann-Whitney U-test revealed no signi ficant differences in DF, except between notes C and note D (P < 0.001),as well as notes C and note E (P < 0.001). Significant ND differences were observed between different notes of the two species, except between notes B and note E (P= 0.371). Excluding the comparisons between CD I and CD VIII (P = 0.201), CD I and CD IX (P = 0.100), CD II and CD VIII (P = 1.000), CD II and CD IX (P = 0.100),CD III and CD VIII (P = 0.109), CD III and CD IX (P =0.109), CD IV and CD VIII (P = 1.000), CD IV and CD IX (P = 0.480), CD V and CD VIII (P = 0.157), CD V and CD IX (P = 1.000), CD VI and CD VIII (P = 0.105),and CD VI and CD IX (P = 0.487), CD was signi ficantly different between all other comparisons. Notes B and E did not differ signi ficantly in PN (P = 0.455), but did in PD (P = 0.001). In P. megacephalus and P. mutus, CVb/CVw>1.0 was 11 and 7 call traits, respectively (Table 1).

    3.3. Relationship between body size and call structures Correlation analysis was used to determine whether DF and ND were associated with body size. Mean male BM,SVL, HL, and HW values of P. megacephalus were 6.78± 1.25 g, 53.38 ± 3.29 mm, 17.79 ± 1.3 mm, and 15.66 ±1.31 mm, respectively (n = 11) (Table 1). Only the DF of note B was negatively correlated with BM (r = –0.665, P= 0.026, n = 11; Figure 4A), SVL (r = –0.763, P = 0.006,n = 11; Figure 4B), HL (r = –0.759, P = 0.007, n = 11;Figure 4C), and HW (r = –0.623, P = 0.040, n = 11; Figure 4D). However, no signi ficant correlation existed between ND and body size in P. megacephalus (Figure 4E–F).

    Figure 3 Amplitude-modulated waveforms and spectrograms of Polypedates mutus calls: (A) call type VII, (B) call type VIII, (C) call type IX, (D) call type X, and (E) call type XI.

    Figure 4 Relationship between dominant frequency of note B and body mass (A), snout–vent length (B), head length (C), and head width (D).Relationship between duration of note B and body mass (E) and head width (F) for Polypedates megacephalus.

    Figure 5 Relationship between dominant frequency of note D and body mass (A), snout–vent length (B), head length (C), and head width (D).Relationship between duration of note D and body mass (E) and head width (F) for Polypedates mutus.

    Mean BM, SVL, HL, and HW of P. mutus males were 12.2 ± 1.83 g, 63.19 ± 3.89 mm, 20.35 ± 1.04 mm, and 18.1 ± 1.1 mm, respectively (n = 10) (Table 1). Only the ND of note D was positively correlated with BM(r = 0.716, P = 0.020, n = 10; Figure 5A) and HW (r =0.643, P = 0.045, n = 10; Figure 5B), whereas DF was not signi ficantly correlated with body size (Figure 5A–D).

    4. Discussion

    In the present study, calls from 18 P. megacephalus and 13 P. mutus were recorded. Calls of both species comprised multiple note types: three in P. megacephalus and two in P. mutus. In P. megacephalus, note C had harmonics, while notes A and B did not. In P. mutus,note D had harmonics, while note E did not. Because the two species differed in the proportion of each call type per unit time, and P. mutus was less abundant in the field, statistical between-species comparisons were only performed on simple call structure and their parameters.The investigation of between-species acoustic parameters revealed significant differences in DF, ND, PD, and CD. Similar results were also reported in two sympatric species of Chiasmocleis, suggesting that the observed differences could be due to variation in social behavior(Forlani et al., 2013). In general, the difference in call characteristics reinforces existing species distinctions and indicates that calls are important as a mechanism to avoid interspecific mating (Haddad et al., 1994; Bastos et al.,2011). Based on the described acoustic differences, the two species of tree frogs could be easily distinguished in the field.

    Frogs and toads generally produce relatively simple calls consisting of a single note or a series of identical repeated notes (Wang et al., 2016). Some anuran males, however, can produce dozens of complex calls.A previous study reported that the endemic Boophis madagascariensis possesses the largest known anuran vocal repertoire, with 28 distinct call types that differ in temporal pattern and spectral bandwidth (Narins et al., 2000). Polypedates leucomystax in Southeast Asia produces nine different call notes and at least 12 different call types (Christensen-Dalsgaard et al., 2002).In the present study, P. megacephalus produced more complex calls than did P. mutus. Previous research has suggested that in some anuran species, different note types have distinct functions (Kelley, 2004; Zhu et al.,2017). Although we did not test the meaning of each call property via playback experiments, CVb/CVwvalues suggested that dominant frequency, note duration, note number, and call duration are important features useful for individual identi fication in both species.

    Xu (2005) reported similar DF in a Guangxi population of P. megacephalus. However, calls from the two populations differed in FF and ND. Previously reports of Hong Kong P. megacephalus call structure also had three note types, similar to our findings (Kuraishi et al., 2011).The DF of Hainan P. mutus and a Guangxi population was similar, but FF differed between them (Xu, 2005). Thus,these findings suggest that geographic variation may exist in P. megacephalus and P. mutus calls. This hypothesis is being thoroughly tested in our ongoing research.

    Call characteristics are correlated with body size in some species and are potentially important signals related to male-male competition and mate choice (Given, 1987;Morris and Yoon, 1989; Bee et al., 1999; Gerhardt and Huber, 2002; Narins et al., 2006; Zhu et al., 2016b). In the present study, we found that the DF of note B was negatively correlated with body size in P. megacephalus,thus corroborating findings from many other anuran species and providing evidence that DF is a reliable indicator of male body size (Wang et al., 2012, 2016; Zhu et al., 2016a). However, note duration and body size were not signi ficantly correlated in P. megacephalus, nor were dominant frequency and body size correlated in P. mutus.The ND of note D was positively correlated with BM and HW in P. mutus. This pattern probably occurs because longer ND results in longer call duration, which might be metabolically costly to produce and requires a larger body size (Wang et al., 2012; Zhu et al., 2016a). In conclusion,although the sample size was small for each species in the present study, the current results still suggest that interspeci fic acoustic differences could re flect body size and facilitate intraspeci fic identi fication, thereby playing an important role in sexual selection.

    Limitations In the present study, calls in 18 individuals of P. megacephalus and 13 individuals of P. mutus were recorded to analyze the call characteristics. Because the proportion of each call type per unit time in both species was different, and the density of P. mutus was also lower in the field, only some call parameters were statistically compared between the two species of tree frogs.

    AcknowledgementsWe thank Hao ZHANG for the help in field experiment. We are grateful to Zhixin SUN,Bicheng ZHU, and Longhui ZHAO for helpful and advice on analyses. This work was supported by the National Natural Science Foundation of China (31260518 to JW) and the Education Department of Hainan Province(00501023523).References

    Bastos R. P., Signorelli L., Morais A. R., Costa T. B., Lima L.P., Jr J. P. P.2011. Advertisement calls of three anuran species(Amphibia) from the Cerrado, Central Brazil. S Am J Herpetol,6: 67–72

    Bee M. A., Kozich C. E., Blackwell K. J., Gerhardt H. C.2010. Individual variation in advertisement calls of territorial male green frogs, Rana clamitans: implications for individual discrimination. Ethology, 107: 65–84

    Bee M. A., Perrill S. A., Owen P. C.1999. Size assessment in simulated territorial encounters between male green frogs (Rana clamitans). Behav Ecol Sociobiol, 45: 177–184

    Boersma P., Weenink D.2017. Praat: doing phonetics by computer[Computer program],Version 5.1.11. Available from: http://www.praat.org/

    Christensen-Dalsgaard J., Ludwig T. A., Narins P. M.2002. Call diversity in an old world treefrog: level dependence and latency of acoustic responses. Bioacoustics, 13: 21–35

    Cui J. G., Tang Y. Z., Narins P. M.2011. Real estate ads in Emei music frog vocalizations: Female preference for calls emanating from burrows. Biol Lett, 8: 337–340

    Fang K., Zhang B. W., Brauth S. E., Tang Y. Z., Fang G. Z.2018. The first call note of the Anhui tree frog (Rhacophorus zhoukaiya) is acoustically suited for enabling individual recognition. Bioacoustics, DOI: 10.1080/09524622.2017.1422805

    Fei L.1999. Atlas of Amphibians of China. China: Henan Scienti fic and Technologic Press, Zhengzhou (In Chinese)

    Fei L., Hu S. Q., Ye C. Y., Huang Y. Z.2009. Fauna Sinica, Vol. 2,Amphibia. Science Press, Beijing China (In Chinese)

    Fei L., Ye C. Y., Jiang J. P., Xie F., Huang Y. Z.2005. An Illustrated Key to Chinese Amphibians. Sichuan Science and Technology, Chengdu China (In Chinese)

    Fei L., Ye C. Y., Jiang J. P.2012. Colored Atlas of Chinese Amphibians and Their Distributions. Sichuan Science and Technology Press, Chengdu (In Chinese)

    Forlani M. C., Mendes C. V. D. M., Dias I. R. Ruas D. S.,Tonini J. F. R., Sá R. O. D. 2013. The advertisement calls and distribution of two sympatric species of Chiasmocleis (Méhely 1904) (Anura, Microhylidae, Gastrophryninae) from the Atlantic Forest. S Am J Herpetol, 8: 46–51

    Gerhardt H. C., Huber F.2002. Acoustic communication in insects and anurans: Common problems and diverse solutions.University of Chicago Press, Chicago

    Gerhardt H. C.1994. The evolution of vocalization in frogs and toads. Annu Rev Ecol S, 25: 293–324

    Given M. F.1987. Vocalization and acoustic interactions of the carpenter frog, Rana virgatipes. Herpetologica, 43: 467-481

    Given M. F.1988. Territoriality and aggressive interactions of male carpenter frogs, Rana virgatipes. Copeia, 1988: 411-421

    Hallowell E.1861. Report upon the Reptilia of the North Paci fic Exploring Expedition, under command of Capt. John Rogers,U.S. N. P Acad Nat Sci Phila, 12: 480–510

    Heyer W. R., Barrio-Amorós C. L.2009. The advertisement calls of two sympatric frogs, Leptodactylus lithonaetes (Amphibia:Anura: Leptodactylidae) and Pristimantis vilarsi (Amphibia:Anura: Strabomantidae). P Biol Soc Wash, 122: 282–291

    Inger R. F.1999. Distributions of amphibians in southern Asia and adjacent islands. Pp. 445–482. In Duellman W. E. (Ed.), Patterns of distribution of amphibians: A global perspective. Baltimore:John Hopkins University Press

    Jiang J. P., Xie F., Fei L., Ye C. Y., Zheng M.2002. Mating calls of six forms of pleobatid in Wa Wu Mountain National Forest Park, Sichuan, China (Anura: Pelobatidae). Zool Res, 23: 89–94(In Chinese)

    Kelley D. B.2004. Vocal communication in frogs. Curr Opin Neurobiol, 14: 751–757

    Kuraishi N., Matsui M., Hamidy A., Belabut D. M., Ahmad N., Panha S., Sudin A., Yong H. S., Jiang J. P., Ota H.,Thong H. T., Nishikawa K.2012. Phylogenetic and taxonomic relationships of the Polypedates leucomystax complex(Amphibia). Zool Scr, 42: 54–70

    Kuraishi N., Matsui M., Ota H., Chen S. L.2011. Specific separation of Polypedates braueri (Vogt, 1911) from P. megacephalus (Hallowell, 1861) (Amphibia: Anura:Rhacophoridae). Zootaxa, 2744: 53–61

    K?hler J., Jansen M., Rodríguez A., Pjr K., Toledo L. F.,Emmrich M., Glaw F., Haddad C. F. B., R?del M. O., Vences M.2017. The use of bioacoustics in anuran taxonomy: Theory,terminology, methods and recommendations for best practice.Zootaxa, 4251: 1–124

    Liao W. B., Lu X.2011. Proximate mechanisms leading to large male mating advantage in the Andrew’s toad, Bufo andrewsi.Behaviour, 148: 1087–1102

    Liu C. C., Нu S. Q., Yang F. H.1960. Amphibia of Yunnan collected in 1958. Acta Zool Sin, 12: 149–174

    Liu Q. C., Zhai X. F., Wang T. L., Wang J. C.2018.Morphological identification and diversity of Polypedates species (Rhacophoridae, Anura, Amphibia) on Hainan Island.Sichuan J Zool, 5(37): 490–496 (In Chinese)

    Márquez R., Penna M., Marques P., do Amaral J. P. S.2005.Diverse types of advertisement calls in the frogs Eupsophus calcaratus and E. roseus (Leptodactylidae): A quantitative comparison. Herpetol J, 15(4): 257–263

    Martin W. F.1972. Evolution of vocalization in the genus Bufo.Pp. 279-309. In Blair W. F. (Ed.), Evolution in the Genus Bufo.University of Texas Press, Austin

    Matsui M., Seto T., Utsunomiya T.1986. Acoustic and karyotypic evidence for specific separation of Polypedates megacephalus from P. leucomystax. J Herpetol, 20: 483–489

    Morris M. R., Yoon S. L.1989. A mechanism for female choice for large males in the treefrog Hyla chrysoscelis. Behav Ecol Sociobiol, 25: 65-71

    Narins P. M., Feng A. S., Fay R. R., Popper A. N.2006. Hearing and sound communication in amphibians. Springer Science,New York

    Narins P. M., Lewis E. R., McClell B. E.2000. Hyperextended call note repertoire of the endemic Madagascar treefrog Boophis madagascariensis (Rhacophoridae). The Zoological Society of London, 250: 283–298

    Pan S. L., Dang N. X., Wang J. S., Zheng Y. T., Rao D. Q.,Li J. T.2013. Molecular phylogeny supports the validity of Polypedates impresus yang 2008. Asian Herpetol Res, 4: 124–133

    Penna M.2004. Amplification and spectral shifts of vocalizations inside burrows of the frog Eupsophus calcaratus(Leptodactylidae). J Acoust Soc Am, 116: 1254–1260

    Pettitt B. A., Bourne G. R., Bee M. A.2013. Advertisement call variation in the golden rocket frog (Anomaloglossus beebei):Evidence for individual distinctiveness. Ethology, 119: 244–256

    Haddad C. F. B., Pombal Jr. J. P., Batistic R. F.1994. Natural hybridization between diploid and tetraploid species of Leaffrogs, Genus Phyllomedusa (Amphibia). J Herpetol, 28(4):425–430

    Pr?hl H.2003. Variation in male calling behaviour and relation to male mating success in the Strawberry poison frog (Dendrobates piimilio). Ethology, 109: 273–290

    Rand A. S., Ryan M.1981. The adaptive signi ficance of a complex vocal repertoire in a neotropical frog. Ethology, 57: 209–214

    Rausch A. M., Sztatecsny M., Jehle R., Ringler E., H?dl W.2014. Male body size and parental relatedness but not nuptial colouration influence paternity success during scramble competition in Rana arvalis. Behaviour, 151: 1869–1884

    Pettitt B. A., Bourne G. R., Bee M. A.2013. Advertisement call variation in the Golden rocket frog (Anomaloglossus beebei):Evidence for individual distinctiveness. Ethology, 119: 244–256

    Richardson C., Joly P., Léna J. P., Plénet S., Lengagne T.2010.The challenge of finding ahighquality male: A treefrog solution based on female assessment of male calls. Behaviour, 147:1737–1752

    Robisson P., Aubin T., Bremond J. C.2010. Individuality in the voice of the emperor penguin Aptenodytes forsteri: Adaptation to a noisy environment. Ethology, 94: 279–290

    Smith M. J., Hunter D.2005. Temporal and geographic variation in the advertisement call of the Booroolong frog (Litoria booroolongensis: Anura: Hylidae). Ethology, 111: 1103–1115

    Wang J. C., Yang C. C., Lin L., Liu H. W.2014. Wild Vertebrate In Diaoluoshan, Hainan, China. China Forestry Press, Beijing(In Chinese)

    Wang J. C., Cui J. G., Shi H. T., Brauth S. E., Tang Y. Z.2012.Effects of body size and environmental factors on the acoustic structure and temporal rhythm of calls in Rhacophorus dennysi.Asian Herpetol Res, 3: 205–212

    Wang J. C., Wang T. L., Wang P. P., Cui J. G.2016. Calls characteristics in round-tongued floating Phrynoglossus martensii. Chin J Zool, 51: 214–220 (In Chinese)

    Wei L., Zhao L. H., Ma X. H., Fan X. L., Ma X. M., Lin Z. H.2012. Advertisement call variability in the black-spined toad Bufo melanostictus (Anura: Bufonidae) during the breeding season in Lishui, Zhejiang, China. Asian Herpetol Res, 3: 157–162

    Welch A. M., Semlitsch R. D., Gerhardt H. C.1998. Call duration as an indicator of genetic quality in male gray tree frogs.Science, 280: 1928–1930

    Wells K. D.1978. Territoriality in the green frog (Rana clamitans):Vocalizations and agonistic behaviour. Anim Behav, 26:1051-1063

    Xiong L. C., Matsui M., Jiang J. P., Nishikawa K.2015.Advertisement calls of two horned frogs, Megophrys kuatunensis and M. huangshanensis, from China (Anura, Megophryidae).Curr Herpetol, 34: 51–59

    Xu F., Cui J. G., Song J., Brauth S. E., Tang Y. Z.2011. Male competition strategies change when information concerning female receptivity is available. Behav Ecol, 23: 307–312

    Xu J. X., Xie F., Jiang J. P., Mo Y. M., Zheng Z. H.2005. The acoustic features of the mating call of 12 anuran species. Chin J Zool, 40: 12–19 (In Chinese)

    Zhao E. M., Adler K.1993. Herpetology of China. Oxford,Ohio:Society for the study of amphibians and reptiles in cooperation with Chinese. Society for the Study of Amphibians and Reptiles

    Zhu B. C., Wang J. C., Cui J. G., Brauth S. E., Tang Y. Z.2016a.The spectral structure of vocalizations match hearing sensitivity but imprecisely in Philautus odontotarsus. Bioacoustics, 121–134

    Zhu B. C., Wang J. C., Zhao L. H., Sun Z. X., Cui J. G., Brauth S. E., Tang Y. Z.2016b. Bigger is not always better: females prefer males of mean body size in Philautus odontotarsus. Plos One, 11(2): e0149879

    Zhu B. C., Wang J. C., Zhao L. H., Chen Q., Sun Z. X., Yang Y., Brauth S. E., Tang Y. Z., Cui J. G.2017. Male-male competition and female choice are differentially affected by male call acoustics in the serrate-legged small treefrog, Kurixalus odontotarsus. PeerJ, 5: e3980

    国内少妇人妻偷人精品xxx网站 | 2021天堂中文幕一二区在线观 | 一级毛片高清免费大全| 麻豆久久精品国产亚洲av| 欧美在线黄色| 国产伦人伦偷精品视频| 成年免费大片在线观看| 亚洲国产欧美网| 成人av一区二区三区在线看| 欧美激情极品国产一区二区三区| 国产麻豆成人av免费视频| 50天的宝宝边吃奶边哭怎么回事| 999久久久精品免费观看国产| 亚洲国产精品999在线| 国产三级黄色录像| 99热6这里只有精品| 两个人看的免费小视频| 在线观看www视频免费| 国产精品久久久人人做人人爽| а√天堂www在线а√下载| 97超级碰碰碰精品色视频在线观看| 欧美丝袜亚洲另类 | 伊人久久大香线蕉亚洲五| 亚洲专区中文字幕在线| 欧美av亚洲av综合av国产av| 国产一卡二卡三卡精品| or卡值多少钱| 午夜福利免费观看在线| 欧美激情久久久久久爽电影| 久久久久国产精品人妻aⅴ院| 日韩中文字幕欧美一区二区| 国产精品99久久99久久久不卡| 精品少妇一区二区三区视频日本电影| 国产一区二区三区视频了| 欧美日本亚洲视频在线播放| 男女做爰动态图高潮gif福利片| 欧美激情 高清一区二区三区| av有码第一页| 国产成人精品无人区| 国产色视频综合| 桃色一区二区三区在线观看| 日本在线视频免费播放| 精品高清国产在线一区| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 精品午夜福利视频在线观看一区| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 日本a在线网址| 成年女人毛片免费观看观看9| 91九色精品人成在线观看| 波多野结衣高清无吗| 91成年电影在线观看| 国产麻豆成人av免费视频| 99国产精品99久久久久| 精品久久久久久,| 91av网站免费观看| 日韩欧美在线二视频| 亚洲午夜精品一区,二区,三区| 中文字幕人成人乱码亚洲影| 桃红色精品国产亚洲av| 日日爽夜夜爽网站| 91字幕亚洲| 成人亚洲精品一区在线观看| 老司机午夜福利在线观看视频| 亚洲自偷自拍图片 自拍| 久久国产乱子伦精品免费另类| 久久中文字幕一级| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 天堂√8在线中文| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 99久久久亚洲精品蜜臀av| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 一本综合久久免费| 日韩欧美一区视频在线观看| av在线播放免费不卡| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 精品国产亚洲在线| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 人妻久久中文字幕网| 亚洲色图av天堂| 国产av一区二区精品久久| 丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久亚洲av鲁大| 欧美在线一区亚洲| 午夜免费鲁丝| 久久人人精品亚洲av| 免费高清在线观看日韩| 欧美中文综合在线视频| 免费在线观看影片大全网站| 欧美日韩乱码在线| 欧美大码av| 999精品在线视频| 欧美激情极品国产一区二区三区| 女人被狂操c到高潮| 黑人操中国人逼视频| 亚洲欧美精品综合一区二区三区| 长腿黑丝高跟| 给我免费播放毛片高清在线观看| 日韩欧美国产在线观看| 欧美亚洲日本最大视频资源| av有码第一页| 免费在线观看黄色视频的| 老司机午夜十八禁免费视频| 国产av不卡久久| 亚洲国产欧洲综合997久久, | 国产人伦9x9x在线观看| 女人爽到高潮嗷嗷叫在线视频| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 两个人视频免费观看高清| 十分钟在线观看高清视频www| 久久青草综合色| 变态另类成人亚洲欧美熟女| 亚洲国产精品999在线| 欧美性猛交黑人性爽| 一区二区三区精品91| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 午夜福利高清视频| 国产免费av片在线观看野外av| 欧美日韩乱码在线| 久久这里只有精品19| 最新美女视频免费是黄的| 成年版毛片免费区| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 日韩有码中文字幕| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观 | 中文字幕av电影在线播放| 国产精品亚洲一级av第二区| 18禁黄网站禁片免费观看直播| 亚洲午夜理论影院| 99精品在免费线老司机午夜| 麻豆一二三区av精品| av片东京热男人的天堂| 国产激情欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 亚洲第一青青草原| 黄频高清免费视频| 桃红色精品国产亚洲av| 色综合欧美亚洲国产小说| 国产精品野战在线观看| 妹子高潮喷水视频| 久久99热这里只有精品18| 免费观看人在逋| 精品日产1卡2卡| av电影中文网址| 男人舔女人的私密视频| 国产精品一区二区三区四区久久 | 午夜精品久久久久久毛片777| 国产高清videossex| 日韩精品中文字幕看吧| 久久久国产欧美日韩av| 色综合站精品国产| 日韩有码中文字幕| 成人精品一区二区免费| 日韩免费av在线播放| 亚洲精品美女久久av网站| 免费在线观看成人毛片| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 国产野战对白在线观看| 国产av又大| 好看av亚洲va欧美ⅴa在| 日韩 欧美 亚洲 中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 老司机午夜十八禁免费视频| 午夜久久久久精精品| 国产激情偷乱视频一区二区| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| a级毛片a级免费在线| 国产欧美日韩一区二区精品| 最近最新中文字幕大全电影3 | 亚洲激情在线av| 国产精品久久视频播放| 日本三级黄在线观看| 手机成人av网站| 99re在线观看精品视频| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 无限看片的www在线观看| 欧美日本亚洲视频在线播放| 男女视频在线观看网站免费 | 亚洲国产欧美日韩在线播放| 中亚洲国语对白在线视频| 黄色毛片三级朝国网站| 给我免费播放毛片高清在线观看| 欧美日韩瑟瑟在线播放| 亚洲人成77777在线视频| 亚洲第一电影网av| 亚洲精品一区av在线观看| 1024视频免费在线观看| 精品国产国语对白av| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| 手机成人av网站| av有码第一页| 91老司机精品| 国产免费av片在线观看野外av| 无人区码免费观看不卡| 亚洲电影在线观看av| 日本免费a在线| 日本一本二区三区精品| 一a级毛片在线观看| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 国产免费av片在线观看野外av| 精品熟女少妇八av免费久了| 久久国产精品影院| 国产高清有码在线观看视频 | 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 午夜福利成人在线免费观看| 国产男靠女视频免费网站| 午夜免费激情av| 超碰成人久久| 露出奶头的视频| 中文在线观看免费www的网站 | 午夜亚洲福利在线播放| 热re99久久国产66热| 黄色女人牲交| 欧美丝袜亚洲另类 | 手机成人av网站| videosex国产| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 51午夜福利影视在线观看| 一级毛片精品| 天堂动漫精品| 九色国产91popny在线| 搡老岳熟女国产| 亚洲成人久久爱视频| 侵犯人妻中文字幕一二三四区| 免费高清在线观看日韩| 国产精品野战在线观看| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 亚洲美女黄片视频| 午夜老司机福利片| 国产高清视频在线播放一区| 成年人黄色毛片网站| 美女国产高潮福利片在线看| 99热只有精品国产| 精品一区二区三区四区五区乱码| 国产成人精品久久二区二区免费| 精品一区二区三区视频在线观看免费| 在线免费观看的www视频| 最近最新免费中文字幕在线| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 久久久久久久午夜电影| 桃色一区二区三区在线观看| 免费无遮挡裸体视频| 91麻豆精品激情在线观看国产| 男人操女人黄网站| 人人妻人人看人人澡| 亚洲国产精品sss在线观看| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 老司机在亚洲福利影院| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 超碰成人久久| 久久亚洲精品不卡| 国产黄色小视频在线观看| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 香蕉久久夜色| 国产一区在线观看成人免费| www.www免费av| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 听说在线观看完整版免费高清| 免费在线观看亚洲国产| 日本熟妇午夜| 国产精品久久久人人做人人爽| 最近在线观看免费完整版| 中文资源天堂在线| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 欧美日本视频| 一区二区日韩欧美中文字幕| 后天国语完整版免费观看| 国产亚洲精品一区二区www| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 欧美激情久久久久久爽电影| 女性生殖器流出的白浆| 黄色毛片三级朝国网站| av有码第一页| 中文字幕高清在线视频| 亚洲中文av在线| 日本一本二区三区精品| 88av欧美| 人人澡人人妻人| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| 欧美黑人精品巨大| 欧美中文综合在线视频| 国产高清激情床上av| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 97人妻精品一区二区三区麻豆 | 老司机靠b影院| 桃红色精品国产亚洲av| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 日本成人三级电影网站| 午夜免费激情av| 亚洲五月色婷婷综合| 一级片免费观看大全| 欧美性长视频在线观看| 欧美zozozo另类| 国产精品乱码一区二三区的特点| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 性色av乱码一区二区三区2| av电影中文网址| 成在线人永久免费视频| netflix在线观看网站| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| www.999成人在线观看| 制服人妻中文乱码| 亚洲激情在线av| 国产人伦9x9x在线观看| 久久久久国内视频| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 国产99白浆流出| 两性夫妻黄色片| 久热爱精品视频在线9| 亚洲黑人精品在线| av免费在线观看网站| 一级片免费观看大全| 午夜激情av网站| 一个人观看的视频www高清免费观看 | 中国美女看黄片| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 91在线观看av| 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av高清一级| 欧美国产精品va在线观看不卡| 一夜夜www| 免费在线观看视频国产中文字幕亚洲| 国产成人精品久久二区二区91| 一本大道久久a久久精品| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频 | 岛国视频午夜一区免费看| 男女那种视频在线观看| 国产午夜精品久久久久久| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 国产爱豆传媒在线观看 | 少妇的丰满在线观看| 美女大奶头视频| 成人亚洲精品av一区二区| 亚洲片人在线观看| 精品第一国产精品| 国产午夜精品久久久久久| 波多野结衣巨乳人妻| 天天添夜夜摸| 熟妇人妻久久中文字幕3abv| 免费人成视频x8x8入口观看| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 天天躁夜夜躁狠狠躁躁| 十分钟在线观看高清视频www| 成人三级黄色视频| 欧美国产日韩亚洲一区| 国产成年人精品一区二区| 午夜免费鲁丝| 91成年电影在线观看| 好看av亚洲va欧美ⅴa在| 一夜夜www| 亚洲色图av天堂| 亚洲国产精品成人综合色| 欧美性长视频在线观看| 露出奶头的视频| 人人澡人人妻人| 日韩欧美一区视频在线观看| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 亚洲国产精品久久男人天堂| 亚洲精品色激情综合| 窝窝影院91人妻| 露出奶头的视频| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 亚洲一卡2卡3卡4卡5卡精品中文| 美女免费视频网站| 午夜福利高清视频| 高清毛片免费观看视频网站| 少妇熟女aⅴ在线视频| 嫩草影院精品99| 中文字幕久久专区| 亚洲第一青青草原| 日韩欧美在线二视频| 亚洲国产精品sss在线观看| 三级毛片av免费| 亚洲国产欧美日韩在线播放| 久久久久九九精品影院| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看 | 黄片小视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 18禁黄网站禁片免费观看直播| 免费在线观看成人毛片| 欧美一区二区精品小视频在线| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 黄色丝袜av网址大全| 99re在线观看精品视频| 国产亚洲欧美98| 国产精品影院久久| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 又大又爽又粗| 老司机在亚洲福利影院| 午夜亚洲福利在线播放| 久久久久久久久中文| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 成人三级黄色视频| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 麻豆成人午夜福利视频| 国产精品免费视频内射| 一个人观看的视频www高清免费观看 | 999精品在线视频| 大香蕉久久成人网| 白带黄色成豆腐渣| av视频在线观看入口| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 亚洲精品美女久久av网站| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 午夜福利在线在线| 国产成人一区二区三区免费视频网站| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放 | 精品少妇一区二区三区视频日本电影| 免费搜索国产男女视频| 色老头精品视频在线观看| 香蕉丝袜av| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 99久久99久久久精品蜜桃| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 波多野结衣巨乳人妻| a级毛片a级免费在线| 女人爽到高潮嗷嗷叫在线视频| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 夜夜爽天天搞| 大型黄色视频在线免费观看| 日韩欧美在线二视频| 国产一区二区激情短视频| 亚洲国产精品合色在线| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 国产精品一区二区免费欧美| 亚洲九九香蕉| 在线观看www视频免费| 国产区一区二久久| 国产精品免费一区二区三区在线| 91九色精品人成在线观看| 一边摸一边抽搐一进一小说| 麻豆av在线久日| 亚洲精品在线美女| 俺也久久电影网| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 国产亚洲精品第一综合不卡| 免费看日本二区| 亚洲片人在线观看| 欧美一级a爱片免费观看看 | 久久草成人影院| 日本精品一区二区三区蜜桃| 中文字幕精品免费在线观看视频| 青草久久国产| 色在线成人网| 夜夜躁狠狠躁天天躁| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 婷婷丁香在线五月| 国产黄a三级三级三级人| 国产精品国产高清国产av| 久久香蕉激情| avwww免费| 日日爽夜夜爽网站| av超薄肉色丝袜交足视频| 嫩草影视91久久| 国产片内射在线| 黄色视频,在线免费观看| 亚洲中文字幕日韩| 国产单亲对白刺激| АⅤ资源中文在线天堂| 亚洲一区中文字幕在线| 日韩有码中文字幕| 国产免费av片在线观看野外av| 看片在线看免费视频| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 国产单亲对白刺激| 亚洲熟妇熟女久久| 国产黄片美女视频| 在线看三级毛片| 日韩欧美一区二区三区在线观看| 国产熟女xx| 久久午夜亚洲精品久久| 中文字幕人成人乱码亚洲影| 国产1区2区3区精品| 国产精品久久久久久人妻精品电影| 国产高清视频在线播放一区| 午夜成年电影在线免费观看| 淫秽高清视频在线观看| 亚洲专区国产一区二区| 亚洲免费av在线视频| 欧美黑人欧美精品刺激| 女性被躁到高潮视频| 日本一区二区免费在线视频| 免费av毛片视频| 亚洲专区字幕在线| 最近在线观看免费完整版| 亚洲片人在线观看| 欧美日本视频| 亚洲色图 男人天堂 中文字幕| 久久国产精品男人的天堂亚洲| 国产激情偷乱视频一区二区| 又大又爽又粗| 一级a爱片免费观看的视频| 成人一区二区视频在线观看| 国产精品久久视频播放| 亚洲成人精品中文字幕电影| 国产99久久九九免费精品| 色精品久久人妻99蜜桃| 亚洲美女黄片视频| 成人一区二区视频在线观看| 1024视频免费在线观看| 精品久久久久久,| 成人欧美大片| 在线观看午夜福利视频| 国产成人系列免费观看| 精品久久久久久久人妻蜜臀av| 十八禁人妻一区二区| 国产真人三级小视频在线观看| 看黄色毛片网站| 国产成人影院久久av| 搡老岳熟女国产| 久久久久久久久中文| 久久九九热精品免费| 国产主播在线观看一区二区| 好看av亚洲va欧美ⅴa在| 午夜精品久久久久久毛片777| 在线永久观看黄色视频| 美国免费a级毛片| 午夜精品久久久久久毛片777| 国产精品久久久人人做人人爽|