• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modified logarithmic spiral method for determining passive earth pressure

    2018-12-20 11:11:42ShiyiLiuYngXiLiLing

    Shiyi Liu,Yng Xi,Li Ling

    aSchool of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China

    bState Key Laboratory of Structural Analysis for Industrial Equipment,School of Automotive Engineering,Dalian University of Technology,Dalian 116024,China

    Keywords:Passive earth pressure Logarithmic spiral method Finite element method(FEM)Sloping back fill Retaining wall

    A B S T R A C T In this study,a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping back fill,with presence of wall-soil interface friction.The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the back fill failure surface is a composite of logarithmic spiral and its tangent.If the wall-soil interface is smooth,a straight line does not need to be assumed for the failure surface.The geometry of the failure surface is determined using the Mohr circle analysis of the soil.The resultant passive earth thrust is computed considering equilibrium of moments.The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion,wall friction angle and inclination angle,and sloping back fill angle.This method is verified with the finite element method(FEM)by comparing the horizontal passive earth pressure and failure surface.The results agree well with other solutions,particularly with those obtained by the FEM.The implementation of the present method is efficient.The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.

    1.Introduction

    Passive earth pressure plays an essential role in design of geotechnical engineering structures such as retaining walls,antisliding piles and bridge abutments.Different approaches,e.g.limit equilibrium methods such as the Coulomb(1776)and Rankine(1857)theories,as well as limit analysis and numerical analysis,have been proposed to calculate the passive earth pressure.The Rankine and Coulomb theories still serve at present as the fundamentals of this subject(Terzaghi et al.,1996;Budhu,2010;Braja and Khaled,2014).The Rankine(1857)theory assumes that the resultant force is angled parallel to the back fill surface.Once the back fill surface is horizontal,the assumption indicates that the wall-soil interface should besmooth(i.e.thewall friction angle equal to zero).Such an assumption is not adopted in the Coulomb(1776)theory,because Coulomb’s equation of passive earth pressure has been extended to account for wall friction.However,the planar failure surface assumption in the Coulomb theory may not be suitable in the case of a larger wall friction angle as it could overestimate the passive earth pressure.Despite these drawbacks,the theory has been widely used and accepted by engineers due to its simplicity.

    Terzaghi(1943)noted that the failure surface shouldbe curved if the wall-soil interface is rough(i.e.the wall friction angle is larger than zero).For this,he proposed a method known as the logarithmic spiral method,which is one of the earliest methods used to describe the passive limit equilibrium of a sliding mass moving along a curved failuresurface.After that,a composite failure surface comprising a logarithmic spiral and its tangent was adopted in different limit equilibrium methods(Shields and Tolunay,1972;Zhu and Qian,2000;Kumar,2001;Rao and Choudhury,2005;Shamsabadi et al.,2013;Patki et al.,2015a).The logarithmic spiral failure mechanism(i.e.the failure surface of merely a logarithmic spiral)can be studied using the limit equilibrium method(Patki et al.,2015b)and kinematical method(Soubra and Macuh,2002).

    The slip-line field theory,a powerful mathematical technique,can be used to solve plane strain boundary value problems in plasticity domain.This theory provides exact solutions to rigid plastic solids(Bower,2010).The slip-line method(the method of characteristics)(Sokolovskii,1965;Kumar and Chitikela,2002;Cheng,2003)does not need to assume the shape of failure surface;however,it is helpful for understanding the behaviour of a soil-wall system and the failure mechanism.But in practice,it is difficult to solve a particular problem using this method as finding out the slip-line field is rather difficult.

    Fig.1.Logarithmic spiral method for determining the passive earth pressure(Terzaghi,1943;Terzaghi et al.,1996).(a)Model of a gravity wall retaining horizontal back fill under vertical surcharge loading;(b)Free body that is divided into the logarithmic spiral zone and the Rankine zone;(c)Forces for computation of component due to the weight of soil,while neglecting the cohesion and surcharge loading;(d)Forces for computation of component due to the vertical surcharge loading,while neglecting the weight of soil and cohesion;(e)Forces for computation of component due to the cohesion,while neglecting the weight of soil and surcharge loading;(f)Lateral forces acting on the Rankine zone;(g)Vertical surcharge Q;and(h)Diagram illustrating computation of the moment due to cohesion.

    Limit analysis,which is based on the upper and lower bound theorems of classical plasticity,is another common method used to determine passive earth pressures.It is easy to obtain the upper limit of passive earth pressures with upper bound solution(Chen,1975;Soubra and Regenass,2000;Soubra and Macuh,2002;Ant?o et al.,2011).However,it is difficult to construct statically admissible stress fields in the lower bound analysis(Shiau et al.,2008).To overcome this difficulty,the finite element limit analysis is proposed(Sloan,2013).

    Finite element analysis is a popular tool used to evaluate geotechnical structure stability,e.g.slope engineering(Griffiths and Lane,1999;Liu et al.,2015).The finite element method(FEM)has been widely used for calculation of passive earth pressures(e.g.Tejchman et al.,2007;Hanna et al.,2011;Hanna and Diab,2017).Under certain conditions(e.g.wall-soil contact),the finite element analysis is more efficient and can yield more reasonable result with respect to slope failure mechanism.

    Terzaghi(1943)developed the logarithmic spiral method;unfortunately,few studies have been reported on this method.This is likely due to the implementation difficulty.Based on the logarithmic spiral method developed by Terzaghi,we proposed a modified method for calculations of passive earth pressures and failure surfaces.In the modified method,the shape of the failure surface for a smooth wall is not assumed as a straight line.The modified method can determine the passive earth pressure and failure surface of a cohesionless sloping back fill.The passive earth pressure coefficients are evaluated for various values of soil friction angle φ,soil cohesionc,wall friction angleδ,sloping back fill angleβand wall inclination angleλ,and then they are compared with existing results.Then,the feasibility of the method is verified by the FEM.

    Fig.2.Mohr circle analysis for determining the Rankine zone.(a)Stresses of an element in a sloping back fill and the failure pattern;and(b)Passive stress analysis of soil.

    2.Formulation of logarithmic spiral method

    2.1.Principle

    It is assumed that the soil satisfies the Mohr-Coulomb failure criterion,which is expressed as follows:

    whereτandσare the shear stress and normal stress on the failure surface,respectively;andcand φ are the cohesion and internal friction angle,respectively.In the logarithmic spiral method,the internal friction angle φ of soils(not the cohesionc)governs the shapes of the failure surface and the spiral.

    Fig.1 illustrates the passive earth pressure problem of retaining wall,which can be solved using the logarithmic spiral method(Terzaghi,1943;Terzaghi et al.,1996).Moment equilibrium conditions are employed to calculate the magnitude of passive thrust.It is assumed that the failure surface comprises a logarithmic spiral and a tangent surface.The resultant passive earth pressurePpis decomposed in to three components:P1,P2andP3.Each of these forces acts at an angleδ(the wall friction angle),normal to the contact faceab.P1maintains force equilibrium due to the weight of the massabgfand the friction,P2maintains force equilibrium due to the vertical surcharge load acting on the horizontal back fill surface and the friction,andP3maintains force equilibrium with the cohesion on the sliding surface.

    The soil within the triangleageis in the passive Rankine state.The failure surfacebgecomprises a logarithmic spiral partbgand a straight partge(Terzaghi,1943;Terzaghi et al.,1996).In polar coordinates(r,θ),the logarithmic spiral part is determined by

    where e is the base of natural logarithm,andr0and φ are the random positive real constants(φ is also the soil internal friction angle).For the logarithmic spiral,the angle φ is constant between the line perpendicular to tangent direction and the radial line at the point(r,θ).This indicates that as the size of the spiral increases,its shape will not be altered upon each successive curve.The straight partgeof the failure surface is tangent to the spiralbgat the pointg,and thus the pole of the spiral must be located on the rayga.Note that the location of the pole is different from that assumed by Terzaghi et al.(1996),who suggested that the pole is located on lineag.Assumption of a different location of pole would yield a considerable difference in the calculation results.

    The body force of soilabgfis used to conduct the moment equilibrium analysis,and the following forces act onabgf:three forcesP1,P2andP3;soil weightW;resultant forceQinduced by the vertical surcharge loadingq;the momentMcinduced by the cohesion alongbg;the componentsPRW,PRQ,andPRCof the resultant thrust of the Rankine passive earth pressure,which are angled parallel to the back fill surface;and the resultantF1andF2of the normal and frictional stresses alongbg(Terzaghi,1943;Terzaghi et al.,1996).Because the moments induced byF1andF2at poleOare zero,the equations of the moment equilibrium can be expressed as:

    whereyfis they-coordinate of the pointf.Thex-coordinatexfcan be written asxf=yftanα2.

    The momentMcof the total cohesion alongbg(Terzaghi et al.,1996)is calculated as follows:

    The resultant passive earth pressurePpcan be defined as follows:

    It is noted that the failure surface corresponds to the resultant forcePpas determination of the passive earth pressure using the logarithmic spiral method becomes an optimization problem.Ppis the objective function andyfis the design variable(Terzaghi,1943;Terzaghi et al.,1996).It is important that the defined domain ofyfshould be specified by the user with experiences to a reasonable range.In this paper,yfis an arithmetic progression and the common difference in the successive members is selected as small as possible.

    2.2.Logarithmic spiral failure surface

    The logarithmic spiral cannot be described based on the concept of the logarithmic spiral method proposed by Terzaghi(1943)and Terzaghi et al.(1996).An approximate method is proposed herein to determine the shape and location of the logarithmic spiral.

    Fig.3.Modified logarithmic spiral method for determining passive earth pressure in the case of inclined cohesionless back fill.(a)Model of gravity wall retaining a sloping back fill under vertical surcharge loading;(b)Free body divided into the logarithmic spiral zone and Rankine zone;(c)Forces entering into computation of component due to the weight of soil,neglecting the vertical surcharge loading;(d)Forces entering into computation of component due to the vertical surcharge loading neglecting the weight of soil;(e)Lateral forces acting on the Rankine zone;and(f)Vertical surcharge Q.

    Fig.4.A finite element grid for the passive earth pressure analysis.Materials of the foundation and back fill are the same.

    As shown in Fig.1c,d and e,in the Cartesian coordinate systemxay,the coordinates of pointsaandbare considered as variables.They-coordinate of pointfis the same as that of the pointg.xOrepresents thex-coordinate of the poleO,and they-coordinate of the poleOis obtained by the following equation:

    For a given value of they-coordinate of pointf(i.e.yf),xOcan be obtained by solving the following equations:

    whereθis the corresponding angle of the logarithmic spiralbg(see Fig.1c).The logarithmic spiralbgcan be described by functionθ(yf).Eq.(7)can be solved with root- finding algorithms using the bisection method.This solution is implemented by a proposed numerical code implemented in MATLAB.

    2.3.Passive Rankine zone

    As shown in Fig.1b and f,the shape of the triangular Rankine zone can be determined by the anglesα1and α2.In the case of a horizontal back fill surface(β =0°),these two angles would be the same,i.e.α1= α2= π/4- φ/2.

    In general,in the case ofβ ≠ 0°,the angles α1and α2are determined with the Mohr circle analysis.As shown in Fig.2a,the vertical stressσvof the soil elementabcdat a depth ofzis obtained by the following equation:

    whereγis the weight of soils,andqis the vertical surcharge loading.In the analysis of Mohr circle for a two-dimensional state of stress(Fig.2b),it is assumed that the length of lineOIis equal to the vertical stress of the soil elementabcd,i.e.OI=σv.We can draw a parallel line from pointIto the σvplane of stress acting;alternatively,a parallel line from pointMto theσhplane of action can be plotted.The intersection of any two lines with the Mohr circle is the poleN.The angle betweenOIand thex-axis is the same as the sloping back fill angleβ.According to the geometric figure,∠OOcIcan be solved by the following equations:

    Eq.(9)can also be expressed as follows:

    The solution to Eq.(10)is given:

    whereFis a function of the heightz.The anglesα1and α2are expressed as follows:

    Fig.5.Results of(a)the horizontal passive earth pressure coefficient and(b)failure surface(contours of displacement after time step=3)using the finite element method.The solid black line(i.e.the failure surface)obtained with the logarithmic spiral method is used for the comparison with the contours from the finite element method.

    Fig.6.Results of the passive earth pressure and failure surfaces obtained by the logarithmic spiral method for φ =40°.

    Table 1 Results comparison(φ =40°).

    Table 2 Comparison of the results obtained by the numerical limit analysis and the logarithmic spiral method.

    However,Eqs.(11)and(12)show that the anglesα1and α2vary with depth whenc≠ 0 andβ≠ 0°.This indicates that the logarithmic spiral method cannot effectively address the problem of cohesive sloping back fill.Thus future study is needed.

    As shown in Fig.2b,in the case of cohesionless sloping back fill,c=0,the angle∠OOcIcan be expressed as follows:

    Substituting Eq.(13)into Eq.(12)yields

    The Rankine passive earth pressure coefficientKpR(Rankine,1857)is expressed as follows:

    Fig.3 provides the solution for determining the passive earth pressure with the modified logarithmic spiral method in the case of inclined cohesionless back fill.

    Fig.7.Comparison of the results obtained by the numerical limit analysis and logarithmic spiral method.LB and UB represent the lower and upper bounds,respectively.

    3.Finite element modelling

    A back fill is assumed with a heightH=5 m that is retained by a rigid gravity wall.The materials of the foundation and back fill are the same,which is shown in Fig.4.A 45°edge cut is introduced to benefit the numerical solution(Shiau and Smith,2006).The elastoplastic finite element analysis for determining the passive earth pressure is achieved using ABAQUS(Smith,2010).The CPE4R element(i.e.a 4-node bilinear plane strain quadrilateral,reduced integration element)is adopted to discretize the finite element model.Passive failure is induced by pushing the rigid retaining wall into the soil back fill.The bottomedge of the foundation is fixed.The right-and left-hand edges of the foundation and the right-hand edge of the back fill are fixed in the horizontal direction.Vertical movement of the wall is not allowed.A displacement is applied to the right of the nodes at the left edge of the gravity wall.

    The retaining wall is assumed to be linearly elastic with Young’s modulus of 20.3 GPa,Poisson’s ratio of 0.2 and density of 2500 kg/m3.The back fill and foundation are assumed to be elastic-perfectly plastic.The elastic response of the soil is assumed to be linear and isotropic,with Young’s modulus of 182MPa,Poisson’s ratio of 0.3and density of 2040.8 kg/m3.The soil back fill follows Mohr-Coulomb behaviour with associated flow rule.The linear Drucker-Prager yield criterion is adopted for simulation of the soil back fill in the numerical analysis due to its smoothyield surface. The constitutive model parameters can be matched to provide the same flow and failure response in the plane strain condition(Helwany,2007;Smith,2010).The following relationships provide a match between the Mohr-Coulomb and linear Drucker-Prager material parameters in the plane strain condition:

    wheredis the intercept of the linear yield surface,andψis the dilation angle in thep-qstress plane(pis the equivalent stress andqis the Mises equivalent stress).Considering the case of associated flow,ψ = β,we obtain

    An example is given to show the finite element solution for determination of the passive earth pressure.Fig.5a shows the relationship of the horizontal passive earth pressure coefficientKp,hwith the time step of the finite element analysis for the case of φ =40°and δ/φ =1/2.The asymptotic limiting value corresponds to the maximumKp,hthat could be mobilized.Fig.5b shows the variation in the contour of displacement with time step.The solid black lines are the slip surface obtained by the logarithmic spiral method.The results show that the failure surfaces obtained with the two methods are the same after the 3rd time step.

    Fig.8.Comparison of horizontal passive earth pressure distributions on smooth and rough walls for various values of φ.

    4.Results and discussion

    The passive earth pressure and failure surface of a rigid retaining wall were obtained by the modified logarithmic spiral method under a wide range of variables,e.g.variations in geometry,wall soil interface and soil back fill properties.The results are compared with existing results and that of the FEM.

    4.1.Typical results

    Fig.6 shows the magnitudes of the passive thrust and critical failure surfaces obtained with the logarithmic spiral method at φ =40°with varied wall friction angle.The basic assumption with respect to the failure surface is that the shape of the failure surface is convex.For the smooth wall,the radian of the failure surface below the spiral zone(i.e.the region above the logarithmic spiral curve)is approximatelyπand the coordinate of the pole of the spiral failure surface is approximately(-∞,+∞).Therefore,the failure surface of the spiral zone is roughly a straight line.

    TheKpvalues obtained by the logarithmic spiral method are reported in Table 1,in comparison with the results from other methods.For rough walls(δ/φ ≠ 0),the logarithmic spiral method by Duncan and Mokwa(2001)predicted higher values ofKpthan our results,except for the fully rough case(δ/φ =1).The numerical upper and lower bounds obtained by Shiau et al.(2008)are close to our results and the results of Soubra and Macuh(2002)and Patki et al.(2015b);however,our results are the lowest.

    Fig.9.Comparison of failure surfaces obtained by the finite element method(contour of displacement)and logarithmic spiral method(solid black line)for various values of φ.

    More generally,analyses are performed for various values of soil internal friction angle φ.A comparison between the results obtained by the numerical limit analysis(Shiau et al.,2008)and the logarithmic spiral method is presented in Table 2 and Fig.7.The numerical upper and lower bounds match our results,except for the fully rough case(δ/φ =1)with φ > 30°,whereKpvalues are closed to and even smaller than the lower bound.The reason accounting for this discrepancy in the fully rough case(δ/φ =1)with φ>30°remains unclear;however,verification with the FEM result might be an alternative to provide insight into the accuracy of the logarithmic spiral method.

    Figs.8a and 9a show the results obtained by the modified logarithmic spiral method and FEM for the cohesionless back fill at various values of φ.In Fig.8a,the distributions of the earth pressure in the middle of the walls,obtained using the two methods,are basically the same.Difference between the boundary nodes near the top and bottom of the wall may be caused by the stress concentration and the horizontal direction being fixed on the left edge of the foundation in the finite element analyses.As shown in Fig.9a,thefailure surfaces of the two methods are essentially the same(i.e.the shapes and locations of the failure surfaces are in good agreement).

    Table 3 Comparison of proposed Kpγ,Kpqand Kpcvalues with the results from Soubra and Macuh(2002).

    Fig.10.Comparisons of failure surface and passive earth pressure obtained by the logarithmic spiral method for c=q=0 kPa and c=q=10 kPa(φ = δ=40°).

    4.2.Effect of cohesion

    For the cohesive back fill retained by a vertical wall and loaded by vertical surcharge loading,the passive force is expressed as follows:

    whereKpγ,KpqandKpcare the passive earth pressure coefficients and represent the effects of soil weight,vertical surcharge loading and cohesion,respectively(Soubra and Macuh,2002).Kpγiscalculated with the assumption of cohesionless soil without surcharge loading.The computation of the coefficientsKpqandKpcis based on the assumption of weightless soil withc=0 kPa forKpqandq=0 kPa forKpc(Soubra and Macuh,2002).Based on the definitions ofKpγ,KpqandKpc,Table 3 compares our results with those obtained by Soubra and Macuh(2002).Our results are close to or less than the results from Soubra and Macuh(2002),suggesting that the results are the upper bound obtained from the kinematical approach(Soubra and Macuh,2002)and different assumptions of failure mechanism are adopted.

    Table 4 Passive earth pressure coefficients Kpγ-log,Kpq-logand Kpc-logwhen φ = δ=40°.

    Fig.11.Comparison of the horizontal passive earth pressure coefficient with the results obtained by finite element limit analysis(Shiau et al.,2008).

    The passive force calculated by Eq.(19)would be less than or equal to the true value.In other words,the passive earth pressure coefficients are not constant in the case of cohesive back fills under vertical surcharge loading.In the logarithmic spiral method,the passive earth pressure coefficientsKpγ-log,Kpq-logandKpc-logare expressed as follows:

    whereP1+P2+P3=P.Table 4 shows the passive earth pressure coefficientsKpγ-log,Kpq-logandKpc-logobtained by the logarithmic spiral method when φ = δ=40°with variousγ,candqvalues.The coefficientsKpqandKpcbased on the assumption of a weightless soil withc=0 forKpqandq=0 forKpc,andKpγcalculated with assumption of cohesionless soil without surcharge loading are the minimum values ofKpγ-log,Kpq-logandKpc-log.

    Fig.12.Comparison of horizontal passive earth pressure distributions for various values ofβ (φ =30.9°,and δ=19.2°).

    Fig.13.Comparison of the failure surfaces obtained by the finite element method(contour of displacement)and the logarithmic spiral method(solid black line)for various values of β (φ =30.9°,and δ=19.2°).

    Figs.8b and 9b show the results obtained by the logarithmic spiral method and FEM for cohesive back fills under vertical surcharge loading with various values of φ.Similarly,the same distribution of earth pressure is observed in the middle of the wall.The failure surfaces obtained by the two methods are essentially the same.Furthermore,considering the effects of cohesion and surcharge loading,the critical failure surface is deeper,and the magnitude of the passive thrust is larger than that without consideration of the effects of cohesion and surcharge loading(Fig.10).

    4.3.Effect of back fill slope

    This example is taken from the work of Shiau et al.(2008)(φ =30.9°,δ=19.2°,λ=0,c=q=0)to examine the feasibility of the logarithmic spiral method with various values of the back fill slope angleβ.Fig.11 shows the comparison of horizontal passive earth pressure coefficients obtained by numerical limit analysis and the logarithmic spiral method.The upper and lower bounds are close to the results of the logarithmic spiral method with the angleβ increasing from-10°to 20°.In addition,the horizontal passive earth pressure coefficients whenβ=-20°andβ=-15°are proposed using the logarithmic spiral method.

    Figs.12 and 13 show the results of the horizontal passive earth pressure distributions and failure surfaces based on the logarithmic spiral method and FEM using various values ofβ,respectively.In Fig.12,the same distribution of earth pressures is observed in the middle of thewalls except whenβ=-20°,where a slight difference is observed.As shown in Fig.13,the failure surfaces based on the two methods are essentially the same(i.e.the shapes and locations of the failure surfaces agree well).The failure surface changes from plane(β =-20°)to curved(β =-15°to-20°)and the size of the ground surface of the passive sliding body reduces when the angle is increased from-20°to 20°.

    Fig.14.Forces used in computation of component due to weight of soil and friction for the concave failure mechanism(Kumar,2001).

    Fig.15.Comparisons of failure surface and passive earth pressure obtained by the logarithmic spiral method for convex and concave failure mechanisms(φ =30°,δ/φ =0,and λ=30°).

    Fig.16.Comparison of horizontal passive earth pressure distributions for various values ofλ(φ =30°).

    Table 5 Comparison of proposed Kpvalues with those obtained by other methods for inclined retaining wall with horizontal cohesionless back fill.

    4.4.Effect of wall inclination

    Kumar(2001)studied the effect of wall inclination on passive earth pressure coefficients for cohesionless soil and proposed a concave failure mechanism(see Fig.14).When φ =30°,δ/φ =0,and λ =30°,Fig.15 shows the comparisons of critical failure surface and magnitude of passive thrust accounting for both convex and concave failure mechanisms.The failure surface corresponding to the minimum magnitude of the passive thrust is concave.A comparison of the passive earth pressure coefficients with those obtained by other methods is shown in Table 5.The results obtained by the logarithmic spiral method are greater than those obtained by Kumar and Chitikela(2002)and less than those from the limit equilibrium method by Patki et al.(2015a).In addition,for the case of smooth walls(δ/φ =0),the failure surfaces are concave for both λ=30°and λ=15°.

    Fig.17.Comparison of failure surfaces obtained by the finite element method(contour of displacement)and the logarithmic spiral method(solid black line)for various values ofλ(φ =30°).

    The FEM is used to verify the assumption of a concave failure mechanism.Taking φ =30°as an example,Figs.16 and 17 indicate the distribution of horizontal passive earth pressure and failure surface forλ= 30°,δ/φ =0 and 1,respectively.The failure surfaces obtained by the two methods agree with each other,except when λ =30°and δ/φ =0.In Fig.17,the concave failure mechanism is unreasonable,and the corresponding horizontal passive earth pressure distribution is not a graded distribution,as shown in Fig.16.However,the corresponding passive earth pressure coefficient is generally accurate for practical design.

    5.Conclusions

    A modified logarithmic spiral method is proposed to determine the passive earth pressure coefficients and failure surfaces.The passive earth pressure coefficients are calculated at various values of soil internal friction angle and cohesion,wall friction angle and inclination angle,and sloping back fill angle.Then,these coefficients are compared with the existing results.Finally,the method is verified with the FEM with respect to the horizontal passive earth pressure and failure surface.The main conclusions are drawn as follows:

    (1)The logarithmic spiral method developed by Terzaghi et al.(1996)is modified in this context.It is demonstrated that the modified method is efficient,which can be used to determine the passive earth pressure and failure surface of a cohesionless sloping back fill.

    (2)The results obtained from our modified method agree well with other solutions,in particular those obtained by the FEM.

    (3)The logarithmic spiral theory is rigorous and self explanatory for the geotechnical engineer.

    The modified logarithmic spiral method presented in this study still has some limitations.One major problem is that it cannot be used to accurately solve problems involving cohesive sloping back fill,which needs future studies.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgements

    This work is funded by the Doctoral Scientific Research Foundation of Liaoning Province(Grant No.20170520341)and the Fundamental Research Funds for the Central Universities(Grant No.N170103015).These supports are gratefully acknowledged.

    看片在线看免费视频| 国产欧美日韩一区二区三| 亚洲性夜色夜夜综合| 国产真实乱freesex| 日本在线视频免费播放| 99久久九九国产精品国产免费| 国产真实伦视频高清在线观看 | 午夜福利18| 国产一区二区亚洲精品在线观看| 一进一出抽搐动态| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 亚洲18禁久久av| 色播亚洲综合网| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 人人妻,人人澡人人爽秒播| 国产精品一区二区三区四区久久| av女优亚洲男人天堂| 九色国产91popny在线| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 淫秽高清视频在线观看| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 女人十人毛片免费观看3o分钟| 三级毛片av免费| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 五月玫瑰六月丁香| 国产成人aa在线观看| 国产探花在线观看一区二区| 伊人久久大香线蕉亚洲五| 波多野结衣高清作品| 日本一二三区视频观看| 国产av麻豆久久久久久久| 国内精品美女久久久久久| 久久久久久久久久黄片| 在线观看日韩欧美| 91在线观看av| 亚洲精品成人久久久久久| 香蕉丝袜av| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 国产男靠女视频免费网站| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 窝窝影院91人妻| 一区二区三区高清视频在线| 一个人免费在线观看的高清视频| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 狂野欧美激情性xxxx| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 成人午夜高清在线视频| 国产精品 欧美亚洲| 白带黄色成豆腐渣| avwww免费| 国产精品久久久久久人妻精品电影| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 免费大片18禁| 午夜福利成人在线免费观看| 亚洲成人免费电影在线观看| 麻豆国产97在线/欧美| 亚洲人成电影免费在线| 特级一级黄色大片| 国产精品av视频在线免费观看| 日韩欧美免费精品| 成人18禁在线播放| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品| 国产成人欧美在线观看| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 老鸭窝网址在线观看| 国产高清videossex| 熟女电影av网| 国产成人福利小说| 国产成人欧美在线观看| 国产黄片美女视频| 日韩欧美三级三区| 可以在线观看的亚洲视频| 小蜜桃在线观看免费完整版高清| 美女大奶头视频| 久久久久久久精品吃奶| 色综合欧美亚洲国产小说| 国产毛片a区久久久久| 欧美bdsm另类| 亚洲成av人片免费观看| 在线观看舔阴道视频| 无遮挡黄片免费观看| 91在线精品国自产拍蜜月 | 波多野结衣高清作品| 亚洲人成电影免费在线| 岛国在线观看网站| 国产成年人精品一区二区| 精品一区二区三区视频在线 | 国产高清有码在线观看视频| 制服人妻中文乱码| 嫩草影视91久久| 舔av片在线| 国产成人欧美在线观看| 成年女人看的毛片在线观看| 淫秽高清视频在线观看| 成人18禁在线播放| 成人国产一区最新在线观看| 久久6这里有精品| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 天堂√8在线中文| 无人区码免费观看不卡| 天天一区二区日本电影三级| 深夜精品福利| 日韩亚洲欧美综合| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 欧美在线黄色| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 少妇高潮的动态图| 变态另类丝袜制服| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在 | avwww免费| 男人的好看免费观看在线视频| 欧美最黄视频在线播放免费| eeuss影院久久| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 国产精品久久久久久精品电影| 久久性视频一级片| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 国产精品影院久久| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 男女午夜视频在线观看| 一本久久中文字幕| a级一级毛片免费在线观看| 国产爱豆传媒在线观看| 色播亚洲综合网| 久久久精品大字幕| 亚洲国产精品sss在线观看| 欧美成人a在线观看| 一本精品99久久精品77| 日本与韩国留学比较| 母亲3免费完整高清在线观看| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 久久久久久久精品吃奶| 免费观看精品视频网站| 色噜噜av男人的天堂激情| 黄片大片在线免费观看| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| www日本黄色视频网| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 亚洲精品日韩av片在线观看 | 手机成人av网站| 久久中文看片网| 午夜激情福利司机影院| 日本黄色视频三级网站网址| 观看美女的网站| 99久久成人亚洲精品观看| 日本免费一区二区三区高清不卡| 欧美成人a在线观看| xxx96com| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 天天躁日日操中文字幕| 国产成人aa在线观看| 国产 一区 欧美 日韩| 一本综合久久免费| ponron亚洲| 97超视频在线观看视频| 欧美zozozo另类| 国产成人欧美在线观看| 小蜜桃在线观看免费完整版高清| 免费在线观看影片大全网站| 亚洲激情在线av| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| av专区在线播放| 午夜福利在线观看免费完整高清在 | 日韩大尺度精品在线看网址| 最新中文字幕久久久久| 一级作爱视频免费观看| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 欧美国产日韩亚洲一区| 亚洲自拍偷在线| 久久性视频一级片| 免费无遮挡裸体视频| 国产成人福利小说| 国产 一区 欧美 日韩| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 国产亚洲欧美98| 免费在线观看日本一区| 在线天堂最新版资源| 他把我摸到了高潮在线观看| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 国产又黄又爽又无遮挡在线| 国产精品亚洲美女久久久| 亚洲成人久久性| 日本 av在线| 日韩欧美免费精品| 非洲黑人性xxxx精品又粗又长| 亚洲天堂国产精品一区在线| h日本视频在线播放| 婷婷六月久久综合丁香| 国产精品久久视频播放| 久久精品国产综合久久久| 免费电影在线观看免费观看| 国产69精品久久久久777片| 久久香蕉精品热| 免费观看人在逋| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 18禁裸乳无遮挡免费网站照片| 国产午夜精品论理片| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 午夜影院日韩av| 1024手机看黄色片| 亚洲成人免费电影在线观看| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 99在线视频只有这里精品首页| 国内精品一区二区在线观看| 俄罗斯特黄特色一大片| 麻豆一二三区av精品| 久久久久久久久大av| 首页视频小说图片口味搜索| 神马国产精品三级电影在线观看| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 亚洲av熟女| 一区二区三区国产精品乱码| 长腿黑丝高跟| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| 夜夜夜夜夜久久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美乱妇无乱码| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 国产精品亚洲美女久久久| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 久久精品国产自在天天线| 午夜激情欧美在线| 国产爱豆传媒在线观看| 欧美色视频一区免费| 免费av不卡在线播放| 免费大片18禁| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 精品久久久久久久久久久久久| 搡老岳熟女国产| 黄色片一级片一级黄色片| 全区人妻精品视频| 日韩高清综合在线| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 色综合婷婷激情| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 中文字幕人妻熟人妻熟丝袜美 | 美女黄网站色视频| 久久久久精品国产欧美久久久| 亚洲精品日韩av片在线观看 | 日本黄大片高清| 久久精品91无色码中文字幕| 国产午夜精品论理片| 国产黄a三级三级三级人| 制服人妻中文乱码| 色吧在线观看| 观看免费一级毛片| 97超视频在线观看视频| 欧美中文综合在线视频| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| av视频在线观看入口| 韩国av一区二区三区四区| 国产亚洲欧美在线一区二区| 午夜视频国产福利| 久久久久久久午夜电影| 一级毛片高清免费大全| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 久久久久久久午夜电影| 久久久久久久久中文| 99在线人妻在线中文字幕| 欧美大码av| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 一a级毛片在线观看| 欧美中文日本在线观看视频| 国产三级在线视频| 欧美中文日本在线观看视频| 美女大奶头视频| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频| 国产av在哪里看| 51国产日韩欧美| 99久久久亚洲精品蜜臀av| 成年人黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 国产精品99久久99久久久不卡| 69av精品久久久久久| 欧美精品啪啪一区二区三区| av视频在线观看入口| 国产探花极品一区二区| 51午夜福利影视在线观看| 熟妇人妻久久中文字幕3abv| 18禁美女被吸乳视频| 国产精品亚洲美女久久久| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看| 偷拍熟女少妇极品色| 亚洲国产日韩欧美精品在线观看 | 国产精品99久久99久久久不卡| 丝袜美腿在线中文| 变态另类成人亚洲欧美熟女| 嫁个100分男人电影在线观看| 久久国产精品影院| 午夜福利视频1000在线观看| 1000部很黄的大片| 无人区码免费观看不卡| 男女午夜视频在线观看| 91麻豆av在线| 久久精品国产自在天天线| 精品日产1卡2卡| 97人妻精品一区二区三区麻豆| 色视频www国产| 午夜免费成人在线视频| 欧美3d第一页| 少妇丰满av| 校园春色视频在线观看| 久久久成人免费电影| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久人人做人人爽| 法律面前人人平等表现在哪些方面| 国产一区二区在线观看日韩 | 久久精品人妻少妇| 日韩高清综合在线| 日本熟妇午夜| 国产精品日韩av在线免费观看| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| 国产美女午夜福利| 亚洲精品在线美女| 午夜老司机福利剧场| 激情在线观看视频在线高清| 乱人视频在线观看| 啦啦啦观看免费观看视频高清| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 久久香蕉精品热| 天美传媒精品一区二区| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 久久精品91无色码中文字幕| 欧美+日韩+精品| 国产黄a三级三级三级人| 国产成人a区在线观看| 丰满的人妻完整版| 99久久综合精品五月天人人| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| xxx96com| 亚洲自拍偷在线| 午夜精品在线福利| 真人做人爱边吃奶动态| 亚洲成人精品中文字幕电影| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 午夜免费激情av| 国内精品一区二区在线观看| 久久久久久大精品| 观看免费一级毛片| 少妇丰满av| 国产69精品久久久久777片| 国产爱豆传媒在线观看| a在线观看视频网站| 国产精品乱码一区二三区的特点| 露出奶头的视频| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 在线观看av片永久免费下载| 高清毛片免费观看视频网站| 成人国产综合亚洲| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 在线免费观看不下载黄p国产 | 国产免费av片在线观看野外av| 日本三级黄在线观看| 久久精品国产清高在天天线| 国产伦精品一区二区三区四那| 国产一区二区三区在线臀色熟女| www日本在线高清视频| 中亚洲国语对白在线视频| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| av天堂在线播放| 精品日产1卡2卡| 亚洲激情在线av| 国产激情欧美一区二区| 超碰av人人做人人爽久久 | 在线观看美女被高潮喷水网站 | 我的老师免费观看完整版| 国产亚洲av嫩草精品影院| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 国产免费男女视频| 丰满乱子伦码专区| 国产精品一区二区免费欧美| 久久99热这里只有精品18| 色av中文字幕| 美女大奶头视频| 一区福利在线观看| 国产成人欧美在线观看| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 国产精品久久久久久久电影 | 国产精品一区二区三区四区免费观看 | 噜噜噜噜噜久久久久久91| 日韩大尺度精品在线看网址| 男女床上黄色一级片免费看| 观看免费一级毛片| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美 | 成熟少妇高潮喷水视频| 色在线成人网| 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 香蕉丝袜av| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 国产亚洲精品综合一区在线观看| 亚洲狠狠婷婷综合久久图片| 中文资源天堂在线| 香蕉丝袜av| 午夜视频国产福利| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 免费av毛片视频| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 亚洲人与动物交配视频| 亚洲 国产 在线| 午夜激情欧美在线| 国产精品久久久久久亚洲av鲁大| 国产成人av教育| 波多野结衣高清无吗| 午夜激情福利司机影院| 亚洲中文字幕日韩| 午夜免费激情av| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 午夜福利在线观看免费完整高清在 | 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 免费高清视频大片| 国产一区在线观看成人免费| 首页视频小说图片口味搜索| 少妇人妻一区二区三区视频| а√天堂www在线а√下载| 特级一级黄色大片| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 国产精品嫩草影院av在线观看 | 久久亚洲精品不卡| 天堂影院成人在线观看| 99久久综合精品五月天人人| 成人三级黄色视频| 成年女人毛片免费观看观看9| 美女大奶头视频| 精品久久久久久成人av| 国产私拍福利视频在线观看| xxx96com| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 在线观看美女被高潮喷水网站 | 国产aⅴ精品一区二区三区波| 香蕉av资源在线| 国产av一区在线观看免费| 日本 av在线| 久久久久精品国产欧美久久久| 高清日韩中文字幕在线| 国产aⅴ精品一区二区三区波| 88av欧美| 日日夜夜操网爽| 欧美一区二区国产精品久久精品| 久久久久久久久中文| 99国产综合亚洲精品| 免费看光身美女| 夜夜爽天天搞| 又紧又爽又黄一区二区| 久久性视频一级片| 亚洲成人久久性| x7x7x7水蜜桃| 国产野战对白在线观看| 成熟少妇高潮喷水视频| 久久99热这里只有精品18| 男女那种视频在线观看| www.999成人在线观看| 国产av麻豆久久久久久久| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 又紧又爽又黄一区二区| 毛片女人毛片| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 又爽又黄无遮挡网站| 搡女人真爽免费视频火全软件 | 成人18禁在线播放| 男女床上黄色一级片免费看| 真人做人爱边吃奶动态| 免费大片18禁| 欧美日韩精品网址| 亚洲五月婷婷丁香| 国内少妇人妻偷人精品xxx网站| 两人在一起打扑克的视频| 国内揄拍国产精品人妻在线| 日韩大尺度精品在线看网址| 日韩欧美免费精品| 在线a可以看的网站| 欧美乱妇无乱码| 此物有八面人人有两片| 又爽又黄无遮挡网站| 99久久精品热视频| 啦啦啦韩国在线观看视频| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 在线观看免费视频日本深夜| 日本a在线网址| aaaaa片日本免费| 免费看a级黄色片| 色综合欧美亚洲国产小说| 丰满的人妻完整版| 欧美一级a爱片免费观看看| 岛国视频午夜一区免费看| 国产精品野战在线观看| 在线观看美女被高潮喷水网站 | 国产精品 欧美亚洲| 国产高清视频在线观看网站| 午夜免费男女啪啪视频观看 | 欧美中文综合在线视频| 在线免费观看的www视频| 精品久久久久久久人妻蜜臀av| 18禁美女被吸乳视频| 九九在线视频观看精品| 国产淫片久久久久久久久 | 国产极品精品免费视频能看的| 午夜激情欧美在线| 国产一区二区在线观看日韩 | 久久精品人妻少妇| 女人被狂操c到高潮| 久久国产精品影院| 国产一区二区激情短视频| 99久久99久久久精品蜜桃| 亚洲七黄色美女视频|