陳文亮,賀 松,夏玉蘭
(貴州大學 大數(shù)據(jù)與信息工程學院,貴州 貴陽550025)
LTE-A不僅運用了一些經(jīng)典技術,還在新一代移動通信中注入了新鮮血液,如MIMO和OFDM。它們的結合不單克服了系統(tǒng)中的多徑效應影響,還避免了頻率選擇性衰落造成的對信號準確性的影響,重點在于它們還大幅提升了系統(tǒng)容量,提高了頻譜利用率。但是,如何選擇復雜度和性能兼顧的MIMO信號檢測算法,成為實現(xiàn)高速率數(shù)據(jù)傳輸面臨的極大挑戰(zhàn)[1]。QRM-MLD檢測算法可以被視為一種基于廣度優(yōu)先的樹型搜索檢測算法,是將一棵完整的搜索樹進行分支檢測,并不保留所有分支,而是在每一層分別選擇其中的M條分支直到搜索到最后一條。這相較于ML檢測算法遍歷所有可能取值,減少了較大的工作量,降低了搜索的復雜度。
MIMO通過空間產(chǎn)生的多條并行獨立的信道來同時傳遞多路數(shù)據(jù),具備在不要求高發(fā)射功率條件下成倍提升系統(tǒng)容量和信號傳輸速率的優(yōu)勢。因此,在LTE-A系統(tǒng)中延續(xù)LTE的特征也采用了MIMO天線技術。MIMO是一種在發(fā)送端和接收端配置有多根天線的技術,區(qū)別于LTE中MIMO上行1×2、下行2×2的基本配置。LTE-A系統(tǒng)可以支持的最大天線配置為:下行8×8,上行為4×4。在LTE-A系統(tǒng)中應用MIMO技術,大大提高了頻譜利用率和邊緣用戶性能,加快了數(shù)據(jù)傳輸?shù)乃俾剩档土苏`碼率?;诳臻g復用技術的MIMO系統(tǒng)[2]有NT根發(fā)送天線和NR根接收天線,則MIMO系統(tǒng)模型如圖1所示。
圖1 MIMO信道模型
圖1 中,x=[x1,x2,…,xNT]T為發(fā)射天線的發(fā)射信號,下標i代表從第i根天線發(fā)送的信號。
用H表示信道響應矩陣,為:
MIMO系統(tǒng)的信道數(shù)學模型[3]為:
最大似然(ML)檢測算法[4]相較于其他檢測算法是最優(yōu)檢測算法,在所有可能的發(fā)射向量空間Ω中尋找一個向量,讓它通過相同信道后得到的信號與接收信號y之間的歐式距離達到最小,即在發(fā)送信號為時接收到y(tǒng)的可能性最大:
ML檢測由于調(diào)制階數(shù)的提高和發(fā)射天線數(shù)的增多,復雜度會呈指數(shù)增長。系統(tǒng)天線數(shù)量較多且采用高維調(diào)制情況下,最大似然檢測運算復雜度很高。盡管它具有很好的性能,但通常只被作為其他檢測算法的性能參考。
迫零(ZF)算法[5]是以加權最小二乘(LS,Least Square)準則為根據(jù)而設計的。將所有發(fā)射天線上的信號都作為希望得到的有效信號,其他部分則視為干擾。通過與加權矩陣GZF的線性相乘,完全消除天線間干擾,實現(xiàn)了“干擾置零”。原理是希望發(fā)射向量的估計值經(jīng)過相同信道后和接收信號y的誤差平方和e()達到最小,即:
QRM-MLD檢測算法[6]是擁有近似于ML檢測算法性能但復雜度固定的樹型搜索方法。它結合了QR分解M算法,QR分解采用樹搜索解決檢測問題,M算法則可以極大地減少樹搜索的復雜度。
設系統(tǒng)發(fā)射天線和接收天線數(shù)量相同,對信道矩陣進行QR分解得到H=QR,其中Q為NR×NT的正交矩陣,R為NT×NT的上三角矩陣。ML度量可以等價表示為:
下面以4發(fā)4收天線配置情況下的QRM-MLD檢測算法為例,將式(5)擴展得到:
令Ω表示為一個信號星座,參考式(6),QRM-MLD檢測方法可以分為以下四個步驟,其中用arg minfi(x1,x2,…,xn)表示從候選向量中選擇使得x1,x2,…,xn取得最小的M個值。
步驟1:在x4的|Ω|個候選符號中 ( x4??) 選擇M個使得式(7)成立:
最后,得到接收信號的M個估計向量[6],挑選其中使得式(6)取得最小值的一個向量作為最終的估計向量。圖2描述了一個4×4天線數(shù)量、采用QPSK調(diào)制并且取M=2的QRM-MLD檢測算法樹型搜索過程。
從圖2可以看出,需要經(jīng)過檢測的節(jié)點數(shù)為:
且QRM-MLD的檢測性能依賴于參數(shù)M的取值。隨著M值的增大,它的性能將接近于ML檢測算法,但復雜度也會大幅度提高。對于給定的M值,即便是不考慮SNR和信道條件數(shù)的影響,QRM-MLD的復雜度也是固定的,使得其硬件實現(xiàn)更加簡單。
圖2 QPSK調(diào)制方式下M=2的QRM-MLD樹型搜索
利用MATLAB軟件對LTE-A下行鏈路處于瑞利衰落信道條件下MIMO檢測進行仿真,且把天線數(shù)量與調(diào)制方式不同情況下MIMO檢測算法性能進行了對比分析。表1為仿真的基本參數(shù)設定。
表1 仿真參數(shù)設置
4.1.1 QPSK調(diào)制方式
在4×4天線QPSK調(diào)制條件下[7],QRM-MLD檢測算法取不同M值與ML檢測算法的MSE曲線圖。據(jù)圖3可知,在M=4時,QRM-MLD檢測算法的性能接近于ML檢測算法。但是,M=2、MSE=10-2情況下,QRM-MLD檢測算法性能較ML檢測算法差4 dB??梢缘玫酱朔N條件下,M值越大,QRM-MLD檢測算法的性能越好。這是因為QRMMLD檢測算法在搜索解向量時,并不是只在一條路徑上搜索,而是根據(jù)M值的選取保留每層不同的路徑個數(shù)。隨著M值的增加,搜索的范圍會更大,最終的性能也越好。
4.1.2 6QAM調(diào)制方式
圖4為天線數(shù)為4天線、調(diào)制方式為16QAM的條件下[8],QRM-MLD檢測算法M值在分別取4、8和16的情況下與ML檢測算法對比的MSE曲線圖。據(jù)圖可知,M=16時,QRM-MLD檢測算法MSE曲線幾乎重疊于ML檢測算法MSE曲線,這是因為仿真中使用16QAM調(diào)制,所以每層的路徑數(shù)最多為16??梢?,M=16的情況下,QRM-MLD檢測算法剛好搜索完所有的路徑。
圖3 4×4天線QPSK調(diào)制條件下QRM-MLD檢測算法MSE曲線
圖4 4×4天線16QAM調(diào)制條件下QRM-MLD檢測算法MSE曲線
圖5 為QRM-MLD檢測算法在8×8(M=4)性能,較ML檢測算法性能大約差6 dB[9]。造成此種情況的原因可能是QRM-MLD檢測天線QPSK調(diào)制條件下和ML檢測算法的MSE曲線,即使M=4,QRMMLD檢測算法的性能差距ML檢測算法較遠。例如,在MSE=10-5的情況下,QRM-MLD檢測算法算法的檢測過程中天線數(shù)的增加造成了誤差的傳遞[10]。
圖5 8×8天線QPSK調(diào)制條件下QRM-MLD檢測算法MSE曲線
通過對LTE-A中下行MIMO技術QRM-MLD算法進行仿真,天線數(shù)量為4×4情況下的QRMMLD檢測算法(M=4)具備明顯效果。當天線數(shù)量為8×8時,由于誤差的傳遞,效果不甚理想。