• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrothermal Synthesis, Structure and Properties of a 3D Pillar-layered Metal-organic Framework Based on Amino-arenedisulfonate Ligand①

    2018-12-13 09:47:46GUANLeiLUOGuanHuaWANGYing
    結(jié)構(gòu)化學(xué) 2018年11期

    GUAN Lei LUO Guan-Hua WANG Ying

    ?

    Hydrothermal Synthesis, Structure and Properties of a 3D Pillar-layered Metal-organic Framework Based on Amino-arenedisulfonate Ligand①

    GUAN Lei②LUO Guan-Hua WANG Ying

    (113001)

    One novel metal-organic framework (MOF), [Ba()(H2O)1.5]n(1, H2= aniline-2,5-disulfonic acid), has been synthesized by hydrothermal method. Each barium atom is eleven-coordinated into a distorted monocapped pentagonal antiprismatic arrangement. Compound 1 shows an interesting 3D pillar-layered structure constructed from 2D inorganic layers [Ba(SO3)2(H2O)1.5]nand organic pillars of phenyl moieties of2-linkages. The inorganic layers are supported by the organic pillars, generating a novel 3D open framework structure with {3, 46, 55, 65, 74}2{3}{5} topology. The result of fluorescence measurement can reveal that the decayed emission band centered at 492 nm may be caused by the interactions of the ligands and the metal ions. Compound 1 exhibits selective toward the adsorption of CO2over N2at 273 K.

    hydrothermal synthesis, metal-organic framework, pillar-layered structure, coordination polymer;

    1 INTRODUCTION

    Metal-organic frameworks, as an emerging class of porous inorganic-organic hybrid materials, have attracted considerable interest in materials science due to their diverse porous structures[1-5]. Many potential applications of MOFs arise due to the porous nature of the structure, though the variability of the coordination around the metal ions can play an important role[6-9]. In addition, it is conceivable that different physical and chemical properties can arise out of the functional groups as well. Thus, supramolecular design of MOFs allows a number of organic ligands, with two or more functional groups, to be linked to metal ions giving myriad variations and tunable properties in synthesized structures[10, 11].

    The most commonly used organic linkers are the aromatic polycarboxylate, due to their structural rigidity, strong bonding interactions, and rich diversity of coordination modes utilized for exten- sion of the metal ions into high-dimensional structures[12-15]. However, recently there is growing interest in the employment of their sulfonic analogous for the construction of novel MOF structures. Sulfonate is an excellent group for constructing MOFs, which can enhance the number of possible geometrical combination between the O-donors and can allow for bridging the metal ions with new coordination modes. Hence, the coexi- stence of multisulfonate groups in the same ligand may result in many interesting structures with special applications[16, 17].

    A trifunctional (two sulfonate and an amino groups) ligand, H2, has been chosen to construct MOFs owing to the following two considerations: (a) parabisulfonate groups can prefer to bridge metal ions, constructing MOFs with diverse structures, and bisulfonate groups prefer to coordinate to main group metals, especially alkaline earth metals; and (b) the amino group can be regarded as a modified group, which can decorate the MOF to obtain many of the properties. Herein, we report on the synthesis and characterization of a novel 3D pillar-layered MOF with {3, 46, 55, 65, 74}2{3}{5} topology based on H2. Additionally, the luminescent and gas adsorption properties of compound 1 were also studied.

    Scheme 1. Molecular structure of H2ligand

    2 EXPERIMENTAL

    2.1 Materials and general measurements

    All reagents were purchased from commercial sources and used without further purification. X-ray single-crystal diffraction data were collected at 296 K from a single crystal mounted atop a glass fiber with a Bruker Apex-II diffractometer using graphite-monochromated Mo(= 0.71073 ?) radiation. Elemental analysis was performed on a Perkin-Elmer 240C instrument. The FT-IR spectrum was recorded on a Nicolette FTIR spectrometer using KBr pellets in the range of 4000~400 cm-1. Thermogravimetric analysis was carried out on a NETZSCH STA 449C unit at a heating rate of 10°C·min-1under a nitrogen atmosphere. Photoluminescence analysis was performed on a Perkin Elemer LS55 fluorescence spectrometer. N2and CO2absorption measurements were performed using an Autosorb IQ2 instrument. Prior to the measurement of the isotherms, the samples were desolvated for 24 h under high vacuum conditions at 130°C.

    2.2 Synthesis of compound 1

    Ba(NO3)2(0.261 g, 1 mmol) and H2(0.253 g, 1 mmol) were dissolved in 20 mL H2O. After stirring for 2 h, the mixture was sealed in a 25 mL Teflon-lined stainless-steel vessel, and then heated to 120℃ for 36 h. After cooling to room temperature in 12 h, the resulting colorless crystals were washed with distilled water to give the pure sample. The colorless single crystals were obtained in ca. 72% yield based on Ba(II).Elemental Anal. Calcd.(%) forC12H16Ba2N2O15S4: C, 34.65; H, 1.92; N, 3.37. Found(%): C, 34.81; H, 1.96; N, 3.55.Infrared spectrum (cm-1):(O–H) = 3068,(C=C) = 1535,(OH) = 1478, 1405,(C–N) = 1282,(SO32–) = 1212, 1160, 1124, 1046, 1016, 911,(C–H) = 850, 837,(N–H) = 724, 655,(C–S) = 609,(Ba–O) = 561[18, 19].

    2.3 X-ray crystallographic measurement

    Data collection for compound 1 was carried out on a Bruker Smart CCD diffractometer equipped with graphite-monochromated Moradiation (= 0.71073 ?) at 296 K. Data reduction was performed with SAINT[20], and empirical absorption corrections were applied by the SADABS program. The struc- ture was solved by direct methods using the SHELXS program and refined with the SHELXL program[21]. Heavy atoms and other non-hydrogen atoms were directly obtained from a difference Fourier map. Final refinements were performed by full-matrix least-squares methods with anisotropic thermal parameters for all non-hydrogen atoms on2. C-bonded H atoms were placed geometrically and refined as riding model. O-bonded H atoms were placed in idealized positions and constrained to ride on their parent atoms. The atomic occupancy of the coordinated water molecule (O8, H8B and H8C) is 0.5. Selected bond distances and bond angles are given in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Compound 1

    Symmetry codes: (A) ?+1, ?+1, ?+2; (B), ?+1/2,+1/2; (C) ?+1,?1/2, ?+3/2

    C12H16Ba2N2O15S4,= 831.19, colorless blocks, crystal size 0.26mm × 0.23mm × 0.22mm, mono- clinic,21/,= 10.559(4),= 12.087(5),= 9.002(4) ?,= 97.783(6)°,1138.3(8) ?3,= 296 K,= 2,= 3.88 mm?1),min= 0.432,max= 0.482, 5612 reflections measured, 1988 unique (int= 0.043), 1784 observed (2()), (sin/)max= 0.595 ??1, parameters = 164, restraints = 2,0.055(observed refl.),0.149(all refl.),1.11, (Δmax)=1.89 and (Δmin) = –1.76 e·??3.

    3 RESULTS AND DISCUSSION

    3.1 Structure description

    Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the monoclinicsystem,21/space group. The asymmetric unit of compound 1 contains one barium ion, one2-ligand, and one and a half of coordinated water molecules, as shown in Fig. 1a. Each barium atom is eleven- coordinated, showing a distorted monocapped pentagonal antiprism geometry, as shown in Fig. 1b. Its coordination sites are occupied by sulfonate oxygen atoms (O(1), O(2), O(2)A, O(3), O(4)C, O(5) and O(6)D) and terminal water molecules (O(7), O(7)B, O(8) and O(8)B). The Ba–O bond lengths fall in the range of 2.683(8)~3.084(16) ?. The O–Ba–O bond angles are in the range of 31.4(4)~177.7(3)°(Table 1). These distances and angles are comparable to those of barium-sulfonatecomplexes (see Table 1)[22, 23]. The ligand shows only one kind of coordination mode in compound 1 (Fig. 1c). It bridges six barium ions, leaving the amino group uncoordinated, where the two sulfonate groups adopt1-1:2:1and1-1:1coordination modes to coordinate with six different barium ions, respect- tively. In addition, the chelating and bridging coordination modes of thesulfonate groups of the ligand we reported are different from those reported in references[22, 23]. As reported, thesulfonate groups displaydiverse coordination modes, which together with the versatile coordination ability of the bridging ligand makes it adaptable to metal ions of different sizes and leads tovarious topologies[22, 23].

    Fig. 1. (a) Molecular structure of compound 1. The asymmetric structure unit of compound 1 with atomic labeling scheme. All hydrogen atoms are omitted for clarity; (b) Ba1 ion exhibits a monocapped pentagonal antiprism geometry; (c) Coordination mode of2-ligand

    (Symmetry codes: (A) ?+1, –+1, –+2; (B),+1/2,+1/2; (C) ?+1,?1/2, ?+3/2; (D) –+1, –+1, –+2; (E)+1,,)

    Hydrogen bonding interactions are present in the crystal structure of compound 1. Hydrogen bonding interactions are listed in Table 2. These interactions involve the coordinated water molecules, the amino nitrogen atoms, and the sulfonate oxygens on the ligands. Collectively, the hydrogen bonds can contri- bute to the overall stability of the crystal lattices in 1.

    Table 2. Hydrogen Bond Lengths (?) and Bond Angles (°) for Compound 1

    Compound 1 displays a 3D structure constructed by the 2D inorganic layers [Ba(SO3)2(H2O)1.5]nand the pillars of organic phenyl moieties of2-linkages (Fig. 2a and 2b). The 2D inorganic layers are supported by2-ligands as pillars to form a 3D pillared-layered structure. Such structure is charac- teristic of the metalsulfonate coordination poly- mers[24]. The separation between the neighboring layers is 16.05 ?. The 2D inorganic layer features one-dimensional chains bridged by sulfonate groups, as shown in Fig. 2c. The barium ions are bridged by water molecules to form one-dimensional chain structures [Ba(H2O)1.5]n. The distance is 6.06 ? between the adjacent one-dimensional chains. The two sulfonate groups of2-ligands can adopt the η1:μ1μ2μ1and η1:μ1μ1μ1coordination modes to bridge the one-dimensional chains through coordination actions with barium ions. This type of 3D pillared- layered structure constructed from2-ligands has never been observed. From the above description, we can see that two factors can play important roles in forming the 3D pillared-layered structure: (i) the2-ligand can provide two sulfonate groups at the para-position of the benzene ring; (ii) the rigid bridging linker2-ligand can play a supporting role through coordination actions. Up to now, a large number of pillarlayered structures have been reported, such as {(Btc)2(Tib)2(H2O)4].(H2O)2}n(Btc = 1,3, 5-benzenetricarboxylate, Tib = 1,3,5-tris (imidazol-1- ylmethyl)benzene)[25], [Cd(HCOO)(4-tba)]n(4-Htba = 4-(1,2,4-triazole)benzoic acid)[26]and [Sr(H2)- (H2O)2]·3H2O (H4= N,N?-piperazine-bis(methyl- enephosphonic acid))[27].However, the pillar-layered structures constructed from the ligands containing sulfonate are quite rare, compared with the car- boxylate or phosphonate[25-27].

    The crystal structure can be simplified to the network by topological approach for better under- standing of the nature of this intricate framework[28]. Each2-ligand is considered as 6-connected node due to the bridging of six neighboring barium ions, and each barium center acts as a 6-connected node due to the coordination of the six surrounding2-ligands. Both oxygen atoms (O(7) and O(8)) of water molecules can be considered as linkers. Based on this simplification, the2-ligand, barium atom and water molecule act as 6, 6 and 2-connected nodes in a ratio of 1:1:2 in this structure, respectively (Fig. 3a~3c). Hence, compound 1 exhibits a 3D open framework with Schl?fli symbol of {3, 46, 55, 65, 74}2{3}{5}, as shown in Fig. 3d. The amino group of the ligands is uncoordinated with barium ions, thusthe 3D open framework is decorated by the amino groups. It may have some potential applications[28-30].

    Fig. 2. Schematic representation of (a) the 3D pillar-layered structure, (b) the 2D inorganic layered structure, and (c) one-dimensional chains [Ba(H2O)1.5]nand sulfonate group

    Fig. 3. Schematic representation of (a) the ligand-based 6-connected nodes, (b) the 6-connected Ba1 nodes, (c) the 2-connected water nodes, and (d) the 3D open framework structure

    3.2 Luminescent property

    The luminescent properties of the free ligand and compound 1 have been determined in the solid state at room temperature. As shown in Fig. 4, the free ligand exhibits photoluminescence emission at 394 nm upon excitation at 315 nm, which may be attributed to*-n or*-transitions[31]. Compound 1 exhibits green luminescence emission at 492 nm by using an excitation wavelength of 315 nm. It can mean the red-shift of 98 nm relative to the free ligand. The red-shift can mainly originate from the ligand- to-metal charge transfer transition or the change of crystalline structure. Similar red-shifts are observed in other MOFs[31]. UV-Vis diffuse reflectance spectrum is another evident for ligand-to-metal charge transfer effect[31]. As reported in the literatures, the emission spectra show various degree of red-shift, which could be ascribed to the structure diversities arising from the diverse conformation and the different positions of coordination atoms. Then, the structure diversities further change the charge transi tion energy. The crystalline solid of compound 1 can display the photoluminescence property. It implies that it is a promising candidate for hybrid photo-active material with potential applications such as light emitting diode[32].

    Fig. 4. Solid-state emission spectra of the ligand and compound 1 at room temperature

    Fig. 5. TGA curve for compound 1

    3.3 Thermal analysis

    The thermogravimetric diagram of compound 1 is shownin Fig. 5. The phase of the sample remains stable up to 273°C. The dehydration step is completed at 311°C with mass reduction of 3.26% (calcd. 3.25%), indicating the loss of coordination water molecules. Surprisingly, this process is completed at around 311°C, which is much higher than that expectedfor coordinated water mole- cules[33]. This high temperature of dehydration shows strong bridging actions of water molecules with the barium ions. On further heating, the ligands are gradually decomposed in the temperature range of 311~900°C. The total weight loss is ca. 48.59%, with the final residues of the mixture of barium oxide and barium sulfate[33].

    3.4 Gas adsorption

    To check the adsorption properties of compound 1 to host molecules, N2and CO2adsorptions were carried out at 273 K, respectively. As shown in Fig. 6, compound 1 can take up a relatively significant amount of CO2(73.8 cm3/g) but a negligible amount of N2(4.7 cm3/g) at 273 K and 1 atm. It indicates that compound 1 has a good capacity for CO2/N2separation[34]. The adsorption of CO2by compound 1 may be attributed to the conjugated delocalization system and the smaller kinetic diameter of CO2compared to that of N2(CO2, 3.3 and N2, 3.6 ?)[35], which may strengthen the electric interaction between the guest small molecules and the host framework. It is well known that N-containing organic heterocycles can enhance CO2selectivity. Thus, the incorporation of such heterocyclics into the microporous MOFs has the potential to increase the sorption capacity and the selectivity for CO2. The characteristics for the adsorption of CO2on heterocyclic microporous polymers are considered to be attributed to the lone pair electrons of heteroatoms, which can appear to play an important role because they can provide alkalinity sites through dipole- dipole interactions, thus enhancing the CO2adsorp- tion properties[36].

    Fig. 6. N2and CO2adsorption isothermsat 273 K for compound 1

    4 CONCLUSION

    In summary, a novel MOF [Ba()(H2O)1.5]nhas been synthesized under hydrothermal conditions by using H2as the ligand. It shows a 3D pillar-layered structure with unique {3, 46, 55, 65, 74}2{3}{5} topology based on two kinds of topologically none- quivalent 6-connected nodes and one kind of 2- connected node. The2-ligand acts as an unprece- dented hexadentate bridging ligand. It exhibits blue photoluminescence in the solid state, and demon- strates selective toward the adsorption of CO2over N2at 273 K.

    (1) Kuang, X. F.; Wu, X. Y.; Yu, R. M.; Donahue, J. P.; Huang, J.; Lu, C. Z. Assembly of a metal-organicframework by sextuple intercatenation of discrete adamantane-like cages2010,2, 461–465.

    (2) Choi, S. B.; Furukawa, H.; Nam, H. J.; Jung, D. Y.; Jhon, Y. H.; Walton, A.; Book, D.; O’Keeffe, M, Yaghi, O. M.; Kim, J. Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition.2012, 51, 8791–8795.

    (3) Wu, H.; Yang, J.; Su, Z. M.; Batten, S. R.; Ma, J. F. An exceptional 54-fold interpenetrated coordinationpolymer with 10(3)-srs network topology.2011, 133, 11406–11409.

    (4) Zhang, J. J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J. Temperature and concentrationcontrol over interpenetration in a metal-organic material.2009, 131, 17040–17041.

    (5) Champness, N. R. The brave new world of coordination frameworks.2013, 49, 331–333.

    (6) Deng, H. X.; Doonan, C. J.; Furuawa, H.; Ferreira, R. B.; Towne, J.; Knobler, V. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks.2010, 327, 846–850.

    (7) Ponomareva, V. G.; Kovalenko, K. A.; Chupakhin, A. P.; Dybtsev, D. N.; Shotova, E. S.; Fedin, V. P.Impartinghigh proton conductivity to a metal-organic framework material by controlled acid impregnation.. 2012, 134, 15640–15643.

    (8) Shigematsu, A.; Yamada, T.; Kitagawa, H. de control of proton conductivity in porous coordinationpolymers.2011, 133, 2034–2036.

    (9) Lin, Q. P.; Wu, T.; Zheng, S. T.; Bu, X.; Feng, P. A chiral tetragonal magnesium-carboxylateframework with nanotubular channels.2011, 47, 11852–11854.

    (10) Ni, W. X.; Li, M.; Zhan, S. Z.; Hou, J. Z.; Li, D. In situ immobilization of metalloligands: a synthetic routeto homometallic mixed-valence coordination polymers.2009, 48, 1433–1441.

    (11) Zhou, W.; Meng, X. R.; Ding, Y. N.; Li, W. Q.; Hou, H. W.; Song, Y. L.; Fan, Y. T. Syntheses, crystalstructures, third-order nonlinear optical properties and thermal properties of two infinite (6, 3) netcomplexes.. 2009, 937, 100–106.

    (12) Yan, Q.; Huang, X. C.; Zhong, J.; Jian, G.; Chen, S. C.; He, M. Y.; Chen, Q.; Beckett, M. A.K(I)-M(II) (M = Co,Mn) heterometallic-(perfluorinated) organic frameworks containing inorganic layered K-O-M linkages:synthesis, crystal structure, and magnetic properties.2015, 68, 2691–2702.

    (13) Mondal, B.; Sen, B.; Zangrando, E.; Chattopadhyay, P. A dysprosium-based metal-organic framework: synthesis, characterization, crystal structure and interaction with calf thymus-DNA and bovine serumalbumin.2014,126, 1115–1124.

    (14) Bai, N.; Li, S. N.; Jiang, Y. C.; Hu, M.; Zhai, Q. Pillar-layered Zn-triazolate-carboxylate frameworkstuned by the bend angles of ditopic ligands.2015, 53, 84–87.

    (15) Zhang, Z. L.; Yao, X. Q.; An, N.; Ma, H. C. A homochiral Cu(II) coordination polymerbuilt from helical motif based on two V-shaped ligands.2014, 45, 127–130.

    (16) Tang, Y. Z.; Cao, Z.; Wen, H. R.; Liao, S. L.; Huang, S.; Yu, C. L. In situ synthesis, crystal structures, andluminescence of two new tetrazole complexes.2010, 63, 3101–3107.

    (17) Ma, L.; Qin, Y. C.; Peng, G.; Cai, J. B.; Deng, H. In situ tetrazole ligand synthesis of two-foldinterpenetrating zinc coordination frameworks.2011, 3446–3453.

    (18) Sherif, T. S.; Carr, P.; Piggott, B. Manganese catalysed reduction of dioxygen to hydrogen peroxide:structural studies on a manganese(III)-catecholate complex.2003, 348, 115–122.

    (19) C?té, A. P.; Shimizu, G. K. H. Coordination solids via assembly of adaptable components: systematicstructural variation in alkaline earth organosulfonate networks.2003,9, 5361–5370.

    (20) Sheldrick, G. M. SHELXS 97,. University of G?ttingen 1997.

    (21) Sheldrick, G. M. SHELXL 97,. University of G?ttingen 1997.

    (22) Haddad, S. F.; Raymond, K. N. The structure and properties of tetrakis(tironato)cerate(IV),Na12[Ce(C6H2O2(SO3)2)4]·9H2O·6C3H7NO.1986, 122, 111–118.

    (23) Guan, L.; Wang, Y. Hydrothermal synthesis, crystal structures and properties of tiron-bridged di- andtrinuclear strontium complexes containing nitrogen-donor ligands.2015,97, 175–181.

    (24) Liu, Q. Y.; Xu, L. Novel structure evolution of lanthanide-SIP coordination polymers (NaH2SIP =5-sulfoisophthalic acid monosodium salt) from a 1D chain to a 3D network as a consequence of the lanthanide contraction effect.2005,2005, 3458–3466.

    (25) Rachuri, Y.; Bisht, K. K.; Parmar, B.; Suresh, E. Luminescent MOFs comprising mixed tritopic linkersand Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture.2015, 223, 23–31.

    (26) Mu, Y. H.; Ge, Z. W.; Li, C. P. 3D pillared-layer coordination frameworks constructed from4-(1,2,4-triazole)benzoic acid and different [M(HCOO)]nlayers..2014, 48, 94–98.

    (27) Du, Z. Y.; Xie, Y. R.; Wen, H. R. Novel open-framework architecture in strontium(II) phosphonate.2009,362, 351–354.

    (28) Zhang, Y.; Liu, X. G.; Wang, L. Y.; Ding, J. G.; Li, B. L. An unusual (4,6)-connected three dimensionalframework and a two-dimensional (6,3) network based on flexible and rigid co-ligands.2012, 21, 76–79.

    (29) Xu, Y.; Luo, F.; Che, Y. X.; Zheng, J. M. A rare (3, 6, 10)-connected net containing both Zn2(COO)4andZn4(COO)8units.2010, 13, 1489–1492.

    (30) Lin, W. F.; Wu, M. F.; Dai, S. C.; Dai, W. L.; Zou, J. P. A novel (4,6)-connected 3D metal-organicframework based on chelidamic acid: synthesis, crystal structure and photoluminescence.2013, 35, 326–329.

    (31) Wu, Y. L.; Xia, C. K.; Qian, J.; Xie, J. Three coordination compounds based on benzene tetracarboxylate ligand: synthesis, structures, thermal behaviors and luminescence properties.2017, 129, 1–9.

    (32) Samanamu, C. R.; Zamora, E. N.; Montchamp, J. L.; Richards, A.F. Synthesis of homo and heterometal-phosphonate frameworks from bi-functional aminomethylphosphonic acid.2008, 181, 1462–1471.

    (33) Liu, J. J.; Liu, B.; Wang, Y. Y.; Shi, Q. Z. A 2-fold interpenetrated 3D Cd(II) architecture with helicalstructure containing 1D cadmium-oxygen chain.2013,27, 111–113.

    (34) He, Y. P.; Tan, Y. X.; Zhang, J. Stable Mg-metal-organic framework (MOF) and unstable Zn-MOFbased on nanosized tris((4-carboxyl)phenylduryl)amine ligand.2013,13, 6–9.

    (35) Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.; Bai, J. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO2... 2013, 135, 562–565.

    (36) Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; C?Té, A. P.; Kim, J.; Yaghi, O. M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra.2005, 127, 7110–71108.

    5 March 2018;

    12 June 2018 (CCDC 1475311)

    ① This project was supported by the Liaoning Provincial Education Department (No. L2015299) and Innovative training program for College Students (Nos. 201710148000118, 201710148000147)

    . E-mail: glsyncoord@163.com

    10.14102/j.cnki.0254-5861.2011-1998

    欧美黑人精品巨大| 伊人久久国产一区二区| 国精品久久久久久国模美| 最新在线观看一区二区三区 | 丰满饥渴人妻一区二区三| 亚洲综合色网址| av在线观看视频网站免费| 久久天躁狠狠躁夜夜2o2o | 亚洲,欧美精品.| 欧美人与性动交α欧美软件| 中国国产av一级| 中文精品一卡2卡3卡4更新| 91国产中文字幕| av网站免费在线观看视频| 19禁男女啪啪无遮挡网站| 免费少妇av软件| 老熟女久久久| 国产精品久久久久久精品古装| 美女福利国产在线| 自线自在国产av| 国产无遮挡羞羞视频在线观看| 不卡av一区二区三区| 一级毛片女人18水好多| 正在播放国产对白刺激| 国产高清videossex| 精品国产一区二区久久| 亚洲精华国产精华精| 日日干狠狠操夜夜爽| 国产精品av久久久久免费| 久久久国产欧美日韩av| 12—13女人毛片做爰片一| 老司机在亚洲福利影院| 男男h啪啪无遮挡| 两个人看的免费小视频| svipshipincom国产片| 人妻久久中文字幕网| tocl精华| 禁无遮挡网站| 国产成人精品久久二区二区91| 午夜亚洲福利在线播放| 黄片小视频在线播放| 亚洲少妇的诱惑av| 激情视频va一区二区三区| 又黄又爽又免费观看的视频| 91九色精品人成在线观看| 久久人人爽av亚洲精品天堂| 成人亚洲精品av一区二区| 免费在线观看亚洲国产| 亚洲欧美日韩高清在线视频| av超薄肉色丝袜交足视频| cao死你这个sao货| 脱女人内裤的视频| 我的亚洲天堂| 两个人看的免费小视频| 亚洲欧洲精品一区二区精品久久久| 午夜福利成人在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | aaaaa片日本免费| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 一a级毛片在线观看| 色播在线永久视频| 啦啦啦观看免费观看视频高清 | 9热在线视频观看99| 免费无遮挡裸体视频| 亚洲精品一卡2卡三卡4卡5卡| 又紧又爽又黄一区二区| 亚洲国产高清在线一区二区三 | 丁香六月欧美| 中文字幕av电影在线播放| 国产99久久九九免费精品| 欧美在线黄色| 悠悠久久av| 日韩精品青青久久久久久| 久久国产乱子伦精品免费另类| 男女午夜视频在线观看| avwww免费| 亚洲视频免费观看视频| 99国产精品免费福利视频| 黄色视频不卡| 嫩草影院精品99| 天天添夜夜摸| av有码第一页| 国产精品,欧美在线| avwww免费| 欧美午夜高清在线| 欧美黑人欧美精品刺激| 亚洲精品美女久久av网站| 天堂√8在线中文| 国产一区二区在线av高清观看| 欧美激情极品国产一区二区三区| 久久香蕉国产精品| 露出奶头的视频| 满18在线观看网站| 夜夜爽天天搞| 十八禁人妻一区二区| 欧美色视频一区免费| 精品无人区乱码1区二区| 两人在一起打扑克的视频| 首页视频小说图片口味搜索| 亚洲男人的天堂狠狠| 午夜久久久久精精品| 一级毛片女人18水好多| 中文字幕高清在线视频| 色播在线永久视频| 老司机深夜福利视频在线观看| 在线观看舔阴道视频| 欧美 亚洲 国产 日韩一| 亚洲自偷自拍图片 自拍| 免费在线观看黄色视频的| 99精品久久久久人妻精品| 视频区欧美日本亚洲| 啦啦啦 在线观看视频| 香蕉丝袜av| 久久久久久久精品吃奶| 99国产精品一区二区蜜桃av| 免费人成视频x8x8入口观看| 欧美成人一区二区免费高清观看 | 男女下面插进去视频免费观看| 国产成人影院久久av| 亚洲国产欧美一区二区综合| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 麻豆一二三区av精品| 熟妇人妻久久中文字幕3abv| 久久精品亚洲熟妇少妇任你| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 涩涩av久久男人的天堂| 国产蜜桃级精品一区二区三区| 日韩三级视频一区二区三区| 88av欧美| 丝袜美足系列| 欧美一级a爱片免费观看看 | 欧美日韩乱码在线| 高清黄色对白视频在线免费看| 久久性视频一级片| 成年女人毛片免费观看观看9| 亚洲精品国产色婷婷电影| av电影中文网址| 一级黄色大片毛片| 纯流量卡能插随身wifi吗| 国产亚洲精品第一综合不卡| 男人舔女人下体高潮全视频| 国产欧美日韩精品亚洲av| 午夜亚洲福利在线播放| 午夜精品在线福利| av片东京热男人的天堂| 国内久久婷婷六月综合欲色啪| 欧美最黄视频在线播放免费| 女人爽到高潮嗷嗷叫在线视频| 曰老女人黄片| 999精品在线视频| 伊人久久大香线蕉亚洲五| 亚洲视频免费观看视频| 亚洲性夜色夜夜综合| 99riav亚洲国产免费| 国产精品秋霞免费鲁丝片| www.熟女人妻精品国产| 麻豆一二三区av精品| 国产精品98久久久久久宅男小说| 国产精品综合久久久久久久免费 | 又紧又爽又黄一区二区| 波多野结衣高清无吗| 久热这里只有精品99| 黄色视频不卡| 最近最新免费中文字幕在线| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 色综合婷婷激情| 亚洲专区国产一区二区| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 亚洲精品国产精品久久久不卡| 亚洲av第一区精品v没综合| 亚洲五月婷婷丁香| 在线av久久热| 国产精品一区二区免费欧美| 在线观看舔阴道视频| 少妇粗大呻吟视频| 日韩欧美三级三区| 欧美日本中文国产一区发布| 国产1区2区3区精品| 欧美激情久久久久久爽电影 | 亚洲伊人色综图| 国产三级黄色录像| 99riav亚洲国产免费| 91大片在线观看| 欧美日本视频| 久久香蕉精品热| 在线观看66精品国产| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线二视频| 亚洲国产日韩欧美精品在线观看 | 窝窝影院91人妻| 国产午夜福利久久久久久| 丰满的人妻完整版| 视频在线观看一区二区三区| 欧美成人免费av一区二区三区| 亚洲国产日韩欧美精品在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 久久中文看片网| 欧美日韩乱码在线| 欧美日韩福利视频一区二区| www国产在线视频色| 免费观看精品视频网站| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 国产蜜桃级精品一区二区三区| 午夜亚洲福利在线播放| 午夜老司机福利片| 正在播放国产对白刺激| netflix在线观看网站| 99久久久亚洲精品蜜臀av| 日韩欧美一区视频在线观看| 精品久久久久久久毛片微露脸| 嫁个100分男人电影在线观看| e午夜精品久久久久久久| 亚洲 欧美一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲成人久久性| 久久人人精品亚洲av| 深夜精品福利| 麻豆av在线久日| 欧美丝袜亚洲另类 | 国产一级毛片七仙女欲春2 | 黄色女人牲交| 国产精品精品国产色婷婷| 夜夜爽天天搞| 欧美色欧美亚洲另类二区 | 国产精品,欧美在线| 国产精品久久久久久人妻精品电影| 精品一区二区三区四区五区乱码| av天堂久久9| 9热在线视频观看99| 美女大奶头视频| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 法律面前人人平等表现在哪些方面| 国产亚洲精品综合一区在线观看 | 禁无遮挡网站| 欧美一级a爱片免费观看看 | 国产色视频综合| 级片在线观看| 老司机深夜福利视频在线观看| 成人三级黄色视频| 99国产综合亚洲精品| 女人精品久久久久毛片| 久久精品亚洲精品国产色婷小说| 亚洲专区中文字幕在线| 久久久水蜜桃国产精品网| 99国产精品一区二区蜜桃av| 法律面前人人平等表现在哪些方面| 九色亚洲精品在线播放| 欧美黑人精品巨大| 日韩av在线大香蕉| 久久久久国产一级毛片高清牌| 国产激情欧美一区二区| 亚洲熟女毛片儿| 久久婷婷人人爽人人干人人爱 | 一区二区三区激情视频| 日韩精品免费视频一区二区三区| 成在线人永久免费视频| 波多野结衣一区麻豆| 级片在线观看| 麻豆成人av在线观看| 国产高清激情床上av| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 女性被躁到高潮视频| av在线播放免费不卡| 日本a在线网址| 很黄的视频免费| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 亚洲精品粉嫩美女一区| 又大又爽又粗| 欧美日韩亚洲国产一区二区在线观看| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 午夜亚洲福利在线播放| 国产亚洲欧美精品永久| 曰老女人黄片| 久久狼人影院| 亚洲av第一区精品v没综合| 老司机福利观看| 国产精品乱码一区二三区的特点 | 日本一区二区免费在线视频| 成人18禁高潮啪啪吃奶动态图| 少妇 在线观看| 午夜福利,免费看| 国产精华一区二区三区| 欧美大码av| 午夜两性在线视频| 国产不卡一卡二| 日本a在线网址| 亚洲精品国产一区二区精华液| 国产精品国产高清国产av| 亚洲国产精品999在线| 久久久精品欧美日韩精品| 精品一区二区三区四区五区乱码| 精品国产国语对白av| av中文乱码字幕在线| 久久人妻福利社区极品人妻图片| 国内精品久久久久久久电影| 欧美乱码精品一区二区三区| 亚洲精品在线观看二区| 天天添夜夜摸| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 一个人免费在线观看的高清视频| 精品日产1卡2卡| 午夜激情av网站| 美女午夜性视频免费| 亚洲国产精品成人综合色| √禁漫天堂资源中文www| 曰老女人黄片| 国产一区在线观看成人免费| 久久婷婷人人爽人人干人人爱 | 美女 人体艺术 gogo| 成人亚洲精品av一区二区| 级片在线观看| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 久久精品91蜜桃| 午夜视频精品福利| 久久人人97超碰香蕉20202| 欧美在线黄色| 啦啦啦 在线观看视频| 性色av乱码一区二区三区2| 久久久久九九精品影院| 久久久精品国产亚洲av高清涩受| 国产亚洲欧美精品永久| 九色国产91popny在线| 午夜福利影视在线免费观看| 成人特级黄色片久久久久久久| 国产av在哪里看| 午夜免费观看网址| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| 国产乱人伦免费视频| 国产成年人精品一区二区| 日韩有码中文字幕| 亚洲一区二区三区不卡视频| 欧美黑人精品巨大| 欧美成狂野欧美在线观看| 成人欧美大片| 伊人久久大香线蕉亚洲五| 视频区欧美日本亚洲| 欧美丝袜亚洲另类 | 给我免费播放毛片高清在线观看| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| videosex国产| 亚洲avbb在线观看| 少妇 在线观看| 十八禁网站免费在线| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 久久中文看片网| 国内精品久久久久久久电影| av免费在线观看网站| 亚洲av成人av| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www| 欧美在线黄色| 午夜精品在线福利| 成人欧美大片| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 级片在线观看| 亚洲国产欧美日韩在线播放| 国内毛片毛片毛片毛片毛片| 多毛熟女@视频| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| www国产在线视频色| 国产精品国产高清国产av| 日韩欧美三级三区| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 中文字幕人成人乱码亚洲影| www.www免费av| 看片在线看免费视频| 日本欧美视频一区| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 一本久久中文字幕| 一级毛片高清免费大全| 美女大奶头视频| 国产成人影院久久av| netflix在线观看网站| 一进一出好大好爽视频| 久9热在线精品视频| 亚洲一区二区三区不卡视频| 国产主播在线观看一区二区| 在线观看日韩欧美| 岛国在线观看网站| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 日韩精品中文字幕看吧| 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 成人国产综合亚洲| 天堂√8在线中文| 人妻久久中文字幕网| 少妇粗大呻吟视频| 69av精品久久久久久| 淫妇啪啪啪对白视频| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 黄片小视频在线播放| 精品无人区乱码1区二区| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜一区二区| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 性色av乱码一区二区三区2| 制服人妻中文乱码| 大型黄色视频在线免费观看| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 在线观看日韩欧美| 国产精品一区二区精品视频观看| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 女性生殖器流出的白浆| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费 | x7x7x7水蜜桃| 欧美乱码精品一区二区三区| www.999成人在线观看| 极品人妻少妇av视频| 麻豆成人av在线观看| 日韩欧美免费精品| svipshipincom国产片| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 又黄又爽又免费观看的视频| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产午夜福利久久久久久| 久久人妻熟女aⅴ| 国产激情欧美一区二区| 黄色女人牲交| 国产区一区二久久| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 国产av又大| www日本在线高清视频| 国产黄a三级三级三级人| 欧美国产日韩亚洲一区| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 久热爱精品视频在线9| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 美女大奶头视频| 国产精品秋霞免费鲁丝片| 国产熟女xx| 精品国产超薄肉色丝袜足j| 国产av精品麻豆| 两个人看的免费小视频| 亚洲欧美日韩无卡精品| bbb黄色大片| 身体一侧抽搐| 麻豆av在线久日| 亚洲va日本ⅴa欧美va伊人久久| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 免费在线观看亚洲国产| 亚洲人成网站在线播放欧美日韩| 叶爱在线成人免费视频播放| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 免费在线观看亚洲国产| 老汉色∧v一级毛片| 亚洲五月天丁香| 窝窝影院91人妻| 国产精品一区二区三区四区久久 | 母亲3免费完整高清在线观看| 黑人操中国人逼视频| www.999成人在线观看| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 国产精品98久久久久久宅男小说| 午夜亚洲福利在线播放| 在线国产一区二区在线| 国产一区二区三区综合在线观看| av天堂久久9| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 韩国精品一区二区三区| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 51午夜福利影视在线观看| 成人欧美大片| 国产精品二区激情视频| 九色国产91popny在线| 亚洲片人在线观看| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 亚洲一区二区三区色噜噜| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| 久久久久久人人人人人| 给我免费播放毛片高清在线观看| 久久国产精品影院| 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 久久中文看片网| 国产精品永久免费网站| 搡老岳熟女国产| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 成熟少妇高潮喷水视频| 午夜福利18| 性少妇av在线| av天堂在线播放| 精品无人区乱码1区二区| 久久人人97超碰香蕉20202| 青草久久国产| 午夜两性在线视频| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 午夜影院日韩av| 日韩有码中文字幕| 久久久久久人人人人人| 波多野结衣一区麻豆| 国产一区二区三区视频了| 久9热在线精品视频| 丝袜在线中文字幕| 午夜精品久久久久久毛片777| 国产亚洲精品久久久久久毛片| 又大又爽又粗| 成人特级黄色片久久久久久久| 欧美成狂野欧美在线观看| 国产一级毛片七仙女欲春2 | 亚洲人成电影观看| 黄网站色视频无遮挡免费观看| 视频在线观看一区二区三区| 亚洲五月色婷婷综合| www.www免费av| 国产亚洲av高清不卡| 一级片免费观看大全| 色老头精品视频在线观看| 欧美成人性av电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 99精品欧美一区二区三区四区| 久久青草综合色| 天堂动漫精品| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 免费观看精品视频网站| АⅤ资源中文在线天堂| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| www国产在线视频色| 午夜福利欧美成人| www.熟女人妻精品国产| 欧美激情 高清一区二区三区| 久久影院123| 欧美激情 高清一区二区三区| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 国产精品九九99| 亚洲午夜理论影院| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看 | 国产成+人综合+亚洲专区| 大型av网站在线播放| 亚洲精品一卡2卡三卡4卡5卡| 桃红色精品国产亚洲av| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 午夜免费成人在线视频| 免费在线观看亚洲国产| 巨乳人妻的诱惑在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 一级毛片女人18水好多| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 亚洲成av片中文字幕在线观看|