• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Interpenetrated and Polycatenated Zn(II) Coordination Polymers: Syntheses, Structures and Luminescent Properties①

    2018-12-13 11:12:04LVCongCHENLinLIUBoZHOUShi
    結(jié)構(gòu)化學(xué) 2018年11期

    LV Cong CHEN Lin LIU Bo ZHOU Shi

    ?

    Two Interpenetrated and Polycatenated Zn(II) Coordination Polymers: Syntheses, Structures and Luminescent Properties①

    LV Conga, bCHEN Lina,bLIU Boa, b②ZHOU Shia, b②

    a(()130103)b(136000)

    Two fascinating Zn(II) entangled coordination polymers, [Zn(eoba)(bbi)]n·nH2O (1) and [Zn(boba)(bbi)1/2]n(2), (bbi = 1,1?-(1,4-butanediyl)-bis(imidazole), H2eoba = 4,4?- (ethane-1,2-diyldioxy)-dibenzoic acid, H2boba = 4,4?-(butane-1,4-diyldioxy)-dibenzoic acid), were obtained by hydrothermal technology and characterized by elemental analysis, infrared spectrum, thermogravimetric analysis and single-crystal X-ray diffraction. 1 is a rare 2D → 3D example with a 3-fold parallel interpenetration and polycatenaned architecture. 2 features a scarce 2D → 2D example with a 3-fold parallel interpenetrating network which possesses polyrotaxane and polycatenane characters. Moreover, the luminescent properties of 1 and 2 have been discussed.

    3-fold interpenetration, luminescent property, crystal structure;

    1 INTRODUCTION

    The rational design and synthesis of coordination polymers (CPs) have been diffusely investigated because of their diversity of fascinating structures and potential applications as new materials[1]. Chemists and material scientists have been devoting themselves to explore the relationship between structures and functions of crystalline materials, and great efforts to understand compelling topologies and structural diversities associated with CPs have promoted many meaningful results[2-5]. Among them, a number of structures were reported due to the formation of independent motifs entangled in different ways, including interpenetration and polycatenation, which can be attributed to the existence of large free voids in a network[6-11]. Although this type of CPs has been appeared, adjustment and control of the structure are still a great challenge.

    Thus far, mixed ligand assembly system has been widely used in the building of new CPs[12-14]. And it is very important to the choice of spacer ligand, because altering the structure of ligands can control and adjust the topology of CPs[15-17]. In numerous organic ligands, multi-carboxylates have attracted a great deal of attention on account of their multiple coordination modes with metal centers[18-20]. As we know, the employment of flexible long carboxylic acid ligands usually generate entangled frameworks. Therefore, we design and synthesize two different bridging multi-carboxylic acids which are 4,4?- (ethane-1,2-diyldioxy)-dibenzoic acid (H2eoba) and 4,4?-(butane-1,4-diyldioxy)-dibenzoic acid (H2boba). In H2eoba and H2boba, the chains of -O-X-O- segment are different with respect to the length of CH2linkages. Furthermore, the flexible 1,1?-(1,4-butanediyl)-bis(imidazole) (bbi) ligand as a secondary N-donor bridging ligand, owing to the presence of a flexible -CH2- spacer, can exhibit more flexible conformations. However, the work based on H2eoba/H2boba and bbi has not been carried out widely. In addition, Zn CPs have gained significant attention due to their diversity structural features and applications in luminescence, photoca- talysis, sensing and so on[13, 21-23]. Therefore, we synthesize and report two Zn(II) CPs: [Zn(eoba)(bbi)]n·nH2O (1) and [Zn(boba)(bbi)1/2]n(2), which exhibit 3-fold interpenetrated and polycatenated nets. Thermal and photoluminescent properties of the compounds were investigated.

    2 EXPERIMENTAL

    2.1 Materials and physical measurements

    H2eoba, H2boba and bbi were synthesized by a procedure reported earlier[24, 25], and other reagents and solvents employed were commercially available and used as received without further purification.Elemental analyses (C, H, N) were carried out with a EuroVector EA3000 CHN elemental analyzer. Infrared (IR) spectrum was obtained on a Perkin- Elmer Frontier FT/IR instrument as KBr pellets (4000~400 cm-1). Thermogravimetric (TG) analysis is conducted on a Rigaku Thermo plus EVO II TG8120 thermal analyzer. The photoluminescent spectra were recorded on a Hitachi F-4600 Fluore- scence Spectrometer at room temperature. The powder X-ray diffraction (PXRD) data were collec- ted on a Rigaku RINT2000 diffractometer at room temperature with Curadiation.

    2.2 Synthesis

    2. 2. 1 Synthesis of [Zn(eoba)(bbi)]n·nH2O (1)

    A mixture of Zn(OAc)2·2H2O (0.3 mmol), bbi (0.3 mmol), H2eoba (0.3 mmol), NaOH (0.4mmol), water (5 mL) and CH3OH (5 mL) was placed in a Teflon reactor (20 mL) which was then sealed and heated to 160 °C for 4 days. The reaction system was slowly cooled to room temperature. Colorless crystals suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature. Yield: 29% based on Zn.IR (KBr, cm-1): 3448s, 1610s, 1542s, 1508s, 1409s, 1303s, 1174s, 1104w, 1052w, 939m, 848m, 783m, 661w. Anal. Calcd. for C26H28ZnN4O7(%): C, 54.41; H, 4.92; N, 9.76. Found (%): C, 54.38; H, 4.97; N, 9.73.

    2. 2. 2 Synthesis of [Zn(boba)(bbi)1/2]n(2)

    A mixture of Zn(NO3)2·2H2O (0.3 mmol), bbi (0.3 mmol), H2boba (0.3 mmol), NaOH (0.12mmol), water (5 mL) and CH3OH(5 mL) was placed in a Teflon reactor (20 mL) which was then sealed and heated to 160 °C for 4 days. The others are similar to 1.Yield: 26% based on Zn. IR (KBr, cm-1): 3431s, 3129s, 2953s, 1605s, 1566s, 1508s, 1471s, 1367w, 1303w, 1169m, 1108m, 1044m, 950w, 856s, 785s, 700s, 655s, 511s. Anal. Calcd. for C23H23ZnN2O6(%): C, 56.51; H, 4.74; N, 5.73. Found (%): C, 56.48; H, 4.81; N, 5.69.

    Notably, when the cobalt or cadmium saltswere employed as the starting materials,similar results can not be obtained.

    2.3 X-ray data collection and structure refinement

    Single-crystal diffraction data of 1 and 2 were respectively collected on a Bruker CCD diffrac- tometer equipped with a graphite-monochroma- tized Mo(= 0.71073 ?) radiation by using anscan method at 293(2) K. The structure was solved by direct methods with SHELXS-97 program[26]and refined with SHELXL-97[27]by full-matrix least- squares techniques on2. All non-hydrogen atoms were refined anisotropically and hydrogen atoms of the ligands were refined as rigid groups. The hydrogen atoms associated with free water mole- cules were located from difference Fourier maps. Details of the crystal parameters, data collection, and refinement of two compounds are summarized in Table 1. Selected bond lengths and bond angles are listed in Table 2.

    Table 1. Crystal Data and Structure Refinement for 1 and 2

    Table 2. Selected Bond Distances (?) and Bond Angles (°) for 1 and 2

    Symmetry transformations: compound 1:#A:,–1,–1; compound 2:#A: –, –+2, –; #B: –+1, –+1, –; #C:–1,+1,

    3 RESULTS AND DISCUSSION

    3.1 Description of the crystal structure

    Compound 1 It is a rare 2D→3D example with 3-fold parallel interpenetration architecture of wavelike sql nets. As shown in Fig.1, the asym- metric unit of 1 contains one Zn2+cation, one eoba2-anion, two half bbi ligands and one freewater molecule. The crystallographically independent Zn2+cation is four-coordinated in a [ZnO2N2]tetrahedral geometry structure coordinated by two carboxylate oxygen atoms from two different eoba2-anions and two nitrogen atoms from two different bbi ligands. Further extension of [ZnO2N2] through the-bbi ligands and-eoba2-anion adopting a bis-monodentatecoordinated fashion forms a 4-connected highly pleated layer structure with 44-sql net topology (Fig. 2). Notably, the pleated sql net within each layer has two different rhomboid windows with dimensions of 12.6364×16.7076 ?2and 12.8482×16.7076 ?2, and corrugated angle of 117.657° (defined by Zn···Zn distances and Zn···Zn···Zn angles). The Zn2+cations are not all coplanar in the layer. Rather, half falls in one plane, and half in the other parallel plane. The pleated nature of the layers with large rhomboid windows may offer a good chance to form an interpenetration network,thusallowing 3-fold parallel interpene- tration between the adjacent sheets to occur (Fig. 3).The 44-sql layers parallel stack with an ABAB sequence and each of these equivalent layers is polycatenated with the adjacent two parallel layers (Fig. 3). Finally, 1 shows a very unusual 2D→3D architecture.

    Fig. 1. Coordination environment of Zn2+cations in 1.H atoms were omitted for clarity. Symmetry code: #A:,–1,–1; Displacement ellipsoids are drawn at 40% probability

    Fig. 2. Zn2+cations are interlinked by two eoba2-anions and two bbi ligands to give 2D pleated layers, and two different rectangles of windows in 1

    Fig. 3. A schematic view of the 3-fold parallel interpenetrating and 2D → 3D polycatenated framework in 1

    Compound 2 In order to investigate the influence of multicarboxylate ligands with different lengths on ultimate structures, the longer H2boba is selected instead of H2eoba, and 2 is obtained. It features a scarce 2D → 2D example with a 3-fold parallel interpenetrating network which possesses polyrotaxane and polycatenane characters. In the asymmetric unit,2 consists of one Zn2+cation, one boba2-anion, and half bbi ligand (Fig. 4). The metal center is five-coordinated by four O atoms from four different boba2-anions and one N atom from one bbi ligand. Each pair of Zn2+cations is bound by four carboxy groups to yield a binuclear Zn2+unit. The binuclear units joint boba2-anions to form a 1D beaded chain. The neighboring beaded chains are further connected together by bbi ligands to generate a 2D sheet (Fig. 5). There are two different size windows of [Zn4(boba)2] and [Zn8(boba)4(bbi)2] with large void space (the dimensions of 10.60? × 11.07? and 15.45? × 16.92?) in the sheet, which can allow 3-fold interpenetration to occur in a parallel fashion (Figs. 5 and 6). Moreover, both polyrotaxane and polycatenane characters present in this network. Compared to our previous work, 2is isostructural with different metal center[28].

    Fig. 4. Coordination environment of Zn2+cations in 2.H atoms were omitted for clarity. Symmetry codes: #A: –, –+2, –; #B: –+1, –+1, –; #C:–1,+1,. Displacement ellipsoids are drawn at 40% probability

    Fig. 5. View of the 1D beaded chain (top) and 2D sheetin 2 (bottom)

    Fig. 6. 3-Fold interpenetration structure (left) and schematic diagram of polyrotaxane and polycatenane (right) in 2

    When theZn2+cation and bbi ligand are selected to react respectively with H2eoba and H2boba, 1 and 2 with different structural types have been obtained. Based on the different lengths and coordination modes for H2eoba and H2boba, they link Zn2+cations to generate a single chain in 1 and a beaded- type chain in 2, which are connected by bbi ligands to form two distinct parallel interpenetrating networks.

    3.2 IR analysis

    Compound 1 The strong absorption bands observed at 1610 and 1409 cm-1can be attributed to the asymmetric and symmetric stretching vibrations of carboxylate groups in H2eoba[28], which has a separation △((OCO)assym–(OCO)sym) of 201 (>200), indicating the monodentate coordination of COO-to the Zn2+cation[29].

    Compound 2 The strong absorption bands observed at 1566 and 1367 cm-1can be assigned to the asymmetric and symmetric stretching vibrations of the carboxylate groups in H2boba[28], which has a separation △((OCO)assym–(OCO)sym) of 199 cm-1(<200), indicating the bidentate mode ofCOO-to the Zn2+cation[29].

    The IR spectral results are consistent with the X-ray single-crystal structure analysis.

    3.3 TG analysis and PXRD results

    As shown in Fig. 7,the crushed single-crystal samples were heated up to 750 ?Cunder N2gas at a heating rate of 10 ?C?min-1. For 1, the first weight loss of 2.87% occurs between room temperature and 120 ℃, corresponding to the removal of water molecules (calcd. 3.13%). In the range of 120~700 ℃, the second weight loss of 82.05% can be ascribed to the release of organic ligands (calcd. 82.68%). The residual weight 15.08% (calcd. 14.19%) corresponds to ZnO. For 2, the weight loss of 83.4% from room temperature to 548 ?C ascribes to the loss of organic ligands (calcd. 83.35%). Upon further heating, above 548 oC no weight loss is observed, indicating the complete decomposition of 2. The residual weight 16.60% (calcd. 16.65%) also belongs to ZnO.

    Fig. 7. TG curves of compounds 1 and 2

    To confirm whether the crystal structures are truly representative of the bulk materials, PXRD experiments were carried out for 1 and 2. The experimental PXRD patterns are in good agreement with the corresponding simulated ones (Fig. 8) except for the relative intensity variation because of preferred orientations of the crystals.

    3.4 Photoluminescent properties

    Recently, CPs with10metal centers have attracted much attention due to the potential applica- tions such as in chemical sensors, photochemistry, and electroluminescent display[30]. Hence, the photoluminescent properties of the ligands, 1 and 2 have been investigated at room temperature (Table 3 and Fig. 9). 1 and 2 reveal the fluorescence with main emission peaks at 428 nm (ex= 332 nm) and 395 nm (ex= 329 nm), respectively. Because the Zn2+cation is difficult to oxidize or reduce for the10configuration, the emission is neither metal-to- ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT)[31]. As a result, the emission may be assigned to intraligand transitions.

    Table 3. Wavelengths of the Emission Maximums and Excitation (nm)

    Fig. 8. PXRD of compounds 1 and 2

    Fig. 9. Solid-state emission spectra of 1, 2 and ligands at room temperature

    4 CONCLUSION

    In summary, we have synthesized two mixed- ligand CPs under hydrothermal conditions. Both of them display 3-fold parallel interpenetrating struc- tures and show polycatenane character. By careful inspection of these structures, we find that different features have been achieved by increasing the carboxylate ligand length. It is believed that multi-carboxylates and N-donor ligands with different coordination modes and conformations are important for the formation of different structures. These results suggest that novel extended entan- glements containing both polyrotaxane and polyca- tenane characters can be realized by combining metal nodes with flexible N-donor ligands and carboxylate ligands. Investigations in this direction are currently under way.

    (1) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha. O. K.; Hupp, J. T. Postsynthetic tuning of metal-organic frameworks for targeted applications.. 2017, 50, 805–813.

    (2) Zhao, X. L.; He, H. Y.; Hu, T. P.; Dai, F. N.; Sun, D. F. Interpenetrating polyhedral MOF with a primitive cubic network based on supermolecular building blocks constructed of a semirigid3-symmetric carboxylate ligand..2009, 48, 8057–8059.

    (3) Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal-organic frameworks via rational design of the organic building block.. 2010, 132, 950–952.

    (4) Wang, X. L.; Qin, C.; Wang, E. B.; Li, Y. G.; Su, Z. M.; Xu, L.; Carlucci, L. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting.. 2005, 44, 5824–5827.

    (5) Gianneschi, N. C.; Masar. M. S.; Mirkin, C. A. Development of a coordination chemistry-based approach for functional supramolecular structures..2005, 38, 825–837.

    (6) Kan, W. Q.; Yang, J.; Liu, Y. Y.; Ma, J. F. A series of coordination polymers based on a multidentate N-donor ligand and different polycarboxylate anions: syntheses, structures and photoluminescent properties.. 2012, 14, 6271–6281.

    (7) Liu, B.; Zhou, H. F.; Hou, L.; Wang, J. P.; Wang, Y. Y.; Zhu, Z. Structural diversity of cadmium(II) coordination polymersinduced by tuning the coordination sites of isomeric ligands.. 2016, 55, 8871–8880.

    (8) Sun, D. F.; Ma, S. Q.; Ke, Y. X.; Collins, D. J.; Zhou, H. C. An interweaving MOF with high hydrogen uptake.2006, 128, 3896–3897.

    (9) Liu, B.; Yang, J.; Yang, G. C.; Ma, J. F. Four new three-dimensional polyoxometalate-based metal-organic frameworks constructed from [Mo6O18(O3AsPh)2]4–polyoxoanions and copper(I)-organic fragments: syntheses, structures, electrochemistry, and photocatalysis properties.. 2013, 52, 84–94.

    (10) Liu, B.; Yu, Z. T.; Yang, J.; Hua, W.; Liu, Y. Y.; Ma, J. F. First three-dimensional inorganic organic hybrid material constructed from an “Inverted Keggin” polyoxometalate and a copper(I)-organic complex. 2011, 50, 8967–8972.

    (11) Wu, H.; Yang, J.; Su, Z. M.; Batten, S. R.; Ma, J. F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. 2011, 133, 11406–11409.

    (12) Kong, Z. G.; Guo, S. N.; Yu, M.; Feng, S. Y.; Hu, B. A new luminescent Cd(II) coordination polymer constructed by mixed 1,4-naphthalenedicarboxylate and N-donor chelating ligand.2016, 35, 591–596.

    (13) Song, W. C.; Liang, L.; Cui, X. Z.; Wang, X. G.; Yang, E. C.; Zhao, X. J. Assembly of ZnII-coordination polymers constructed from benzothiadiazole functionalized bipyridines and V-shaped dicarboxylic acids: topology variety, photochemical and visible-light-driven photocatalytic properties.. 2018, 20, 668–678.

    (14) Cui, J. W.; Hou, S. X.; Li, Y. H.; Cui, G. H. A multifunctional Ni(II) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst.. 2017, 46, 16911–16924.

    (15) An, H.; Hou, Y.; Wang, L.; Zhang, Y.; Yang, W.; Chang, S. Evans-showell-type polyoxometalates constructing high-dimensional inorganic-organic hybrid compounds with copper-organic coordination complexes: synthesis and oxidation catalysis.. 2017, 56, 11619–11632.

    (16) Lin, Y.; Zhang, X.; Chen, W.; Shi, W.; Cheng, P. Three cadmium coordination polymers with carboxylate and pyridine mixed Ligands: luminescent sensors for FeIIIand CrVIions in an aqueous medium.. 2017, 56, 11768–11778.

    (17) Wen, Y.; Sheng, T.; Xue, Z.; Wangle, Y.; Zhuo, C.; Zhu, X.; Hu, S.; Wu, X. From pair quadruple- to single-stranded helices to lines in a mixed ligand system via adjusting the N-substituent of l-Glu.. 2015, 54, 3951–3957.

    (18) Chen, X. M.; Liu, G. F. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions.. 2002, 8, 4811–4817.

    (19) Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials.. 2013, 113, 734–777.

    (20) Du, M.; Jiang, X. J.; Zhao, X. J. Molecular tectonics of mixed-ligand metal-organic frameworks:? positional isomeric effect, metal-directed assembly, and structural diversification.. 2007, 46, 3984–3995.

    (21) Shanmugaraju, S.; Dabadie, C.; Byrne, K.; Savyasachi, A. J.; Umadevi, D.; Schmitt, W.; Kitchen, J. A.; Gunnlaugsson, T. A supramolecular Troger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water.. 2017, 8, 1535–1546.

    (22) Gu, T. Y.; Dai, M.; Young, D. J.; Ren, Z. G.; Lang, J. P. Luminescent Zn(II) coordination polymers for highly selective sensing of Cr(III) and Cr(VI) in water.. 2017, 56, 4668–4678.

    (23) Mukherjee, S.; Ganguly, S.; Manna, K.; Mondal, S.; Mahapatra, S.; Das, D. Green approach to synthesize crystalline nanoscale Zn(II)-coordination polymers: cell growth inhibition and immunofluorescence study.. 2018, 57, 4050–4060.

    (24) Hou, L. M.; Kan, Y. H. Diethyl 4,4?-(butane-1,4-diyldi-oxy)dibenzoate.. 2007, E63, o2157–o2158.

    (25) Yang, J.; Ma, J. F.; Liu, Y. Y.; Li, S. L.; Zheng, G. L. Four novel 3D copper(II) coordination polymers with different topologies.. 2005, 11, 2174–2180.

    (26) Sheldrick, G. M.. University of G?ttingen 1997.

    (27) Sheldrick, G. M.. University of G?ttingen 1997.

    (28) Wang, Q. W.; Qi, X. F.; Chen, L.; Wang, L. J.; Li, J.; Wang, W. J.; Liu, B. A 3-fold interpenetrating metal-organic frameworks constructed from 4,4?-(butane-1,4-diyldioxy)dibenzoic acid and bis(imidazole) ligands.. 2014, 30, 1920–1924.

    (29) Nakamoto, K.New York: Wiley and Sons 1986.

    (30) Xie, Z. G.; Ma, L. Q.; deKrafft, K. E.; Jin, A.; Lin, W. B. Porous phosphorescent coordination polymers for oxygen sensing.. 2010, 132, 922–923.

    (31) Kan, W. Q.; Liu, Y. Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. Syntheses, structures and photoluminescent properties of a series of metal-organic frameworks based on a flexible tetracarboxylic acid and different bis(imidazole) ligands.2011, 13, 4256–4269.

    28 February 2018;

    7 June 2018 (CCDC 1820456 (1) and 1820455 (2))

    the Science and Technology Development plan of Jilin Province (20150520006JH), Science and Technology Research Project of Education Department of Jilin province (2016219, JJKH20180776KJ), and Science and Technology Development plan of Siping City (2013055)

    Liu Bo, majoring in coordination chemistry. E-mail: 1872176575@qq.com; Zhou Shi, E-mail: emily_zs@qq.com

    10.14102/j.cnki.0254-5861.2011-1993

    国产黄色视频一区二区在线观看| 91久久精品国产一区二区成人| 亚洲精品乱码久久久久久按摩| 欧美区成人在线视频| 成人亚洲欧美一区二区av| 日本免费在线观看一区| 久久精品人妻少妇| 国产精品偷伦视频观看了| 免费高清在线观看视频在线观看| freevideosex欧美| 亚洲欧美日韩无卡精品| 日本wwww免费看| 久久久国产一区二区| 一级毛片久久久久久久久女| 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 亚洲最大成人中文| 少妇丰满av| 久久影院123| 国产黄色视频一区二区在线观看| 中文资源天堂在线| 亚洲激情五月婷婷啪啪| 欧美性猛交╳xxx乱大交人| 51国产日韩欧美| 中文字幕久久专区| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 国产av国产精品国产| 国产精品久久久久久久久免| 岛国毛片在线播放| 免费av毛片视频| 卡戴珊不雅视频在线播放| 成人二区视频| 亚洲av二区三区四区| 99热国产这里只有精品6| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| 少妇丰满av| 91久久精品国产一区二区成人| 中文字幕制服av| 日本熟妇午夜| 亚洲伊人久久精品综合| 性插视频无遮挡在线免费观看| 国产v大片淫在线免费观看| 特级一级黄色大片| 亚洲美女视频黄频| 99久久精品国产国产毛片| 老女人水多毛片| 大陆偷拍与自拍| 久久久成人免费电影| 欧美zozozo另类| 婷婷色av中文字幕| 精品酒店卫生间| 久久精品久久久久久噜噜老黄| 免费观看无遮挡的男女| 亚洲美女搞黄在线观看| 亚洲av二区三区四区| 久久99热这里只有精品18| 六月丁香七月| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 联通29元200g的流量卡| 久久99精品国语久久久| 久久6这里有精品| 18禁动态无遮挡网站| 搞女人的毛片| eeuss影院久久| 女人十人毛片免费观看3o分钟| 特大巨黑吊av在线直播| 人体艺术视频欧美日本| 精品午夜福利在线看| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 国产永久视频网站| 久久久久久国产a免费观看| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 欧美日韩在线观看h| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影 | 免费不卡的大黄色大毛片视频在线观看| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 熟女电影av网| 美女内射精品一级片tv| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 亚洲国产色片| 久久久久久久亚洲中文字幕| 麻豆成人av视频| 国产亚洲5aaaaa淫片| 亚洲综合色惰| 91久久精品国产一区二区成人| 欧美丝袜亚洲另类| 国产乱来视频区| 国产高清三级在线| 内射极品少妇av片p| 大话2 男鬼变身卡| 一区二区av电影网| av在线天堂中文字幕| 日韩亚洲欧美综合| 蜜桃久久精品国产亚洲av| 亚洲精品一二三| 亚洲av日韩在线播放| 一区二区av电影网| 午夜亚洲福利在线播放| 亚洲成人久久爱视频| 亚洲天堂国产精品一区在线| 看免费成人av毛片| 亚洲一区二区三区欧美精品 | 啦啦啦啦在线视频资源| 中文字幕久久专区| 九九在线视频观看精品| 免费观看a级毛片全部| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 婷婷色av中文字幕| 久久久欧美国产精品| 亚洲第一区二区三区不卡| 亚洲美女视频黄频| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区国产| 在线观看人妻少妇| 亚洲国产日韩一区二区| 国产精品久久久久久久电影| 国产真实伦视频高清在线观看| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 久久99热6这里只有精品| 观看免费一级毛片| 亚洲精华国产精华液的使用体验| 十八禁网站网址无遮挡 | 最后的刺客免费高清国语| 成人二区视频| 人妻 亚洲 视频| 日本-黄色视频高清免费观看| 国产一区二区三区av在线| 久久久国产一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 精品少妇黑人巨大在线播放| 亚洲精品自拍成人| 在线观看三级黄色| 一区二区三区免费毛片| 免费在线观看成人毛片| 亚洲国产日韩一区二区| 国产成人福利小说| 内地一区二区视频在线| 在线看a的网站| 中国国产av一级| 免费黄网站久久成人精品| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 天堂中文最新版在线下载 | 成人综合一区亚洲| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 精品一区二区三卡| av.在线天堂| 亚洲成人中文字幕在线播放| 亚洲国产欧美在线一区| 最后的刺客免费高清国语| 韩国高清视频一区二区三区| 国产色爽女视频免费观看| 一个人看视频在线观看www免费| 22中文网久久字幕| 免费电影在线观看免费观看| av国产精品久久久久影院| 亚洲人与动物交配视频| 黄色欧美视频在线观看| 国产高清不卡午夜福利| 日韩中字成人| 激情 狠狠 欧美| 国产黄色视频一区二区在线观看| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线 | 国产中年淑女户外野战色| 18禁动态无遮挡网站| 久久精品国产亚洲av涩爱| 久久精品人妻少妇| 国产黄a三级三级三级人| 亚洲最大成人手机在线| 91精品国产九色| 亚洲欧美成人精品一区二区| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 最近手机中文字幕大全| 高清在线视频一区二区三区| 老司机影院毛片| 精品一区二区免费观看| 久久97久久精品| 99热这里只有是精品在线观看| 美女被艹到高潮喷水动态| 日本黄大片高清| 大码成人一级视频| 亚洲精品日本国产第一区| 日本一本二区三区精品| .国产精品久久| 精品一区二区免费观看| 男插女下体视频免费在线播放| 男女那种视频在线观看| 下体分泌物呈黄色| av在线老鸭窝| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 欧美极品一区二区三区四区| 精品国产一区二区三区久久久樱花 | 91精品国产九色| 日日摸夜夜添夜夜添av毛片| 男女啪啪激烈高潮av片| 久久久久久久午夜电影| 免费黄色在线免费观看| 久久久欧美国产精品| 国产黄频视频在线观看| 最近中文字幕高清免费大全6| 一级av片app| 天堂网av新在线| 免费黄色在线免费观看| 国产精品国产av在线观看| 黄片wwwwww| 亚洲av福利一区| 校园人妻丝袜中文字幕| 日韩三级伦理在线观看| 亚洲欧美清纯卡通| 成人欧美大片| 天堂中文最新版在线下载 | 免费av毛片视频| 国产人妻一区二区三区在| 国产毛片在线视频| av免费观看日本| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 免费观看在线日韩| 美女国产视频在线观看| 一本一本综合久久| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 国产男女内射视频| 插阴视频在线观看视频| 成人午夜精彩视频在线观看| 在线看a的网站| 在线观看三级黄色| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 日本欧美国产在线视频| 秋霞伦理黄片| 2021天堂中文幕一二区在线观| 久久99热这里只频精品6学生| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| av国产免费在线观看| av在线天堂中文字幕| 久热久热在线精品观看| 白带黄色成豆腐渣| 中国三级夫妇交换| 好男人在线观看高清免费视频| 久久这里有精品视频免费| 一区二区三区精品91| 69人妻影院| 在线亚洲精品国产二区图片欧美 | av免费观看日本| 精品久久久久久久末码| 男人添女人高潮全过程视频| 只有这里有精品99| 亚洲国产精品成人综合色| 久久精品国产亚洲av天美| 国产乱人视频| 18禁在线无遮挡免费观看视频| 乱系列少妇在线播放| 国产精品爽爽va在线观看网站| 下体分泌物呈黄色| 国产欧美日韩精品一区二区| 亚洲精品,欧美精品| 精品久久久精品久久久| 久久久欧美国产精品| 亚洲怡红院男人天堂| 一本一本综合久久| 国产探花在线观看一区二区| 国产精品偷伦视频观看了| 日日摸夜夜添夜夜爱| 亚洲av在线观看美女高潮| 国产高清不卡午夜福利| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产一区二区三区久久久樱花 | 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 精品久久久噜噜| www.色视频.com| 91精品国产九色| av在线观看视频网站免费| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 久久97久久精品| 色5月婷婷丁香| 久久久久久国产a免费观看| 国产成人a区在线观看| 亚洲美女视频黄频| 日本三级黄在线观看| 哪个播放器可以免费观看大片| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 一区二区三区免费毛片| 成人亚洲欧美一区二区av| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 卡戴珊不雅视频在线播放| 一个人看视频在线观看www免费| 日韩强制内射视频| 亚洲欧美成人精品一区二区| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 少妇人妻 视频| 亚洲欧美日韩另类电影网站 | av在线老鸭窝| 高清日韩中文字幕在线| 老师上课跳d突然被开到最大视频| 日韩伦理黄色片| 国产精品伦人一区二区| 国产午夜精品久久久久久一区二区三区| 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说| 下体分泌物呈黄色| 三级国产精品欧美在线观看| 国内精品宾馆在线| av在线蜜桃| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 最近手机中文字幕大全| 黄色一级大片看看| 免费播放大片免费观看视频在线观看| 黄片无遮挡物在线观看| 丰满人妻一区二区三区视频av| 少妇 在线观看| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 国产永久视频网站| 国产av国产精品国产| 尤物成人国产欧美一区二区三区| 国内精品美女久久久久久| 观看美女的网站| 一级爰片在线观看| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 亚洲在久久综合| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 三级经典国产精品| 亚洲精品国产色婷婷电影| 极品少妇高潮喷水抽搐| 久久99精品国语久久久| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 国产亚洲最大av| 美女被艹到高潮喷水动态| 日韩av免费高清视频| 黄色欧美视频在线观看| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看| 日本熟妇午夜| 18禁在线无遮挡免费观看视频| av天堂中文字幕网| 免费观看的影片在线观看| 精品熟女少妇av免费看| 亚洲国产色片| 汤姆久久久久久久影院中文字幕| 一级av片app| 久久精品国产自在天天线| 中文字幕亚洲精品专区| 美女国产视频在线观看| 黄色欧美视频在线观看| 激情五月婷婷亚洲| 欧美日本视频| 日本爱情动作片www.在线观看| 国产欧美亚洲国产| 丰满少妇做爰视频| 成人毛片60女人毛片免费| 久久久久网色| 亚洲精品日韩在线中文字幕| 性色av一级| 久久国产乱子免费精品| 日本三级黄在线观看| 久久久久久伊人网av| 亚洲天堂国产精品一区在线| 久久久国产一区二区| 久久久精品免费免费高清| 国产亚洲最大av| 亚洲性久久影院| 国产高清有码在线观看视频| 亚洲成人av在线免费| 在线观看免费高清a一片| 亚洲成人av在线免费| 国产亚洲精品久久久com| 两个人的视频大全免费| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 极品教师在线视频| 亚洲av.av天堂| 国产免费又黄又爽又色| 男女国产视频网站| 免费看光身美女| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 一级黄片播放器| 亚洲自拍偷在线| 中文字幕免费在线视频6| 成人国产麻豆网| 在线观看人妻少妇| 欧美另类一区| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 老司机影院毛片| 国内精品宾馆在线| 汤姆久久久久久久影院中文字幕| 在线亚洲精品国产二区图片欧美 | 女人被狂操c到高潮| 黄片wwwwww| av在线app专区| av又黄又爽大尺度在线免费看| 国产伦精品一区二区三区四那| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| 在线免费十八禁| 国产精品国产三级专区第一集| 极品教师在线视频| 一本色道久久久久久精品综合| 免费人成在线观看视频色| 噜噜噜噜噜久久久久久91| 亚洲国产日韩一区二区| 午夜福利视频1000在线观看| 亚洲精品日韩在线中文字幕| 亚洲人成网站在线播| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 精品酒店卫生间| 精品人妻偷拍中文字幕| av一本久久久久| 国产午夜精品一二区理论片| 日韩强制内射视频| 熟妇人妻不卡中文字幕| 日产精品乱码卡一卡2卡三| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站| 男插女下体视频免费在线播放| 大陆偷拍与自拍| 新久久久久国产一级毛片| 色哟哟·www| 久久久久久久大尺度免费视频| 国产精品福利在线免费观看| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| 欧美xxⅹ黑人| 大香蕉97超碰在线| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| 看免费成人av毛片| 黄色怎么调成土黄色| 国产精品99久久久久久久久| 久久综合国产亚洲精品| 91精品一卡2卡3卡4卡| 亚洲精品国产色婷婷电影| a级一级毛片免费在线观看| 男女边吃奶边做爰视频| 午夜免费观看性视频| 2018国产大陆天天弄谢| 国产伦精品一区二区三区四那| 校园人妻丝袜中文字幕| 国产午夜福利久久久久久| 少妇人妻精品综合一区二区| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 嫩草影院新地址| 美女脱内裤让男人舔精品视频| 一区二区三区免费毛片| 99精国产麻豆久久婷婷| 噜噜噜噜噜久久久久久91| 亚洲婷婷狠狠爱综合网| 国产成人午夜福利电影在线观看| 2018国产大陆天天弄谢| 国产女主播在线喷水免费视频网站| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 日本一二三区视频观看| av.在线天堂| 亚洲最大成人手机在线| 最近中文字幕2019免费版| 精品久久久久久久末码| 亚洲经典国产精华液单| 久久久久精品性色| 少妇丰满av| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 身体一侧抽搐| 欧美成人精品欧美一级黄| 国产精品人妻久久久影院| 国产成人一区二区在线| 春色校园在线视频观看| 欧美亚洲 丝袜 人妻 在线| 久久精品国产鲁丝片午夜精品| 97在线视频观看| 99re6热这里在线精品视频| 免费观看性生交大片5| 免费大片黄手机在线观看| 高清欧美精品videossex| 国产黄频视频在线观看| 18禁动态无遮挡网站| 精品国产三级普通话版| 亚洲人成网站高清观看| 欧美日韩视频高清一区二区三区二| 全区人妻精品视频| 色视频www国产| 99久久中文字幕三级久久日本| 熟女av电影| 最近手机中文字幕大全| 深夜a级毛片| 国产色婷婷99| 欧美zozozo另类| 国产永久视频网站| 亚洲av在线观看美女高潮| 精品一区在线观看国产| 99精国产麻豆久久婷婷| 成年免费大片在线观看| 日韩三级伦理在线观看| 亚洲欧美日韩东京热| 成年人午夜在线观看视频| 日韩中字成人| 国产在线男女| 欧美成人a在线观看| 国内少妇人妻偷人精品xxx网站| 内地一区二区视频在线| 久久ye,这里只有精品| 熟女电影av网| 免费看日本二区| 一级片'在线观看视频| 精品酒店卫生间| 51国产日韩欧美| 久久久久久久久大av| 欧美老熟妇乱子伦牲交| 毛片女人毛片| 少妇被粗大猛烈的视频| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频 | eeuss影院久久| 人妻 亚洲 视频| 美女内射精品一级片tv| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| av国产精品久久久久影院| 22中文网久久字幕| av在线app专区| 午夜亚洲福利在线播放| 欧美精品一区二区大全| 亚洲av在线观看美女高潮| av在线天堂中文字幕| 欧美xxⅹ黑人| 成年av动漫网址| 男女国产视频网站| 日本免费在线观看一区| 亚洲国产成人一精品久久久| a级毛片免费高清观看在线播放| 人体艺术视频欧美日本| 国产一级毛片在线| 夫妻午夜视频| 最近中文字幕2019免费版| 一级av片app| 国产一区二区亚洲精品在线观看| 亚洲成色77777| 久久精品久久久久久久性| 国产成人精品婷婷| 国产精品.久久久| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 成人亚洲精品一区在线观看 | 中文在线观看免费www的网站| 亚洲av一区综合| 成人毛片60女人毛片免费| 直男gayav资源| 观看美女的网站| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 国产黄片视频在线免费观看| 国产乱人视频| av在线老鸭窝| 在线观看免费高清a一片| 国产黄频视频在线观看| 成人欧美大片| 久久久久九九精品影院| 精品国产乱码久久久久久小说| 日韩在线高清观看一区二区三区| 一本一本综合久久| 亚洲国产av新网站| 亚洲在久久综合| 午夜激情福利司机影院| 亚洲av免费在线观看| 国产黄片美女视频|