• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Photoluminescence of a TADF Cuprous Complex①

    2018-12-13 11:11:38GANXueMinWUXioYunYURongMinLUCnZhong
    結(jié)構(gòu)化學(xué) 2018年11期

    GAN Xue-Min WU Xio-Yun YU Rong-Min LU Cn-Zhong

    ?

    Synthesis, Crystal Structure and Photoluminescence of a TADF Cuprous Complex①

    GAN Xue-Mina, bWU Xiao-YuanaYU Rong-Mina②LU Can-Zhonga②

    a(350002)b(100049)

    A four-coordinate mononuclear cuprous complex oCBP-Cu-Pym (1, oCBP = 1,2-bis(diphenylphosphine)-nido-carborane, Pym = 2-methyl-6-(1H-pyrazol-1-yl)pyridine) was synthe- sized and characterized by elemental analysis,NMR, UV-Vis and X-ray single-crystal structure analysis. It crystallizes in monoclinic space group2/with= 28.4182(8),= 16.2994(4),= 22.2708(5) ?,= 127.219(2)°,= 8214.8(3) ?3,= 8,M= 766.92,ρ= 1.24 g/cm3,(000) = 3160,= 2.30 mm–1,= 1.063, the final= 0.0700 and= 0.1903 for 7158 observed reflections with> 2(). The Cu(I) ion adopts a highly distorted tetrahedral geometry defined by two nitrogen and two phosphorous atoms. Under UV 365 nm at room temperature, this complex exhibits green emission with maximum emission peak at 516 nm, lifetime 32.4 μs and quantum yield (= 0.461) in the solid state. Photophysical investigation suggests that the emission of complex 1at room temperature was attributed to TADF, which is strongly supported by theoretic calculation.

    Cu(I) complex, crystal structure, TADF, DFT calculation;

    1 INTRODUCTION

    Researches on transition luminescent materials have attracted enormous interest due to their attractive photophysical properties, which make them potentially amenable to applications in light-emitting technologies, dye-sensitized photovoltaics, biological imaging microscopy and light-emitting electro- chemical cells (LECs)[1-3]. Copper-based lumino- phores usually exhibit metal-to-ligand charge transfer (MLCT) state and small singlet-triplet energy gap, which allow fast reverse intersystem crossing (RISC) from the singlet state to triplet state, leading to highly efficient thermally activated delayed fluorescence (TADF) emission[4-6]. Theoretically, we can obtain luminescent materials with 100% internal quantum efficiency compared with those of the noble-metal phosphorescent materials[7]. Therefore, the Cu(I) emissive materials are promising candidates for highly efficient OLEDs[8-11]. In this work, a novel mono-nuclear neutral cuprous complex, oCBP-Cu- Pym, was designed and synthesized from the reactionof [Cu(CNCH3)4BF4], diimine ligand 2-methyl-6-(1H-pyrazol-1-yl)pyridine (Pym) and a new phosphine ligand 1,2-bis(diphenylphosphine)- nido-carborane (oCBP) in methanol. Herein, we report the synthesis, structure, spectroscopic charac- terization and theoretical calculation of the title compound.

    2 EXPERIMENTAL

    2.1 Materials and instruments

    All the chemicals were used as commercially obtained without purification. NMR spectra were recorded on a Bruker Avance III 400MHz NMR spectrometer. Elemental analyses (C, H, N) were carried out with an Elemental Vario EL III elemental analyzer. Photo-luminescence spectra were recorded on a HORIBA Jobin-Yvon FluoroMax-4 spectro- photometer. The UV-vis absorption spectra were recorded using a Perkin-Elmer Lambda-365 UV/vis spectrophotometer. The lifetimes of powder samples at different temperature (77~298 K) were carried out by a HORIBA Jobin-Yvon FluoroMax-4 in- strument with a Multi-channel scaling (MCS) peripheral equipment and a spectra LED (373 nm). The PL quantum yields, which were defined as the number of photons emitted per photon absorbed by the system, were measured by FluoroMax-4- equipped with an integrating sphere.

    2. 2. 1 Synthesis of 2-methyl-6-(1H-pyrazol-1-yl)pyridine)[12](Pym)

    To a Schlenk tube with a magnetic bar was added 2-bromo-6-methylpyridine (1.72 g, 10 mmol), potassium tert-butoxide (1.35 g, 12 mmol) and 1H- pyrazole (0.82 g, 12 mmol) in 1,4-dioxane (9.2 mL, 100 mmol, 10 equiv). The reaction mixture was stirred and heated under reflux in nitrogen for 48 h with an oil bath. Then the mixture was cooled to room temperature and poured into water (90 mL). The solution was neutralized by ammonia aqueous solution, and then extracted with dichloromethane. The organic phase was washed with brine, dried over sodium sulfate, and evaporated to dryness under vacuum. Finally, the crude product was purified by column chromatography on silica gel to a?ord a white solid (1.40 g, 88%).1H NMR (400 MHz, CDCl3)8.65~8.67 (m, 1H), 7.82 (d,= 8.2 Hz, 1H), 7.74~7.65 (m, 2H), 7.11 (d,= 7.4 Hz, 1H), 6.43~6.48 (m, 1H), 2.61 (s, 3H).

    2. 2. 2 Synthesis of ligand 1,2-bis(diphenyl-phosphine)-nido-carborane[13](oCBP)

    2.5 M-BuLi solution (22.5 mL, 9 mmol) was added slowly to a solution of 1,2-dicarbadode- caborane (0.43 g, 3 mmol) in distilled THF (15 mL) at 0 ℃. The resultant mixture was stirred at 0 ℃ for 1 h under nitrogen atmosphere. A solution of PPh2Cl (1.46 g, 6.6 mmol) in distilled THF (5 mL) was added slowly to the resultant mixture at 0 ℃. The resultant mixture was stirred at room tem- perature for 1 h and then refluxed for 1 h under nitrogen atmosphere. After cooling to room temperature, H2O (20 mL) was added to the reaction mixture. After stirring at room temperature for 1 h, the precipitate was filtered and washed with H2O (3 × 50 mL) to a?ord a white solid. Yield: 0.74 g (49%).1H NMR (400 MHz, CDCl3):7.92~7.85 (m, 8H), 7.52~7.39 (m, 12H), 2.38 (br, 10H).31P NMR (162 MHz, CDCl3):7.38.

    2. 2. 3 Synthesis of complex oCBP-Cu-Pym (1)

    A mixture of [Cu(CH3CN)4]BF4(31 mg, 0.1 mmol) and ligand oCBP (50 mg, 0.1 mmol) in methanol (5 mL) was stirred at room temperature for 0.5 h. Pym (42 mg, 1 mmol) was added and the mixture was stirred at 80 ℃ for 1 h. After cooling to room temperature, the solution was filtrated, and an air- stable product was recrystallized by slow solvent evaporation of the product in a mixture of CH2Cl2/ hexane.1H NMR (400 MHz, DMSO-d6)9.18(d,= 7.9 Hz, 1H), 8.72 (d,= 8.1 Hz, 1H), 8.02 (m, 3H), 7.74~6.92 (m, 22H), 1.60 (s,3H), 0.60 (s,= 7.0 Hz, 3H), –1.98 (B-H). Anal. Calcd. for C35.5H40B9Cl- CuN3P2: C, 55.5; H, 5.22; N, 4.47%. Found: C, 54.65; H, 5.24; N, 5.23%.

    2.3 Structure determination

    A yellow crystal of complex 1 with dimensions of 0.2mm × 0.15mm × 0.12mm was used for X-ray diffraction analysis. Diffraction data of the complex were collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer equipped with graphite-mono- chromated Curadiation (= 1.54184 ?). A total of 16198 reflections were collected at 100.01(16) K in the range of 6.780≤2≤148.852o by using anscan mode, of which 8146 were unique withint= 0.0350 and 7158 were observed with> 2(). The structure was solved by direct methods with SHELXS-97 and refined by full-matrix least-squares methods with SHELXL-97 program package. All of the non-hydrogen atoms were located with succes- sive difference Fourier synthesis. Hydrogen atoms were added in the idealized positions. The non- hydrogen atoms were refined anisotropically. The final= 0.0786,= 0.1969 (= 1/[2(F2) + (0.0943)2+ 55.1329], where= (F2+ 2F2)/3),= 1.060, (Δ/)max= 0.001, (Δ)max= 1.940 and (Δ)min= – 1.690 e/?3. Selected bond lengths and bond angles from X-ray structure analysis are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    2.4 Computational methodology

    Calculations on the electronic structures of 1 were performed by using density functional theory (DFT) with the hybrid Becke three-parameter Lee-Yang- Parr (B3LYP) functional level[14]. The input data came from X-ray crystal structure. In this calculation, a “double-ζ” quality basis set consisting of Hay and Wadt’s effective core potentials (LANL2DZ)[15]was employed for the Cu atom, and all-electron basis set of 6-31G* was used for P, B, N, C, and H atoms. All calculations were carried out using Gaussian 09[16-18]. Visualization of the optimized structures and Frontier molecular orbitals were performed by GaussView. The partition orbital composition was analyzed by using the Multiwfn 2.4 program[19].

    3 RESULTS AND DISCUSSION

    Complex 1 is a neutral copper(I) complex of the type Cu(PP)(NN). Fig. 1 shows its molecular struc- ture and ORTEP diagram. The X-ray crystallo- graphic study reveals that the metal ion in this complex exhibits highly distorted tetragonal coordination, with N–Cu–N and P–Cu–P angles of 79.50and 91.09?, respectively (Table 1). All Cu–P bond lengths ranging from 2.260 to 2.246 ? are typically within the normal range for a copper(I) center chelated by phosphine heterocycles[20]. The steric hindrance of these two ligands is expected to improve the rigidity of the cuprous complex and minimize the structural rearrangement distortion in its excited states, which can probably reduce the deactivation of excited states and increase the light emission efficiency[21].

    Fig. 1. Molecular structure (left) and ORTEP diagram (right) of complex 1. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are not displayed for clarity

    Fig. 2. Absorption spectra (left) of complex 1 as well as free ligands and the emission spectra (right) of the cuprous complexes in degassed CH2Cl2(c ≈ 2 × 10-5M) at room temperature

    Fig. 2 shows the UV-vis absorption spectra of complex 1, oCBP ligand and Pym ligand in CH2Cl2at room temperature. Complex 1 exhibits multiple intense absorption peaks in the region below 305 nm (> 104M-1·cm-1), which can be assigned to spin-allowed-* transition of both Pym and oCBP ligands. And the broad absorption band at 308~439 nm of complex 1, which is weakly observed in the spectrum of ligand, is assigned to(Cu)-*(NN) metal-to-ligand charge-transfer(MLCT) transitions and(PP)-*(NN) ligand-ligand charge transfer (LLCT). It is supported by DFT calculations (Fig. 3). More specifically, the compositions of the involved orbitals are provided in Table 2. Orbital component analysis of Frontier orbitals reveals that the HOMO is composed of the contributions from Pym moiety (96.39%). In contrast, the LUMO localizes on Pym (91.13%), oCBP (5.50%) and Cu (3.37%). The computational results indicate that the lowest lying transitions of 1 mainly consist of LLCT and MLCT characters. Natural transition orbital (NTO) analyses were performed to investigate the origin of luminescence in 1 (Fig. 4). The maps of S1and T1states are similar to each other; the transition from HOMO → LUMO is 100% for S1and 83% for T1. The corrected emission spectrum of complex 1 in degassed CH2Cl2showed a single band, maximized with a peak wavelength at 550 nm.

    Fig. 3. Frontier molecular orbitals (HOMO, HOMO-1, LUMO, and LUMO+1) for complex 1 from DFT calculations

    Table 2. Partition Orbital Composition Analyses for the Frontier Molecular Orbitals of Complex 1

    Fig. 4. Redistribution of electron densities of the lowest singlet excited state and the lowest triplet excited state from TD-DFT calculations

    Fig. 5. Emission spectra of complex 1in the solid state at 77 and 298 K

    Fig. 5 shows the emission spectra of 1 in solid state at 298 and 77 K. Complex 1 exhibits green emission with photo-luminescence quantum yield of 46.1% at 298 K. With the decrease of temperature, the complex displays red-shifted emission with the peak maxima changing from 516 to 530 nm, and lifetime from 32.4 to 972.6 μs. This indicates that the emission of 1 originates from two different excited states (S1andT1) that are convertible and in thermal equilibrium. Fig. 6a displays emission decay curves measured at different temperature. For getting insight into the nature of emission, the lifetimes at varied temperature in the range of 77~298 K were measured and summarized in Fig. 6b. The red curve is fitted according to the following equation[6, 22, 23]: Herein, kB, τ(S1) and τ(T1) are the Boltzmann constant, the decay time of S1state and the decay time of T1state, and ESTdenotes the energy gap between the S1and T1states. The fitted results are present in Fig. 6b,, values of τ(S1) = 304 ns, τ(T1) = 943 μs, and EST= 0.105 eV. Owing to the small EST, the triplet excitons in T1states can convert thermally to the singlet excitons in the S1state. At room temperature, the conversion from T1states to the S1states occurs easily, and complex 1 emits thermally activated delayed fluorescence (TADF). TADF is often found in Cu(I) complexes and the donor- acceptor charge transfer organic compounds with small EST[24, 25].

    Fig. 6. (a) Transient decay curves of complex 1 at different temperature;(b) Temperature dependence of the decay time for complex 1 in the solid state(the solid line represents a fit curve according to Eq. 1)

    In summary, we report a new neutral cuprous complex which exhibits high luminescence quantum yield reaching 46.1%. The luminescent properties of the complex have been studied experimentally and theoretically, indicating that the complex displays TADF at room temperature.

    (1) Zhang, X. Q.; Chi, Z. G.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in mechanochromic luminescent metal complexes.2013, 1, 3376–3390.

    (2) Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications.2014, 43, 3259–3302.

    (3) Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence.2015, 44, 3117–3142.

    (4) Czerwieniec, R.; Leitl, M. J.; Homeier, H. H. H.; Yersin, H. Cu(I) complexes – thermally activated delayed fluorescence. Photophysical approach and material design.2016, 325, 2–28.

    (5) Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDs.2013, 25, 3910–3920.

    (6) Leitl, M. J.; Kuchle, F. R.; Mayer, H. A.; Wesemann, L.; Yersin, H. Brightly blue and green emitting Cu(I) dimers for singlet harvesting in OLEDs.2013, 117, 11823–11836.

    (7) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.2014, 26, 7931–7958.

    (8) Liu, Z.; Qayyum, M. F.; Wu, C.; Whited, M. T.; Djurovich, P. I.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Thompson, M. E. A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes.2011, 133, 3700–3703.

    (9) Zink, D. M.; Volz, D.; Baumann, T.; Mydlak, M.; Flügge, H.; Friedrichs, J.; Nieger, M.; Br?se, S. Heteroleptic, dinuclear copper(I) complexes for application in organic light-emitting diodes.2013, 25, 4471–4486.

    (10) Chen, X. L.; Lin, C. S.; Wu, X. Y.; Yu, R.; Teng, T.; Zhang, Q. K.; Zhang, Q.; Yang, W. B.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence and simplified solution process OLEDs using the ligand as host.2015, 3, 1187–1195.

    (11) Cheng, G.; So, G. K. M.; To, W. P.; Chen, Y.; Kwok, C. C.; Ma, C.; Guan, X.; Chang, X.; Kwok, W. M.; Che, C. M. Luminescent zinc(II) and copper(I) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.2015, 6, 4623–4635.

    (12) Liu, S.; Zeng, X.; Xu, B. CuII-catalyzed regioselective borylation of alkynes and alkenes.2016, 57, 3706–3710.

    (13) Clark, P. W.; Mulraney, B. J. ChemInform abstract: synthesis and physical properties of chlorodi(O-tolyl)phosphine, lithium di(O-tolyl)phosphide and the diphosphine series (O-tolyl)2P(CH2)NP(O-tolyl)2.1982, 13.

    (14) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange.1993, 98, 5648–5652.

    (15) Roy, L. E.; Hay, P. J.; Martin, R. L. Revised basis sets for the LANL effective core potentials.2008, 4, 1029–1031.

    (16) Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory.1996, 256, 454–464.

    (17) Hay, P. J.; Wadt, W. R.effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg.1985, 82, 270–283.

    (18) Hay, P. J.; Wadt, W. R.effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals.1985, 82, 299–310.

    (19) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer.2012, 33, 580–592.

    (20) Laviecambot, A.; Cantuel, M.; Leydet, Y.; Jonusauskas, G.; Bassani, D.; McClenaghan, N. Improving the photophysical properties of copper(I) bis(phenanthroline) complexes.2008, 252, 2572–2584.

    (21) Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and photophysics of coordination compounds: copper.2007, 280, 69–115.

    (22) Czerwieniec, R.; Yu, J.; Yersin, H. Blue-light emission of Cu(I) complexes and singlet harvesting.2011, 50, 8293–8301.

    (23) Leitl, M. J.; Zink, D. M.; Schinabeck, A.; Baumann, T.; Volz, D.; Yersin, H. Copper(I) complexes for thermally activated delayed fluorescence: from photophysical to device properties.2016, 374, 25.

    (24) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs.2011, 255, 2622–2652.

    (25) Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.2015, 14, 330–336.

    14 November 2017;

    21 May 2018 (CCDC 1822329)

    ① This project was supported by the National Natural Science Foundation of China (21373221, 21521061, 51672271, 21671190, 21403236) and the Natural Science Foundation of Fujian Province (2006L2005)

    Lu Can-Zhong, professor in chemistry. E-mail: czlu@fjirsm.ac.cn;Yu Rong-Min, professor in chemistry. E-mail: rongminyu@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1989

    精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆 | 久久青草综合色| 午夜福利网站1000一区二区三区| freevideosex欧美| 亚洲精华国产精华液的使用体验| 亚洲国产色片| 王馨瑶露胸无遮挡在线观看| 久久影院123| 在线观看国产h片| 午夜免费鲁丝| 婷婷色综合www| 亚洲一区中文字幕在线| 黄网站色视频无遮挡免费观看| 一区二区三区激情视频| 免费黄网站久久成人精品| 97在线人人人人妻| 日韩制服丝袜自拍偷拍| 男人添女人高潮全过程视频| 欧美+日韩+精品| 99国产综合亚洲精品| 一级片免费观看大全| 超色免费av| 日韩一卡2卡3卡4卡2021年| 777米奇影视久久| 成人影院久久| 色播在线永久视频| 亚洲国产精品成人久久小说| 日韩 亚洲 欧美在线| 蜜桃国产av成人99| 丝袜喷水一区| 国产伦理片在线播放av一区| 夫妻性生交免费视频一级片| 成人毛片60女人毛片免费| 这个男人来自地球电影免费观看 | av免费在线看不卡| 在线观看国产h片| 午夜91福利影院| 亚洲欧美中文字幕日韩二区| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 久久精品aⅴ一区二区三区四区 | 女人精品久久久久毛片| 亚洲精品国产一区二区精华液| 亚洲精品久久午夜乱码| 99久久综合免费| 女性被躁到高潮视频| 亚洲国产欧美日韩在线播放| 久久久久久久亚洲中文字幕| 久久精品国产亚洲av涩爱| 在线天堂最新版资源| 制服诱惑二区| 一级毛片 在线播放| 在线观看国产h片| 美女福利国产在线| 侵犯人妻中文字幕一二三四区| 高清在线视频一区二区三区| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 亚洲精品日韩在线中文字幕| 精品久久久久久电影网| 久久ye,这里只有精品| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 婷婷色av中文字幕| 亚洲欧美色中文字幕在线| 国产欧美亚洲国产| 中文天堂在线官网| 69精品国产乱码久久久| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 欧美人与性动交α欧美软件| 麻豆乱淫一区二区| 亚洲伊人色综图| 国产不卡av网站在线观看| 国产av码专区亚洲av| 这个男人来自地球电影免费观看 | 国产精品一区二区在线不卡| 一级毛片我不卡| 三级国产精品片| 亚洲精品一区蜜桃| 国产不卡av网站在线观看| 日本免费在线观看一区| 欧美日韩视频精品一区| av网站在线播放免费| 卡戴珊不雅视频在线播放| 国产成人aa在线观看| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 在线观看一区二区三区激情| 午夜福利视频在线观看免费| 人人妻人人爽人人添夜夜欢视频| 久久精品国产亚洲av高清一级| 日韩伦理黄色片| av一本久久久久| 精品少妇久久久久久888优播| 中文字幕最新亚洲高清| 国产高清国产精品国产三级| 亚洲欧洲日产国产| 午夜福利影视在线免费观看| 精品国产超薄肉色丝袜足j| 久久狼人影院| 99精国产麻豆久久婷婷| 如日韩欧美国产精品一区二区三区| 成年女人毛片免费观看观看9 | 国产精品久久久久久精品古装| 在线观看一区二区三区激情| 国产毛片在线视频| 欧美精品一区二区大全| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 色播在线永久视频| 婷婷成人精品国产| 午夜免费观看性视频| 精品国产乱码久久久久久男人| 国产熟女午夜一区二区三区| 国产成人精品婷婷| 黄色毛片三级朝国网站| 三级国产精品片| 久久精品aⅴ一区二区三区四区 | 亚洲国产欧美在线一区| 免费观看无遮挡的男女| 一二三四在线观看免费中文在| 新久久久久国产一级毛片| 捣出白浆h1v1| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 亚洲欧洲精品一区二区精品久久久 | 黄色配什么色好看| 日韩人妻精品一区2区三区| 一级毛片 在线播放| 久久国产亚洲av麻豆专区| 九色亚洲精品在线播放| 国产亚洲一区二区精品| 午夜影院在线不卡| 看免费成人av毛片| 最新的欧美精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 校园人妻丝袜中文字幕| 九色亚洲精品在线播放| 欧美在线黄色| 90打野战视频偷拍视频| 欧美精品一区二区免费开放| 一级片'在线观看视频| av电影中文网址| 男人舔女人的私密视频| 久久av网站| 亚洲一区二区三区欧美精品| 在线观看三级黄色| 亚洲精品国产av成人精品| 在线免费观看不下载黄p国产| 免费少妇av软件| 亚洲人成77777在线视频| 视频区图区小说| 日本爱情动作片www.在线观看| 亚洲欧美精品综合一区二区三区 | 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 亚洲综合精品二区| 日韩制服丝袜自拍偷拍| 99re6热这里在线精品视频| 丝袜人妻中文字幕| 亚洲内射少妇av| 老司机亚洲免费影院| 97在线人人人人妻| 亚洲成色77777| 26uuu在线亚洲综合色| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 免费看不卡的av| 久久久亚洲精品成人影院| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 亚洲国产欧美日韩在线播放| 欧美人与善性xxx| 亚洲精品久久久久久婷婷小说| 免费久久久久久久精品成人欧美视频| 老司机亚洲免费影院| 日本91视频免费播放| 久久久久久久久久人人人人人人| 美女主播在线视频| 制服人妻中文乱码| 麻豆乱淫一区二区| 久久毛片免费看一区二区三区| 性高湖久久久久久久久免费观看| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 另类精品久久| 欧美激情 高清一区二区三区| 男女啪啪激烈高潮av片| 熟女少妇亚洲综合色aaa.| 亚洲国产色片| 日韩电影二区| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 午夜影院在线不卡| 永久网站在线| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 国产精品一国产av| 久久ye,这里只有精品| 午夜激情av网站| 午夜福利乱码中文字幕| 亚洲视频免费观看视频| 麻豆av在线久日| 高清av免费在线| 女性被躁到高潮视频| 精品一区二区三卡| 欧美精品一区二区大全| 可以免费在线观看a视频的电影网站 | 免费在线观看黄色视频的| 毛片一级片免费看久久久久| 在线亚洲精品国产二区图片欧美| 亚洲成av片中文字幕在线观看 | 最近中文字幕高清免费大全6| 黄色 视频免费看| 熟女av电影| 国产精品偷伦视频观看了| 国产视频首页在线观看| 国产老妇伦熟女老妇高清| 波多野结衣av一区二区av| 亚洲欧美精品自产自拍| 免费久久久久久久精品成人欧美视频| 亚洲av免费高清在线观看| 欧美在线黄色| 日韩av在线免费看完整版不卡| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区av在线| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av涩爱| 久久久久精品久久久久真实原创| 91精品国产国语对白视频| 免费黄网站久久成人精品| 精品国产露脸久久av麻豆| 精品午夜福利在线看| a级毛片黄视频| av视频免费观看在线观看| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 亚洲三区欧美一区| 精品少妇黑人巨大在线播放| 免费播放大片免费观看视频在线观看| 国产成人a∨麻豆精品| 日日啪夜夜爽| videosex国产| 亚洲一级一片aⅴ在线观看| 精品久久久精品久久久| 男人添女人高潮全过程视频| 国产精品 国内视频| 亚洲欧洲日产国产| 激情视频va一区二区三区| 国产精品香港三级国产av潘金莲 | 亚洲精品国产av蜜桃| 人妻一区二区av| 国产精品偷伦视频观看了| 黄色毛片三级朝国网站| 亚洲欧美精品综合一区二区三区 | 日韩在线高清观看一区二区三区| 电影成人av| www.熟女人妻精品国产| 天堂俺去俺来也www色官网| 国产精品.久久久| 中文字幕色久视频| 亚洲四区av| 宅男免费午夜| 精品一区二区免费观看| 九色亚洲精品在线播放| 国产免费现黄频在线看| 日韩av免费高清视频| 18禁动态无遮挡网站| 交换朋友夫妻互换小说| 丝袜脚勾引网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜91福利影院| 黄片小视频在线播放| 精品国产一区二区久久| 丝袜美足系列| 国产一区有黄有色的免费视频| av在线观看视频网站免费| 婷婷色综合www| 伦精品一区二区三区| 亚洲国产欧美在线一区| 青春草国产在线视频| 捣出白浆h1v1| 七月丁香在线播放| 高清欧美精品videossex| 欧美精品高潮呻吟av久久| 亚洲av中文av极速乱| 免费观看性生交大片5| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 国产精品 欧美亚洲| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 成年女人毛片免费观看观看9 | 成年av动漫网址| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 国产爽快片一区二区三区| 熟女电影av网| 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| 丝袜美腿诱惑在线| 午夜久久久在线观看| 如何舔出高潮| 日本免费在线观看一区| 97在线视频观看| 亚洲国产欧美日韩在线播放| 在线天堂最新版资源| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 久久人妻熟女aⅴ| 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 久久久久久人妻| 国产女主播在线喷水免费视频网站| 制服人妻中文乱码| 十八禁高潮呻吟视频| 国产精品 国内视频| 黄色毛片三级朝国网站| 波多野结衣av一区二区av| 男女免费视频国产| 国产一区二区 视频在线| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 精品国产一区二区三区久久久樱花| 国产亚洲最大av| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 欧美少妇被猛烈插入视频| 欧美成人午夜免费资源| 久久久亚洲精品成人影院| av卡一久久| kizo精华| av免费观看日本| 国语对白做爰xxxⅹ性视频网站| 亚洲视频免费观看视频| av片东京热男人的天堂| 国产成人aa在线观看| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 91国产中文字幕| 欧美人与性动交α欧美软件| 另类亚洲欧美激情| 亚洲av.av天堂| 婷婷色av中文字幕| 永久网站在线| 国精品久久久久久国模美| h视频一区二区三区| 最黄视频免费看| 下体分泌物呈黄色| 久久久久久久久久久免费av| 男女高潮啪啪啪动态图| 男女午夜视频在线观看| 制服诱惑二区| 曰老女人黄片| 黄色配什么色好看| 久久久精品94久久精品| 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 亚洲国产欧美网| 十八禁网站网址无遮挡| 一级片'在线观看视频| 丝瓜视频免费看黄片| 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 亚洲精品美女久久av网站| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 欧美精品人与动牲交sv欧美| 午夜91福利影院| 国产精品二区激情视频| 中文精品一卡2卡3卡4更新| 飞空精品影院首页| 伊人亚洲综合成人网| 咕卡用的链子| 亚洲国产日韩一区二区| 一级毛片电影观看| 国产乱人偷精品视频| 国产精品一国产av| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 久久ye,这里只有精品| 欧美av亚洲av综合av国产av | 欧美日韩一级在线毛片| a级毛片黄视频| 女人久久www免费人成看片| 多毛熟女@视频| 免费黄频网站在线观看国产| 日本午夜av视频| 精品少妇一区二区三区视频日本电影 | 欧美人与性动交α欧美软件| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 青春草国产在线视频| 满18在线观看网站| 亚洲国产欧美网| 久久久久精品人妻al黑| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲| 久久精品久久久久久噜噜老黄| 一区二区三区激情视频| a级毛片在线看网站| av不卡在线播放| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 日韩电影二区| 在线精品无人区一区二区三| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 国产麻豆69| 亚洲精品国产av蜜桃| 免费观看a级毛片全部| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲成人手机| 十八禁网站网址无遮挡| 亚洲国产精品一区三区| 亚洲精品一二三| 国产视频首页在线观看| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 精品一区二区免费观看| 伊人久久大香线蕉亚洲五| 少妇被粗大猛烈的视频| 黄色 视频免费看| 成人黄色视频免费在线看| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 久久久久久伊人网av| 中文字幕制服av| 波多野结衣一区麻豆| 日韩一区二区三区影片| 制服丝袜香蕉在线| 一区二区三区乱码不卡18| 90打野战视频偷拍视频| 免费观看性生交大片5| 国产精品不卡视频一区二区| 久久久精品94久久精品| 日韩精品免费视频一区二区三区| 午夜激情久久久久久久| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 伊人久久大香线蕉亚洲五| av福利片在线| 欧美 日韩 精品 国产| 青草久久国产| 亚洲三区欧美一区| 国产极品天堂在线| 女性被躁到高潮视频| 永久网站在线| 超碰成人久久| 国产av精品麻豆| 人妻人人澡人人爽人人| 亚洲人成77777在线视频| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 亚洲欧洲精品一区二区精品久久久 | 天美传媒精品一区二区| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| 考比视频在线观看| 黑人猛操日本美女一级片| 日韩一区二区视频免费看| 亚洲内射少妇av| 成年动漫av网址| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 另类亚洲欧美激情| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 国产精品久久久久久av不卡| 国产精品.久久久| 国产成人a∨麻豆精品| 90打野战视频偷拍视频| 毛片一级片免费看久久久久| 亚洲经典国产精华液单| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区在线观看99| 久久精品国产综合久久久| 叶爱在线成人免费视频播放| 亚洲av免费高清在线观看| 久久精品国产亚洲av高清一级| www日本在线高清视频| 男女免费视频国产| 亚洲国产精品成人久久小说| 人成视频在线观看免费观看| 成年人午夜在线观看视频| 边亲边吃奶的免费视频| 欧美日韩精品网址| 亚洲精品视频女| 免费黄色在线免费观看| 久久99蜜桃精品久久| 999精品在线视频| 免费在线观看黄色视频的| 亚洲av在线观看美女高潮| av片东京热男人的天堂| 黑人巨大精品欧美一区二区蜜桃| 少妇人妻久久综合中文| 少妇精品久久久久久久| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 国产精品一区二区在线不卡| 久久久欧美国产精品| 国产精品女同一区二区软件| 在线天堂中文资源库| 亚洲婷婷狠狠爱综合网| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 日韩中文字幕欧美一区二区 | 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 人妻一区二区av| 91精品国产国语对白视频| 99国产综合亚洲精品| 不卡av一区二区三区| av.在线天堂| 国产成人aa在线观看| 黄片无遮挡物在线观看| 999久久久国产精品视频| 久久久久久伊人网av| 国产xxxxx性猛交| 国产人伦9x9x在线观看 | 久久久久久久精品精品| 美女高潮到喷水免费观看| 久久午夜福利片| 午夜福利在线观看免费完整高清在| 午夜激情av网站| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 一本色道久久久久久精品综合| 亚洲精品一区蜜桃| 欧美精品国产亚洲| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 亚洲婷婷狠狠爱综合网| 精品国产一区二区三区久久久樱花| 国产片特级美女逼逼视频| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 一区在线观看完整版| 十八禁高潮呻吟视频| 午夜激情久久久久久久| 亚洲国产精品999| 嫩草影院入口| 午夜福利网站1000一区二区三区| 国产精品国产三级国产专区5o| 最新中文字幕久久久久| 波多野结衣av一区二区av| 国产片内射在线| 国产一区二区三区综合在线观看| 9191精品国产免费久久| 国产成人精品久久二区二区91 | 国产免费一区二区三区四区乱码| 中文字幕另类日韩欧美亚洲嫩草| 久久精品夜色国产| 国产熟女午夜一区二区三区| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 亚洲成av片中文字幕在线观看 | 精品国产一区二区三区四区第35| 亚洲国产精品一区三区| 波野结衣二区三区在线| av女优亚洲男人天堂| 国产精品无大码| 自线自在国产av| 欧美日韩亚洲国产一区二区在线观看 | 精品酒店卫生间| 夜夜骑夜夜射夜夜干| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 人妻人人澡人人爽人人| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 如日韩欧美国产精品一区二区三区| 99久久人妻综合| 欧美另类一区| 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| 制服诱惑二区| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 |