• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled Synthesis and Optical Properties of Lanthanide-doped Na3ZrF7 Nanocrystals①

    2018-12-13 09:45:06FUHuHuiLIUYongShengJIANGFeiLongHONGMoChun
    結(jié)構(gòu)化學(xué) 2018年11期

    FU Hu-Hui LIU Yong-Sheng JIANG Fei-Long HONG Mo-Chun, c

    ?

    Controlled Synthesis and Optical Properties of Lanthanide-doped Na3ZrF7Nanocrystals①

    FU Hu-Huia, b, c, dLIU Yong-Shenga, b②JIANG Fei-Longa②HONG Mao-Chuna, b, c②

    a(350002)b(100049)c(201210)d(200050)

    In this paper, we report for the first time the controlled synthesis of lanthanide ion (Ln3+)-doped tetragonal-phase Na3ZrF7nanocrystals (NCs)a high-temperature co-precipitation approach. The as-synthesized Na3ZrF7NCs are systematically studied by utilizing the XRD, TEM as well as high-resolution photoluminescence (PL) spectroscopy. The morphology and size for the as-synthesized Na3ZrF7NCs can be finely controlled by changing the experimental parameters such as the amount of precursor, solvent ratio, reaction temperature and time. By utilizing the red-emitting Eu3+ion as an efficient optical/structural probe, the successful hetero-valence doping of Ln3+activators in the lattices of Na3ZrF7NCs is well-established regardless of their different valences and radii between host Zr4+ion and Ln3+dopant. As a result, intense upconversion (UC) luminescence (UCL) ranging from UV to visible and to NIR spectral regions can be readily achieved after the doping of typical UCL couples of Yb3+/Er3+, Yb3+/Tm3+and Yb3+/Ho3+into the lattices of Na3ZrF7NCswhen excited by using a 980-nm NIR diode laser.

    lanthanide ion, Na3ZrF7, nanocrystals, upconversion luminescence;

    1 INTRODUCTION

    Trivalent lanthanide (Ln3+)-doped upconversion (UC) nanocrystals (UCNCs) that convert low-energy irradiation into high-energy emission have shown promising applications in areas as diverse as bio- logical imaging, detection, therapeutics, photonics and full-color displays, owing to their exceptional optical properties such as large anti-Stokes shifts, sharp emission bandwidths, long excited-state lifetimes and tunable emission colors[1-28]. In parti- cular, with the rapid development of nanocrystal synthesis technology over the past decade, Ln3+- doped UCNCs can now be made with precisely controlled composition, morphology, phase, dimen- sion, emission color and lifetime[29-35]. Despite these significant advances, it should be noted that, in most reported cases, high-quality Ln3+-doped UCNCs with tunable crystal phase, nanocrystal size, mor- phology as well as upconversion luminescence (UCL) colors were mainly restricted to the Ln3+- doped hexagonal-phase NaYF4and NaGdF4NCs[36-46]. However, Na3ZrF7, as another suitable host material, has been rarely reported on its crystal structure, controlled synthesis and optical properties. Very recently, Wang and co-workers have synthe- sized Na3ZrF7NCs by using a solvothermal method, and then demonstrated that Na3ZrF7was an excellent host material which can exhibit intense single red UCL when co-doped with the typical Yb3+/Er3+UCL couple[47]. To date, the controlled synthesis of Ln3+-doped Na3ZrF7UCNCs by using other che- mical synthetic approaches such as thermal decom- position and high-temperature co-precipitation remains nearly untouched. Especially, due to the large discrepancy between ionic radius (e.g., 0.95 ? for Eu3+and 0.80 ? for Zr4+) and valences (+3 for Ln3+and +4 for Zr4+) for host Zr4+ion and Ln3+dopant, the successful hetero-valence doping of Ln3+ions in the lattices of Na3ZrF7crystal has been a great challenge for the broad community working in this field.

    In this paper, the controlled synthesis of tetra- gonal-phase Na3ZrF7NCs with different mor- phology and size is achieved simply by varying the amount of NaOH, OA/ODE ratio, reaction tem- perature and time. In addition, the successful doping of Ln3+in Na3ZrF7crystal lattice is demonstrated for the first time by high-resolution photoluminescence spectroscopy of Eu3+at low temperature (10 K).Size-dependent UCL spectra of Ln3+-doped Na3ZrF7NCs with different amount of NaOH are deeply investigated. Intense UCL emissions of Ln3+-doped Na3ZrF7NCs ranging from UV to visible and to NIR spectral regions can be readily achieved by doping with typical UCL couples of Yb3+/Er3+, Yb3+/Tm3+and Yb3+/Ho3+.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    NaOH and NH4F were purchased from Aladdin (China). Yb(CH3CO2)3·4H2O (99.999%), Er(CH3CO2)3·4H2O (99.99%), Tm(CH3CO2)3·4H2O (99.99%), Ho(CH3CO2)3·4H2O (99.99%), Eu(CH3CO2)3·H2O (99.99%), Ce(CH3CO2)3·H2O (99.99%), Tb(CH3CO2)3·H2O (99.99%), zirconium(IV) ace- tylacetonate, oleic acid (OA) and 1-octadecene (ODE) were purchased from Sigma- Aldrich (China). Cyclohexane, methanol, and ethanol were purchased from Sinopharm Chemical Reagent Co., China. All chemicals were used as received without further purification.

    2.2 General procedure for the preparation of tetragonal-phase Na3ZrF7:Ln3+ NCs

    The tetragonal-phase Na3ZrF7:Ln3+(Ln = Yb, Er, Tm, Ho) NCs were synthesizeda modified high-temperature co-precipitation method. In a typical procedure for the synthesis of Na3ZrF7:20%Yb3+/2%Er3+NCs, 0.78 mmol of zirconium (IV) acetylacetonate, 0.2 mmol of Yb(CH3CO2)3·4H2O and 0.02 mmol of Er(CH3CO2)3·4H2O were mixed with 10 mL of OA and 30 mL of ODE in a 100 mL three-neck round-bottom flask. The solution was heated to 150 ℃ under N2flow with constant stirring for 60 min to form a clear solution, and then cooled down to room temperature. Thereafter, 10 mL of methanol solution containing 3 mmol of NaOH and 7 mmol of NH4F was added and the resulting mixture was stirred for 30 min. After the removal of methanol by evaporation, the solution was heated to 290 ℃under N2flow with vigorous stirring for 60 min, and then cooled down to room temperature. The resul- ting NCs were precipitated by addition of ethanol, collected by centrifugation, then washed with ethanol for several times, and finally re-dispersed in cyclohexane.

    2.3 Characterization

    Powder XRD measurements were performed on a powder diffractometer (MiniFlex2, Rigaku) with Curadiation (= 0.154187 nm) from 10° to 70° at a scan rate of 5° min-1. Both the TEM and high-resolution TEM measurements were conducted on a transmission electron microscope (TEM, TECNAIG2F20) equipped with an energy dispersive X-ray spectroscope (EDS). UCL spectra were measured upon 980-nm NIR excitation from a continuous-wave diode laser. All the UCL decay curves for Yb3+/Er3+co-doped NCs were measured with a customized UV to mid-infrared steady-state and phosphorescence lifetime spectrometer (FSP920-C, Edinburgh Instrument) equipped with a digital oscilloscope (TDS3052B, Tektronix) and a tunable mid-band Optical Parametric Oscillator (OPO) pulse laser as the excitation source (410~2400 nm, 10 Hz, pulse width ≤5 ns, Vibrant 355II, OPOTEK), and the effective lifetime (eff) was determined by:

    where0and(t) represent the maximum lumine- scence intensity and luminescence intensity at time t after cutoff of the excitation light, respectively.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    As shown in Fig. 1a, the Na3ZrF7crystal has a tetragonal structure (space group4/mmm) with the central Zr4+ions surrounded by eight F-ions formingthe edges of a cube. All Zr4+ions occupy the sitesymmetry of4h. High-quality tetragonal-phaseNa3ZrF7:Ln3+(Ln = Yb, Er, Tm, Ho, Eu, etc)NCs were synthesizeda modified high-temperature co-precipitation method with the assistance of OA and ODE as surfactant and solvent, respectively. Fig. 1b shows a typical low-resolution TEM image of the as-synthesized Na3ZrF7:20%Yb3+/2%Er3+NCs with uniform hexagonal shape. Corresponding high- resolution TEM (HRTEM) image of a single Na3ZrF7:Yb3+/Er3+nanocrystal shown in Fig. 1c displays clear lattice fringes with a d-spacing of 0.31 nm, which is in good accordance with the lattice spacing of the (112) plane for tetragonal Na3ZrF7crystal, indicative of the single crystalline nature of the obtained NCs. Selected-area electron diffraction (SAED) pattern obtained from the Fourier transform of the HRTEM image further confirmed the single- crystalline tetragonal structure of the Na3ZrF7:Yb3+/Er3+NCs (Fig. 1d). Componential analysis by energy-dispersive X-ray spectroscopy (EDX) revealed the presence of Na, Zr, F, Yb and Er elements, indicating the successful doping of Yb3+and Er3+ions in the as-synthesized Na3ZrF7: Yb3+/Er3+NCs (Fig. 1e).

    Fig. 1. (a) Crystal structure of tetragonal-phase Na3ZrF7crystal. (b) Low-resolution TEM image of the as-synthesized Na3ZrF7:20%Yb3+/2%Er3+NCs. (c) High-resolution TEM image of a nanoparticle and (d) Corresponding Fourier-transform diffractogram. (e) EDX analysis of the as-synthesized NCs

    TEM images of the Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with varied amount of NaOH in the raw materials ranging from 3 to 6 mmol are shown in Fig. 2. It can be seen that the morphology of Na3ZrF7:Yb3+/Er3+NCs gradually changed from larger nanohexagons to smaller ones with relatively low amount of NaOH of 3 and 4 mmol, to the mixture of nanohexagons and nanocubes with the NaOH amount of 4.5 mmol, then to small nanorods, big nanocubes, and eventually small irregular shaped nanospheres with the NaOH amount of 5, 5.5, and 6 mmol, respectively (Fig. 2a~2f). Corresponding nanocrystal sizes were measured to be 27.6 ± 2.1, 21.3 ± 1.6, 17.1 ± 3.9, 19.7 ± 1.5, 36.7 ± 4.5, and 19.5 ± 4.8 nm, respectively.

    Fig. 2. TEM images of the Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different amount of NaOH: (a) 3, (b) 4, (c) 4.5, (d) 5, (e) 5.5, and (f) 6 mmol, respectively. Insets in (a~f) are the corresponding size distributions

    Notably, despite the morphology and size of Na3ZrF7:Yb3+/Er3+NCs changed significantly with the amount of NaOH increased from 3 to 6 mmol, the tetragonal crystal phase maintained, which was clearly revealed by the XRD patterns shown in Fig. 3. All the XRD patterns can be well indexed to the standard pattern for tetragonal Na3ZrF7crystal (JCPDS No. 12-0562). These results unambiguously demonstrated that the morphology and size of Na3ZrF7:Yb3+/Er3+NCs can be facilely tuned by varying the amount of NaOH, and a relatively less amount of NaOH is conducive to yield uniform large hexagonal-shaped Na3ZrF7:Yb3+/Er3+NCs.

    Fig. 3. XRD patterns of Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different amount of NaOH: (a) 3, (b) 4, (c) 4.5, (d) 5, (e) 5.5, and (f) 6 mmol, respectively

    Moreover, the effect of solvent ratio of OA/ODE on Na3ZrF7:Yb3+/Er3+NCs was studied. We found that the morphology, size, and uniformity of Na3ZrF7:Yb3+/Er3+NCs were highly dependent on OA/ODE ratio. As shown in Fig. 4, relative to the total volume, a smaller OA/ODE ratio would result in larger and more uniform hexagonal NCs. Despite the size of Na3ZrF7:Yb3+/Er3+NCs decreased with the increase of OA/ODE ratio, hexagonal shape maintained. Corresponding nanocrystal sizes were measured to be 16.2 ± 1.3, 19.2 ± 6.7, 27.6 ± 2.1, and 41.2 ± 4.5 nm when the OA/ODE ratio was 10:15, 10:20, 10:30, and 10:40, respectively.

    Fig. 4. TEM images of the Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different OA/ODE ratios: (a) 10:15, (b) 10:20, (c) 10:30, (d) 10:40, respectively. Insets in (a~d) are the corresponding size distributions

    Continually, the effects of reaction temperature and time on Na3ZrF7:Yb3+/Er3+NCs were investigated. As illustrated in Fig. 5, along with the increase of temperature from 270 to 290 ℃, the morphology of Na3ZrF7:Yb3+/Er3+NCs gradually changed from irregular shaped nanospheres to uniform nanohexagons (Fig. 5a-c), and keeping increasing reaction temperature to 300 ℃ would yield larger nanohexagons with a boarder size distribution (Fig. 5d).Corresponding nanocrystal sizes were measured to be 30.0 ± 10.8, 31.2 ± 4.5, 27.6 ± 2.1, and 41.2 ± 3.2 nm, respectively. This observation suggests that high reaction temperature was thermodynamically in favour of the generation of NCs with larger size and uniform morphology. The important role of tuning the size and morpho- logy was also verified by the resulting Na3ZrF7:Yb3+/Er3+NCs synthesized for different reaction time with an OA/ODE ratio of 10:30 at 290 ℃. The obtained Na3ZrF7:Yb3+/Er3+NCs owned irregular morphology with evident discrepancy in size and shape for relatively short reaction timeof 20 min (Fig. 6a), and regular hexagonal shape appeared when prolonging the reaction time to 40 min (Fig. 6b). Moreover, the morphology and size homogeneity were up to the optimum when the reaction time was increased to 60 min (Fig. 6c). Keeping increasing the reaction time to 90 min yielded larger hexagonal NCs with a boarder size distribution (Fig. 6d). Corresponding nanocrystal sizes were measured to be 12.5 ± 1.4 (small) and 49.6 ± 9.1 (large), 23.5 ± 7.9, 27.6 ± 2.1, and 35.6 ± 3.2 nm when the reaction time was set to 20, 40, 60, and 90 min, respectively.

    Fig. 5. TEM images of the Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized at different temperature: (a) 270 ℃, (b) 280 ℃, (c) 290 ℃, and (d) 300 ℃, respectively. Insets in (a~d) are the corresponding size distributions

    Fig. 6. TEM images of the Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized at 290 ℃ for different time: (a) 20 min, (b) 40 min, (c) 60 min and (d) 90 min, respectively. Insets in (a~d) are the corresponding size distributions

    3.2 Optical properties of Na3ZrF7:Ln3+ NCs

    It is well known that Eu3+ions are very sensitive to their coordination and local environment, thus usually employed as a sensitive spectral probe to study the crystal structure of host material through substituting the central cations in the crystal lattice[48-50]. To demonstrate the successful hetero- valence doping of trivalent lanthanide ions sub- stituted to Zr4+ions in the crystal lattice of Na3ZrF7NCs, we measured the high-resolution site-selectivespectra of Na3ZrF7:Eu3+NCs. Emission and excitation spectra and photoluminescent (PL) decays were collected at low temperature of 10 K to avoid the thermal broadening of spectral bands at room temperature[51]. As compared in Fig. 7a, the emission spectra of Na3ZrF7:Eu3+NCs upon excitation at 393.5 and 392.5 nm were highly different, where a distinct dissimilarity can be easily distinguished from the integrated intensity ratio of50→71to50→72transition. The50→71transition is magnetic dipole transition, which is unaffected by nearby structural changes. On the contrary, the50→72transition is electric dipole transition and it is hypersensitive to the local crystalline ?eld[52, 53]. In other words, the integratedintensity ratio () of50→72to50→71transition differingsignificantly in various sites is very sensitive to the local crystal field surroundings, and a smallerindicates a higher site symmetry of Eu3+ions doped in host crystal lattice. From the emission spectra in Fig. 7a,values were calculated to be 1.21 and 0.82 upon excitation at 393.5 and 392.5 nm, respectively. The decrease ofvalue indicated that the emissions of Eu3+ions upon excitation at 393.5 and 392.5 nm correspond to external low and interiorhigh symmetric sites in Na3ZrF7:Eu3+NCs, respectively, thus demonstrating the successful doping of Eu3+ions in Na3ZrF7crystal lattice. The big discrepancy in PL lifetimes displayed in Fig. 7b further confirmed the Eu3+ions of two different sites in Na3ZrF7:Eu3+NCs owing to the surface fluorescence quenching.

    Fig. 7. (a) 10 K PL emission spectra of Na3ZrF7:Eu3+NCs upon excitation at 393.5 (red line) and 392.5 (black line) nm, respectively. (b) 10 K luminescence decays from5D0of Eu3+in Na3ZrF7:Eu3+NCs under site-selective excitation at 393.5 and 392.5 nm by monitoring the emission at 613.5 and 588.5 nm, respectively

    After demonstrating the successful doping of Ln3+ions in Na3ZrF7crystal lattice, we have conducted a set of measurements for the optical properties of Na3ZrF7:Yb3+/Ln3+(Ln = Er, Tm, or Ho). Fig. 8 displays the typical UCL spectra of Na3ZrF7NCs doped with Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+upon near infrared (NIR) excitation at 980 nm, and intense visible and near-infrared (NIR) emissions were observed.As shown in Fig. 8a, the Na3ZrF7:Yb3+/Er3+NCsyielded intense red and extremely weak green emissions centred at 651 and 540 nm, respectively, which are assigned to the49/2→415/2and211/2/43/2→415/2transitions of Er3+, respectively. Next, as shown in Fig. 8b,intense single band NIR emissioncentred at 800 nm was detected in the Na3ZrF7:Yb3+/Tm3+NCs, which is assigned to the34→36transition of Tm3+. Furthermore, as shown in Fig. 8c, the Na3ZrF7:Yb3+/Ho3+NCsyieldedrelatively stronger green, weaker red and NIR emissions centred at 542, 655, and 750 nm, respectively, which are assigned to the54→58,55→58, and54→58transitions of Ho3+, respectively.

    Fig. 8. UCL spectra of Na3ZrF7NCs doped with: (a) Yb3+/Er3+, (b) Yb3+/Tm3+and (c) Yb3+/Ho3+upon excitation at 980 nm with a power density of 30 W cm-2. (d) Log-log plots of UCL emission intensity against the excitation power density for Na3ZrF7NCs doped with (a) Yb3+/Er3+, (b) Yb3+/Tm3+and (c) Yb3+/Ho3+, respectively. (e) Schematic energy level diagrams of UC processes for Er3+, Tm3+, and Ho3+the sensitization of Yb3+in Na3ZrF7NCs. Inserts in (a) and (c) are the corresponding luminescent photos for Yb3+/Er3+and Yb3+/Ho3+co-doped Na3ZrF7NCs

    To shed more light on the UC process in Ln3+- doped Na3ZrF7NCs, the dependence of the UCL emission intensity () of Er3+,Tm3+, and Ho3+ions on the excitation power density ()was analyzed (Fig. 8d). It is known that in the UC process,is proportional to the nthpower of, namely,μn, where n is the number of absorbed photon for one emitted UC photon. In other words, plots of logversus logcan be fitted into linear lines with different slope n values. Upon NIR excitation at 980 nm, plots of logversus logfor the emissions centred at 540 (211/2/43/2→415/2) and 660 (49/2→415/2) nm of Er3+, 800 (34→36) nm of Tm3+, and 542 (54→58), 655 (55→58) and 750 (54→58) nm of Ho3+ions can be fitted into linear lines with slopes of 1.91 and 1.95 for Er3+, 1.93 for Tm3+, and 1.87, 1.57, and 1.74 for Ho3+, respectively (Fig. 8d). These results suggest that the UCL emissions of Er3+, Tm3+, and Ho3+in Na3ZrF7NCs all occurredtwo-photon processes, and the proposed energy level diagrams are illustrated in Fig. 8e.

    Moreover,the UCL spectra of Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different amount of NaOH were collected upon NIR excitation at 980 nm. As depicted in Fig. 9a, as the amount of NaOH gradually increased, the UCL emission intensity of Na3ZrF7:20%Yb3+/2%Er3+NCs first decreased and reached to the minimum when the amount of NaOH was 4.5 mmol, then began to increase and achieved the maximum when the amount of NaOH was 5.5 mmol, and finally decreesed when keeping increasing the amount of NaOH.Corresponding UCL lifetimes were measured to be 0.25, 0.18, 0.11, 0.13, 0.28, and 0.21 ms, respectively (Fig. 9b), which agreed well with the UCL emission intensity of Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different amount of NaOH.

    Fig. 9. (a) UCL spectra of Na3ZrF7:20%Yb3+/2%Er3+NCs synthesized with different amount of NaOH upon excitation at 980 nm with a power density of 30 W cm-2. Inset shows the integrated intensity as a function of the amount of NaOH. (b) Corresponding UCL lifetimes of the as-synthesized Na3ZrF7:20%Yb3+/2%Er3+NCs

    Furthermore, to validate the effect of Ln3+(Ln = Yb, Er, Tm, or Ho) concentration on the UCL emissions, we synthesized a series of Na3ZrF7NCs doped with different content of Yb3+, Er3+, Tm3+, and Ho3+ions. Fig. 10 shows the UCL spectra of Na3ZrF7NCs doped with different Yb3+concentration ranging from 0 to 30 mol%, Er3+con- centration from 0.5 to 5 mol%, Tm3+concentration from 0.5 to 2 mol%, and Ho3+concentration from 0.5 to 2 mol%, respectively. It can be seen clearly that the overall UCL emission intensity of Er3+in Na3ZrF7:Yb3+/Er3+NCs both increased at first then decreased with the increase of Yb3+and Er3+concentration, and the optimal Yb3+/Er3+co-doping concentration was 20%/2% mol (Fig. 10a-b). Besides, as shown in Fig. 10c and d, 1% mol was the optimal doping concentration for both Tm3+and Ho3+in Na3ZrF7NCs to achieve efficient UCL emissions.

    Fig. 10. UCL spectra of Na3ZrF7NCs doped with different concentration of (a) Yb3+, (b) Er3+, (c) Tm3+, and (d) Ho3+, respectively. All the UCL spectra were measured under identical experimental conditions upon excitation at 980 nm with a power density of 30 W. cm-2

    4 CONCLUSION

    In summary, lanthanide-doped tetragonal-phase Na3ZrF7NCs were synthesized by a high-tempera- ture co-precipitation method. Monodisperse nano- crystals with tunable morphology and size can be readily obtained by varyingthe amount of NaOH, OA/ODE ratio, reaction temperature and time. The successful hetero-valence doping of Ln3+ionsin Na3ZrF7crystal lattice was demonstrated for the first time by taking advantage of high-resolution photo- luminescence spectroscopy of Eu3+at low tempera- ture (10 K). Size-dependent UC luminescence of Na3ZrF7:Yb/Er with differentamount of NaOH were deeply investigated. Efficient UC emissions of Yb3+/Ln3+(Ln = Er, Tm, and Ho) co-doped Na3ZrF7NCs were achieved upon NIR excitation at 980 nm. Tetragonal-phase Na3ZrF7NCs are highly expected to be a promising host lattice to fabricate lanthanide- doped luminescent nanomaterial, providing potential applications such as bioimaging and biodetection.

    (1) Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications.2015, 10, 924-936.

    (2) Drees, C.; Raj, A. N.; Kurre, R.; Busch, K. B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells.2016, 55, 11668-11672.

    (3) Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications.2015, 44, 1585-1607.

    (4) Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.2015, 44, 1302-1317.

    (5) Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.2016, 7, 10437-10446.

    (6) Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy.2011, 50, 7385-7390.

    (7) Achatz, D. E.; Meier, R. J.; Fischer, L. H.; Wolfbeis, O. S. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles.2011, 50, 260-263.

    (8) Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia.2017, 117, 6160-6224.

    (9) Zhang, F.; Shi, Q. H.; Zhang, Y. C.; Shi, Y. F.; Ding, K. L.; Zhao, D. Y.; Stucky, G. D. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.2011, 23, 3775-3779.

    (10) Corstjens, P.; Zuiderwijk, M.; Brink, A.; Li, S.; Feindt, H.; Neidbala, R. S.; Tanke, H. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection.2001, 47, 1885-1893.

    (11) Kuningas, K.; Rantanen, T.; Ukonaho, T.; Lo1vgren, T.; Soukka, T. Homogeneous assay technology based on upconverting phosphors.2005, 77, 7348-7355.

    (12) Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor barcoding in a single upconversion crystal.2014, 136, 4893-4896.

    (13) Bettinelli, M. Upconversion nanocrystals: bright colours ahead.2015, 10, 203-204.

    (14) Zou, X.; Liu, Y.; Zhu, X.; Chen, M.; Yao, L.; Feng, W.; Li, F. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite.2015, 7, 4105-4113.

    (15) Yuan, W.; Yang, D.; Su, Q.; Zhu, X.; Cao, T.; Sun, Y.; Dai, Y.; Feng, W.; Li, F. Intraperitoneal administration of biointerface-camouflaged upconversion nanoparticles for contrast enhanced imaging of pancreatic cancer.2016, 26, 8631-8642.

    (16) Dong, H.; Sun, L. D.; Feng, W.; Gu, Y.; Li, F.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence.2017, 11, 3289-3297.

    (17) Zheng, W.; Zhou, S.; Chen, Z.; Hu, P.; Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Huang, M.; Chen, X. Sub-10 nm lanthanide-doped CaF2nanoprobes for time-resolved luminescent biodetection.2013, 52, 6671-6676.

    (18) Huang, P.; Zheng, W.; Zhou, S.; Tu, D.; Chen, Z.; Zhu, H.; Li, R.; Ma, E.; Huang, M.; Chen, X. Lanthanide-doped LiLuF4upconversion nanoprobes for the detection of disease biomarkers.2014, 53, 1252-1257.

    (19) Zhang, X.; Ai, F.; Sun, T.; Wang, F.; Zhu, G. Multimodal upconversion nanoplatform with a mitochondria-targeted property for improved photodynamic therapy of cancer cells.2016, 55, 3872-3880.

    (20) Zeng, L.; Pan, Y.; Zou, R.; Zhang, J.; Tian, Y.; Teng, Z.; Wang, S.; Ren, W.; Xiao, X.; Zhang, J.; Zhang, L.; Li, A.; Lu, G.; Wu, A. 808nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2overexpressed breast cancer.2016, 103, 116-127.

    (21) Zou, X.; Xu, M.; Yuan, W.; Wang, Q.; Shi, Y.; Feng, W.; Li, F. A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging.2016, 52, 13389-13392.

    (22) Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials.2015, 44, 1509-1525.

    (23) Zhuo, Z.; Liu, Y. S.; Liu, D. J.; Huang, P.; Jiang, F. L.; Chen, X. Y.; Hong, M. C. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence.2017, 8, 5050-5056.

    (24) He, S.; Johnson, N. J. J.; Huu, V. A. N.; Cory, E.; Huang, Y. R.; Sah, R. L.; Jokerst, J. V.; Almutairi, A. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles.2017, 17, 4873-4880.

    (25) Zhai, X. S.; Lei, P. P.; Zhang, P.; Wang, Z.; Song, S. Y.; Xu, X.; Liu, X. L.; Feng, J.; Zhang, H. J. Growth of lanthanide-doped LiGdF4nanoparticles induced by LiLuF4core as tri-modal imaging bioprobes.2015, 65, 115-123.

    (26) Lei, P. P.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Liu, X. L.; Du, K. M.; Feng, J.; Zhang, H. J. Optimization of Bi3+in upconversion nanoparticles induced simultaneous enhancement of near-infrared optical and X-ray computed tomography imaging capability.2016, 8, 27490-27497.

    (27) Lei, P. P.; An, R.; Yao, S.; Wang, Q. S.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. Ultrafast synthesis of novel hexagonal phase NaBiF4upconversion nanoparticles at room temperature.2017, 29, 1700505-1700508.

    (28) An, R.; Lei, P. P.; Zhang, P.; Xu, X.; Feng, J.; Zhang, H. J. Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped K0.3Bi0.7F2.4upconversion nanoparticles.2018, 10, 1394-1402.

    (29) Quan, Z. W.; Yang, D. M.; Yang, P. P.; Zhang, X. M.; Lian, H. Z.; Liu, X. M.; Lin, J. Uniform colloidal alkaline earth metal fluoride nanocrystals: nonhydrolytic synthesis and luminescence properties.2008, 47, 9509-9517.

    (30) Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.2011, 44, 322-332.

    (31) Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.2009, 38, 976-989.

    (32) Sivakumar, S.; van Veggel, F. C. J. M.; Raudsepp, M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3nanoparticles.2005, 127, 12464-12465.

    (33) Li, C.; Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application.2010, 20, 6831-6847.

    (34) Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals.2010, 10, 134-138.

    (35) Boyer, J. C.; Gagnon, J.; Cuccia, L. A.; Capobianco, J. A. Synthesis, characterization, and spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4core/shell nanoparticles.2007, 19, 3358-3360.

    (36) Li, L. Y.; Yu, Y.; Zhou, Z. H.; Li, Q. Sol-gel processing of a transparent upconversion luminescent film with-NaYF4:Yb3+, Er3+microrods as activator.2014, 33, 1875-1880.

    (37) Liu, H. S.; Xu, H. D.; Huang, Q. M.; Cao, W. B.; Yu, H.; Yu, Y. Upconversion luminescence properties of NaY0.92Yb0.05Er0.03F4enhanced by Zr4+codoping.2017, 36, 1743-1751.

    (38) Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging.2011, 32, 2959-2968.

    (39) Jalil, R. A.; Zhang, Y. Biocompatibility of silica coated NaYF4upconversion fluorescent nanocrystals.2008, 29, 4122-4128.

    (40) Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu3+in lanthanides doped multifunctional NaGdF4nanocrystals.2010, 22, 3266-3271.

    (41) Hou, Z. Y.; Li, C. X.; Ma, P. A.; Li, G. G.; Cheng, Z. Y.; Peng, C.; Yang, D. M.; Yang, P. P.; Lin, J. Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@Silica fiber nanocomposite.2011, 21, 2356-2365.

    (42) Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles.2011, 10, 968-973.

    (43) Boyer, J. C.; Manseau, M. P.; Murray, J. I.; van Veggel, F. C. J. M. Surface modification of upconverting NaYF4nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window.2010, 26, 1157-1164.

    (44) Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Agren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications.2012, 6, 2969-2977.

    (45) Wang, F.; Sun, L. D.; Gu, J.; Wang, Y. F.; Feng, W.; Yang, Y.; Wang, J. F.; Yan, C. H. Selective heteroepitaxial nanocrystal growth of rare earth fluorides on sodium chloride: synthesis and density functional calculations.2012, 51, 8796-8799.

    (46) Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. S.; Na, H. B.;Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. I.; Kim, H.; Park, S. P.; Park, B. J.; Kim, Y. W.; Lee, S. H.; Yoon, S. Y.; Song, I. C.; Moon, W. K.; Suh, Y. D.; Hyeon, T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent.2009, 21, 4467-4471.

    (47) Chen, D.; Lei, L.; Zhang, R.; Yang, A.; Xu, J.; Wang, Y. Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7nanocrystals.2012, 48, 10630-10632.

    (48) Ju, Q.; Liu, Y. S.; Li, R. F.; Liu, L. Q.; Luo, W. Q.; Chen, X. Y. Optical spectroscopy of Eu3+-doped BaFCl nanocrystals.2009, 113, 2309-2315.

    (49) Grzechnik, A.; Bouvier, P.; Mezouar, M.; Mathews, M. D.; Tyagi, A. K.; Kohler, J. Hexagonal Na1.5Y1.5F6at high pressures.2002, 165, 159-164.

    (50) Tanner, P. A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium.2013, 42, 5090-101.

    (51) Bednarkiewicz, A.; Mech, A.; Karbowiak, M.; Strek, W. Spectral properties of Eu3+doped NaGdF4nanocrystals.2005, 114, 247-254.

    (52) Strauss, M.; Destefani, T. A.; Sigoli, F. A.; Mazali, I. O. Crystalline SnO2nanoparticles size probed by Eu3+luminescence.2011, 11, 4511-4516.

    (53) Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Liu, L. Q.; Chen, X. Y. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4crystals.2013, 52, 1128-1133.

    2 April 2018;

    22 May 2018

    ① This work was supported by the Strategic Priority Research Program of CAS (XDB20000000), the NSFC (Nos. 21390392, 21473205, and 21731006), Youth Innovation Promotion Association of CAS, and the Natural Science Foundation of Fujian Province (No. 2017J01038)

    Liu Yong-Sheng. E-mail: liuysh@fjirsm.ac.cn; Jiang Fei-Long. E-mail: fjiang@fjirsm.ac.cn; Hong Mao-Chun. E-mail: hmc@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2028

    三级男女做爰猛烈吃奶摸视频| 成年免费大片在线观看| 性插视频无遮挡在线免费观看| 一个人免费在线观看电影| 精品欧美国产一区二区三| 亚洲不卡免费看| 搞女人的毛片| 人人妻人人澡欧美一区二区| 嫩草影院精品99| 亚洲av免费高清在线观看| 亚洲av电影不卡..在线观看| 国产精品乱码一区二三区的特点| 美女免费视频网站| 亚洲欧美日韩卡通动漫| 国产中年淑女户外野战色| 十八禁国产超污无遮挡网站| h日本视频在线播放| av中文乱码字幕在线| 亚洲自偷自拍三级| a在线观看视频网站| 老司机福利观看| 免费av观看视频| 一个人看的www免费观看视频| 国产三级在线视频| 天堂动漫精品| a在线观看视频网站| 别揉我奶头 嗯啊视频| 国产探花极品一区二区| 国产不卡一卡二| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 99久久久亚洲精品蜜臀av| 国产私拍福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 三级毛片av免费| 亚洲男人的天堂狠狠| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| 欧美区成人在线视频| ponron亚洲| 香蕉av资源在线| 高清日韩中文字幕在线| 国产伦一二天堂av在线观看| 精品久久久久久,| 国产精品久久久久久精品电影| 午夜福利18| 国产老妇女一区| 欧美+亚洲+日韩+国产| 精品久久久久久成人av| 91精品国产九色| 日本黄色片子视频| 毛片一级片免费看久久久久 | 国产精品1区2区在线观看.| 两性午夜刺激爽爽歪歪视频在线观看| 91狼人影院| 国产亚洲精品综合一区在线观看| 亚洲国产精品合色在线| 日韩国内少妇激情av| 国产毛片a区久久久久| 成人永久免费在线观看视频| 九九在线视频观看精品| 色综合色国产| 亚洲真实伦在线观看| 亚洲真实伦在线观看| av在线天堂中文字幕| 成人无遮挡网站| 精品无人区乱码1区二区| 乱码一卡2卡4卡精品| 特级一级黄色大片| 中文字幕久久专区| 可以在线观看的亚洲视频| 亚洲熟妇中文字幕五十中出| 国产精品无大码| 午夜福利在线在线| 在线观看av片永久免费下载| 国语自产精品视频在线第100页| 亚洲午夜理论影院| 黄色一级大片看看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一区二区三区不卡| 国产三级中文精品| 99热网站在线观看| 欧美日韩乱码在线| 麻豆国产av国片精品| 成人综合一区亚洲| 一级黄色大片毛片| 免费在线观看影片大全网站| 亚洲av日韩精品久久久久久密| 可以在线观看的亚洲视频| 观看免费一级毛片| 免费在线观看影片大全网站| 99在线人妻在线中文字幕| 丝袜美腿在线中文| 亚洲av成人精品一区久久| 九九在线视频观看精品| 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 亚洲av免费高清在线观看| 成人一区二区视频在线观看| 久久久午夜欧美精品| 国产精品一及| 成人性生交大片免费视频hd| 内射极品少妇av片p| 午夜福利在线在线| 欧美日韩中文字幕国产精品一区二区三区| 蜜桃亚洲精品一区二区三区| 欧美绝顶高潮抽搐喷水| 12—13女人毛片做爰片一| 少妇的逼好多水| 日本免费a在线| 给我免费播放毛片高清在线观看| 国产精品人妻久久久久久| 九九在线视频观看精品| 午夜福利18| 免费大片18禁| 久久九九热精品免费| 成人欧美大片| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影| 日韩高清综合在线| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产 一区精品| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区| 亚洲专区国产一区二区| 精品一区二区免费观看| 亚洲黑人精品在线| 久久人妻av系列| 内射极品少妇av片p| 男女做爰动态图高潮gif福利片| 我要看日韩黄色一级片| 老司机福利观看| 欧美+日韩+精品| 一进一出抽搐gif免费好疼| 黄色视频,在线免费观看| 久久久国产成人免费| 日韩一区二区视频免费看| 99视频精品全部免费 在线| 男人舔女人下体高潮全视频| 91在线精品国自产拍蜜月| 亚洲一区高清亚洲精品| 中文字幕av在线有码专区| 欧美日本亚洲视频在线播放| 偷拍熟女少妇极品色| 亚洲欧美清纯卡通| 波多野结衣巨乳人妻| 看十八女毛片水多多多| 色综合站精品国产| 午夜激情欧美在线| 99久久九九国产精品国产免费| av在线蜜桃| 在线观看一区二区三区| 久久九九热精品免费| 精品久久久久久久久久久久久| 久久精品91蜜桃| eeuss影院久久| 哪里可以看免费的av片| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 久久香蕉精品热| 国产精品日韩av在线免费观看| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| АⅤ资源中文在线天堂| 最近视频中文字幕2019在线8| 午夜福利视频1000在线观看| 色av中文字幕| xxxwww97欧美| 免费黄网站久久成人精品| 欧美极品一区二区三区四区| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式| 国产成人a区在线观看| 精品久久久久久成人av| 亚洲精品456在线播放app | 中文字幕免费在线视频6| 别揉我奶头~嗯~啊~动态视频| 一本久久中文字幕| 亚洲av不卡在线观看| 别揉我奶头 嗯啊视频| 精品久久久久久久久久久久久| 老女人水多毛片| 99热只有精品国产| 婷婷精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 日韩精品有码人妻一区| 一区二区三区高清视频在线| h日本视频在线播放| 国产色爽女视频免费观看| 极品教师在线视频| 麻豆国产av国片精品| 免费搜索国产男女视频| 最近中文字幕高清免费大全6 | 中文在线观看免费www的网站| 国产成人aa在线观看| 国产欧美日韩一区二区精品| 久久久久久大精品| 久久久久久久久久黄片| 精品一区二区免费观看| 欧美bdsm另类| 1000部很黄的大片| 老司机深夜福利视频在线观看| 波多野结衣巨乳人妻| 看片在线看免费视频| 日本在线视频免费播放| 亚洲欧美日韩无卡精品| 国产精品久久久久久久电影| 我的老师免费观看完整版| 亚洲成人免费电影在线观看| 日韩欧美精品v在线| 日本五十路高清| 人人妻,人人澡人人爽秒播| 婷婷精品国产亚洲av| 国产精品电影一区二区三区| 干丝袜人妻中文字幕| 久久久久国内视频| 有码 亚洲区| 男女下面进入的视频免费午夜| 亚洲一区二区三区色噜噜| 欧美+日韩+精品| 亚洲第一电影网av| 久久久国产成人免费| 最近视频中文字幕2019在线8| 久久精品国产亚洲av香蕉五月| 久久久久久九九精品二区国产| 国产免费男女视频| 老女人水多毛片| 国产中年淑女户外野战色| 超碰av人人做人人爽久久| eeuss影院久久| 亚洲第一区二区三区不卡| 久久久久久久亚洲中文字幕| 国产麻豆成人av免费视频| 丰满人妻一区二区三区视频av| 亚洲欧美日韩东京热| 午夜久久久久精精品| 热99re8久久精品国产| 天美传媒精品一区二区| 少妇被粗大猛烈的视频| 久久中文看片网| 网址你懂的国产日韩在线| 免费观看精品视频网站| 亚洲一区高清亚洲精品| 禁无遮挡网站| 久久久久久久午夜电影| 色噜噜av男人的天堂激情| 成人av一区二区三区在线看| netflix在线观看网站| 老女人水多毛片| 成人鲁丝片一二三区免费| 日本欧美国产在线视频| 听说在线观看完整版免费高清| 国产精品国产三级国产av玫瑰| 日本免费一区二区三区高清不卡| av天堂中文字幕网| 亚洲三级黄色毛片| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人午夜福利视频| 日韩av在线大香蕉| 九九热线精品视视频播放| 久久精品国产亚洲av香蕉五月| 亚洲真实伦在线观看| 一进一出好大好爽视频| 舔av片在线| 日韩欧美免费精品| 久久久久久久精品吃奶| 亚洲四区av| 午夜福利成人在线免费观看| 免费在线观看日本一区| 内射极品少妇av片p| 特级一级黄色大片| 国产视频一区二区在线看| av在线蜜桃| av中文乱码字幕在线| 色噜噜av男人的天堂激情| 综合色av麻豆| 久久午夜福利片| 国产成人av教育| 亚洲国产精品久久男人天堂| 人人妻人人看人人澡| 可以在线观看毛片的网站| 亚洲经典国产精华液单| 日日啪夜夜撸| 他把我摸到了高潮在线观看| 嫩草影院精品99| 99riav亚洲国产免费| 女人被狂操c到高潮| 精品久久久噜噜| 国产毛片a区久久久久| 两个人的视频大全免费| www.色视频.com| 少妇裸体淫交视频免费看高清| 国产成人影院久久av| 最新在线观看一区二区三区| 久久人妻av系列| 亚洲欧美日韩东京热| 97碰自拍视频| 美女黄网站色视频| 欧美zozozo另类| 午夜激情福利司机影院| 亚洲久久久久久中文字幕| 天堂av国产一区二区熟女人妻| 免费看光身美女| 国产一级毛片七仙女欲春2| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 国产亚洲精品久久久com| 国产成人a区在线观看| 看免费成人av毛片| 在线观看av片永久免费下载| 亚洲一级一片aⅴ在线观看| 亚洲七黄色美女视频| 乱系列少妇在线播放| 精品久久久久久成人av| 国产伦在线观看视频一区| ponron亚洲| 亚洲一级一片aⅴ在线观看| 狠狠狠狠99中文字幕| bbb黄色大片| 国产色爽女视频免费观看| 少妇高潮的动态图| 自拍偷自拍亚洲精品老妇| 国产男人的电影天堂91| 午夜免费激情av| 麻豆av噜噜一区二区三区| 久久久精品大字幕| 熟女电影av网| 久久亚洲精品不卡| 欧美在线一区亚洲| xxxwww97欧美| 日日摸夜夜添夜夜添小说| 欧美人与善性xxx| 97碰自拍视频| 国产欧美日韩精品亚洲av| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 精品一区二区三区人妻视频| 深夜精品福利| 精品欧美国产一区二区三| 国产av一区在线观看免费| 国产精品国产高清国产av| 中文字幕av成人在线电影| 97超视频在线观看视频| 欧美精品国产亚洲| 国国产精品蜜臀av免费| 久久99热这里只有精品18| 国产精品一及| 亚洲国产精品合色在线| 五月伊人婷婷丁香| 18禁在线播放成人免费| 国产真实乱freesex| 老师上课跳d突然被开到最大视频| 赤兔流量卡办理| 日韩欧美 国产精品| 我的女老师完整版在线观看| 亚洲精品影视一区二区三区av| aaaaa片日本免费| 赤兔流量卡办理| 91久久精品电影网| 在线观看一区二区三区| 亚洲七黄色美女视频| 99久久精品一区二区三区| 日本色播在线视频| 一进一出抽搐动态| 欧美三级亚洲精品| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 亚洲综合色惰| 在线看三级毛片| 国产精品久久久久久久电影| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 国产高清视频在线观看网站| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 国产午夜精品论理片| 97超视频在线观看视频| 精品久久久久久久久久免费视频| 黄片wwwwww| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 一a级毛片在线观看| 热99re8久久精品国产| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 国产午夜精品论理片| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 日本 av在线| 在线免费十八禁| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| 欧美潮喷喷水| 亚洲综合色惰| 美女 人体艺术 gogo| 日本五十路高清| 亚洲四区av| 亚洲色图av天堂| 日本 欧美在线| 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 干丝袜人妻中文字幕| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 欧美精品国产亚洲| 精品久久久久久成人av| 亚洲一级一片aⅴ在线观看| 成人亚洲精品av一区二区| 91久久精品电影网| 久久久色成人| 永久网站在线| 国产麻豆成人av免费视频| 亚洲成人免费电影在线观看| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 男女那种视频在线观看| 三级国产精品欧美在线观看| 国产精品美女特级片免费视频播放器| 国产老妇女一区| 18禁在线播放成人免费| 看免费成人av毛片| 噜噜噜噜噜久久久久久91| 级片在线观看| 精品久久久久久久久av| 最近最新中文字幕大全电影3| 色在线成人网| 亚洲成a人片在线一区二区| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播放欧美日韩| 欧美激情在线99| 色综合婷婷激情| 久久99热这里只有精品18| 最新在线观看一区二区三区| 日本色播在线视频| 免费看av在线观看网站| 精品一区二区三区人妻视频| 一级黄片播放器| 我的老师免费观看完整版| 亚洲五月天丁香| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 99久久无色码亚洲精品果冻| 成人性生交大片免费视频hd| 国产成人a区在线观看| 老熟妇仑乱视频hdxx| 精品一区二区免费观看| 亚洲黑人精品在线| 男人狂女人下面高潮的视频| 欧美高清成人免费视频www| 亚洲最大成人中文| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 久久久久久久精品吃奶| 亚洲三级黄色毛片| 国产精品无大码| 免费观看的影片在线观看| 窝窝影院91人妻| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 成人av一区二区三区在线看| 免费不卡的大黄色大毛片视频在线观看 | 欧美黑人巨大hd| 如何舔出高潮| 99热精品在线国产| 欧美不卡视频在线免费观看| 天天一区二区日本电影三级| 此物有八面人人有两片| 精品一区二区免费观看| 久久精品影院6| 久久久色成人| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 欧美黑人巨大hd| 日日摸夜夜添夜夜添小说| 午夜a级毛片| 午夜老司机福利剧场| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 69av精品久久久久久| bbb黄色大片| 精品福利观看| 国产一区二区亚洲精品在线观看| 99riav亚洲国产免费| 中文字幕高清在线视频| 日韩欧美三级三区| 久9热在线精品视频| 亚洲精华国产精华液的使用体验 | 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 乱系列少妇在线播放| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| 亚洲av中文字字幕乱码综合| 少妇的逼好多水| 老司机福利观看| 午夜福利高清视频| 久久精品综合一区二区三区| 精品日产1卡2卡| 国产大屁股一区二区在线视频| 免费在线观看影片大全网站| 久久久久久久久久成人| 国产蜜桃级精品一区二区三区| 日韩 亚洲 欧美在线| 国产精品亚洲美女久久久| 亚洲精品色激情综合| 亚洲欧美激情综合另类| 一本精品99久久精品77| 色综合亚洲欧美另类图片| 国内精品久久久久久久电影| 亚洲国产日韩欧美精品在线观看| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 久久久久久久久久久丰满 | 国产蜜桃级精品一区二区三区| 男女边吃奶边做爰视频| 日本爱情动作片www.在线观看 | 国产精品,欧美在线| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 国产精品,欧美在线| 性欧美人与动物交配| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 非洲黑人性xxxx精品又粗又长| 精品福利观看| 嫩草影院入口| 国产毛片a区久久久久| 欧美成人性av电影在线观看| 成年版毛片免费区| 国产美女午夜福利| 亚洲专区中文字幕在线| 九九爱精品视频在线观看| 精品人妻1区二区| 在线观看午夜福利视频| 欧美又色又爽又黄视频| 两人在一起打扑克的视频| 男女啪啪激烈高潮av片| 国产久久久一区二区三区| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 窝窝影院91人妻| or卡值多少钱| 国产黄片美女视频| 欧美在线一区亚洲| 在线a可以看的网站| 一区二区三区四区激情视频 | av天堂在线播放| 午夜精品在线福利| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 99国产极品粉嫩在线观看| 国产成人av教育| 一进一出抽搐gif免费好疼| 一卡2卡三卡四卡精品乱码亚洲| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 99久久中文字幕三级久久日本| 国产成人一区二区在线| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 男女啪啪激烈高潮av片| 国产麻豆成人av免费视频| 91av网一区二区| 婷婷丁香在线五月| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 亚洲国产精品sss在线观看| 美女被艹到高潮喷水动态| 久久亚洲精品不卡| av在线亚洲专区| 免费大片18禁| 1000部很黄的大片| 免费观看的影片在线观看| 在线观看一区二区三区| 国产精品永久免费网站| 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 亚洲欧美日韩卡通动漫| av天堂中文字幕网| 成年女人永久免费观看视频| 一级黄色大片毛片| 亚洲精华国产精华精| 网址你懂的国产日韩在线| 欧美丝袜亚洲另类 | 国产av不卡久久| 亚洲在线观看片|