• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QSAR Studies on the Inhibitory Activityof Levofloxacin-thiadiazole HDACi Conjugates to Histone Deacetylases①

    2018-12-13 09:41:08WANGChaoFENGChangJun
    結(jié)構(gòu)化學(xué) 2018年11期

    WANG Chao FENG Chang-Jun

    ?

    QSAR Studies on the Inhibitory Activityof Levofloxacin-thiadiazole HDACi Conjugates to Histone Deacetylases①

    WANG Chao FENG Chang-Jun②

    (221018)

    A molecular electronegativity distance vector (t)based on 13 atomic types has been used to describe the structures of 19 conjugates (LHCc)of levofloxacin-thiadiazole HDACinhibitor (HDACi) and related inhibitory activities (pi,= 1, 2, 6) of LHCc against histone deacetylases (HDACs, such as HDAC1, HDAC2 and HDAC6). The quantitative structure-activity relationships (QSAR) were established by using leaps-and-bounds regression analysis for the inhibitory activities (pi) of 19 above compounds to HDAC1, HDAC2 and HDAC6 along witht. The correlation coefficients (2) and the leave-one-out (LOO) cross validationcv2for the p1, p2and p6models were 0.976 and 0.949; 0.985 and 0.977; 0.976 and 0.932, respectively. The QSAR models had favorable correlations, as well as robustness and good prediction capability by2,,cv2,ICITandIFtests. Validated by using 3876 training sets, the models have good external prediction ability. The results indicate that the molecular structural units: –CH– (= 1, 2), –NH2, –OH, =O, –O– and –S–are the main factors which can affect the inhibitory activity of p1, p2as well as p6bioactivities of these compounds directly. Accordingly, the main interactions between HDACs inhibitor and HDACs are hydrophobic interaction, hydrogen bond, and coordination with Zn2+to form compounds, which is consistent with the results in reports.

    levofloxacin-thiadiazole HDACi conjugates (LHCc), histone deacetylases (HDACs), inhibitory activity (pi,= 1, 2, 6), molecular electronegativity distance vector, quantitative structure-activity relationship (QSAR);

    1 INTRODUCTION

    A lot of labor and financial forces are required for experimentally determining the biological activities for all compounds, while the quantitative structure- activity relationship (QSAR) is effective. The mathematical relationship between the structures of set compounds and their biological activities was studied by QSARmodels[1-8]which can estimate and predict the relative properties (such as toxicity, mutagenicity, carcinogenicity,) of other com- pounds, or to explore the possible mechanisms of microbial structures on the biological activity at the molecular levels.

    It is crucial for QSAR researchers to establish descriptors for molecular structures, like the establi- shment of two-dimensional (2) descriptors. Topolo- gical indexes are 2descriptors encoding the molecular structures in digital form, such as mole- cular size, shape, branching, hetero-atoms, and multiple bonds. They could be directly derived from molecular structures, independent of the experi- mental measurements. Therefore, topological indexes are popular for the development of reliable QSAR models. Molecular connectivity indexes put forward by Randic[9]and developed by Kier and Hall[10]are of the most widely used topological indexes. Recently, a novel molecular electronegativity dis- tance vector (t)[11-13]based on 2topologies and 13 atomic types has been reported, which further leads to the successful establishment of QSAR models between multiple (t) and organic compounds.

    Histone deacetylases (HDACs) are the key enzyme families that regulate gene transcription and expression. Over expression of HDACs in cancer cells leads to excessive deacetylation of histones in transcription and expression, and enhances the binding of histones to DNA, leading to tumori- genesis[14]. Especially, these three subtypes of HDAC1, HDAC2 and HDAC6 are among the mostly studied gene transcription and expression subsets[15]. Histone deacetylase inhibitors (HDACi) can inhibit the activity of HDACs in tumor cells, increase the degree of acetylation of histamine N-terminal lysine residues in tumor cells and reactivate inhibited tumor suppressor genes, thus leading to the tumor cell growth retardation, differentiation and apoptosis.

    Therefore, HDACs is a new target of anti-tumor research in recent years, and HDACi has become a hot research topic of anti-tumor drugs both at home and abroad. Eighteen types of new, efficient and low toxicic levofloxacin-thiadiazole HDACi conjugates (referred to as LHCc) were designed and synthesized from levofloxacin by Li Hui and others[16]. The results showed that these new conjugates displayed potent inhibitory activity against HDAC1, HDAC2 and HDAC6. Specifically, conjugate 10 exhibited the highest activities, which was more potent than SAHA (Vorinostat). Therefore, it is important to study the levofloxacin-HDACi conjugation by QSAR method.

    Based on the electronegativity distance vector (t) of Liu Shushen.[11-13], the robust QSAR models of LHCc biological activity[16]have been established by leaps-and-Bounds regressionto estimate and predict the inhibitory activity of LHCc and reveal the microstructure that affects its inhibitory activity at the molecular level. It provides theoretical reference for a reasonable design and screening of novel and highly effective lead compounds for LHCc.

    2 MATERIALS AND METHODS

    2.1 Studied compounds and their biological activity data

    The compounds studied herein are a series of HDACs inhibitors with HDAC1, HDAC2 and HDAC6 inhibitory activity. The matrix structures[16]of these compounds are shown in Fig. 1. Their bioactivity data for HDACs were50, and drug concentrations resulted in 50% inhibition of HDACs inmmol·dm-3. The HDAC1, HDAC2 and HDAC6 inhibitory activities (50) were expressed as1,2and6, respectively. The biological activities (i,= 1, 2, 6) of 18 HDACs inhibitors and SAHA are listed in Table 1[16].

    Fig. 1. Basic structure of levofloxacin-HDACi conjugates

    Table 1. InhibitoryActivities (IC50) and Electronegativity Distance Vector (Mt) of Levofloxacin-HDACi Conjugates

    2. 2 Molecular descriptors

    The molecular structure information of the com- pounds is prerequisite for establishing a good struc- ture-activity relationship. At present, the two-dimen- sional descriptors used in structure characterization of QSAR are molecular holography, topological index and so on. They have been widely applied in environmental science, life sciences, drug design and so forth. In this paper, the molecular electro- negativity distance vector descriptor (t)[11-13]based on 13 atomic types is used to characterize the molecular structures of different classes of organic compounds. The calculation includes the following three steps.

    First, the intrinsic attribute () of non-hydrogen atoms in the molecule is defined:

    = (/4)0.5[(2/)2δ+ 1)]/(1)

    whereis the number of valence electrons,is the principal quantum number for the valence shell of the non-hydrogen atom, andνandare the molecular connectivityvalues given as follows:

    =?,v=+?(2)

    whereandare respectively the number of electrons inandorbitals, andis the number of hydrogen atoms bound to the non-hydrogen atom. Considering the influence of other non-hydrogen atoms on themselves, the relative electronegativitywfor atom w is defined as below:

    w=w+ ?w, ?w= ∑(w?u)/wu2(3)

    The symbolwuis the shortest graph distance between theth andth atoms,the number of chemical bonds. In the same molecule, electrone- gativity distance vectorcan be calculated fromthe interaction between the relative electricityiof the non-hydrogen atoms.

    t=jk= ∑(w×u)/wu2, 1≤,≤13 (4)

    whereoris the atomic type of the atom w or u in the molecule, and w and u are the coding numbers or series numbers of two non-hydrogen atoms in the molecule, respectively.

    In this paper, there are only 1, 2, 3, 5, 6, 7, 9, 10 and 13 species of atoms in the molecules. They interact with each other (including the interactions among themselves). Theoretically, 45 kinds of elec- trical distance vectors can be formed. Since not all atomic types exist, some interaction types do not occur. Only 41 electrical distance vectors are not all zero. Parts of the electrical distance vectors are listed in Table 1. The data of14,17,21,77and78descriptors in Table 1 do not show exactly the same values of the two molecules for the 19 compounds. That is, the molecular structure difference has a unique characterization, showing good structural selectivity.

    2. 3 Statistical regression analysis

    For QSAR derivation,50values act as the dependent variables, and electronegativity distance vectordescriptors as the independent variables. The regression analyses are carried out by using multiple linear regression (MLR), partial least-squares (PLS), and leaps-and-bounds regression (LBR) program. By using Fischer statistics (-tests) to eliminate insignificant descriptors when entering a new one, stepwise regression can identify the most important descriptors influencingthe inhibitory activities of the title compounds.

    In model building, validation is an important step by which the reliability and accuracy of good models are established.The commonly used statistical verifi- cation indicators are as follows.

    The correlation between variables in the model was estimated by the variance inflation factor (IF)[17]value.IFis defined below:

    IF= 1/(1 –2) (5)

    in whichis the correlation coefficient of multiple regressions between one variable and the others in the equation.IF= 1.0 suggests no self-correlation among each variable; ifIFranges from 1.0 to 5.0,there is no obvious autocorrelation between variables, and the model is stable; whenIFis larger than 5.0, the regression equation is unstable and rechecking the variables’ correlation coefficient is necessary.

    Another indicator used to evaluate the quality of model is the standard deviation (D). The model is good and the prediction accuracy is acceptable when the ratio of the standard deviation to the value range (the samples between the maximum and minimum values) is less than 10%[18].

    The statistic significance of the model was vali- dated by-tests. If the absolute values offor all variables in the validated model are larger than the standard-value (α/2) at one confidence level, the model passes the-tests and has obvious statistic significance. We also applied Akaike’s information criterion (IC; Eq. 6; the model that produces the minimumICvalue is considered potentially to be the most useful) and Kubinyi function (IT; Eq. 7; the best model will present the highest value of this function)[19, 20]to determine if a variable should be included in the model. That is to say, if Akaike’s information criterion decreases when adding an additional variable and the Kubinyi function increases, the introduction of this new variable is justi?ed.

    whereSSis the residual sum of squares,the number of compounds included in the model,the number of variables included in the model, and2the square of the correlation coefficient.

    3 RESULTS AND DISCUSSION

    According to the balance principle of physical chemistry, the free energy change and concentration is in logarithm relation with a logarithmic rela- tionship[21]. Therefore, the inhibitory activity (i)[16]of HDACs inhibitors to HDAC1, HDAC2 and HDAC6 is taken negative logarithm (pi= –logi)for modeling. The pi(= 1, 2, 6) is shown in Table 2.

    Table 2. Inhibitory Activities (pHi) of HDACs Inhibitors to HDAC1, HDAC2 and HDAC6

    3.1 QSAR equation of pHi

    The electronegativity distance vector (t) and inhibitory activities (pi) of HDACs inhibitors were input into MINITAB14.0 statistical analysis software, and the leaps-and-bounds regression was used to select the best variable combinations and establish the best QSAR models. The results are shown in Tables 3 to 5, where2is the square of the correla- tion coefficient,adj2is the square of the adjusted correlation coefficient,cv2is the LOO cross-valida-tioncorrelation coefficient,Dis the standard devia- tion of the regression,CVis the standard deviation of the regression of LOO, andis the Fisher ratio.ICis the Akaike’s information criterion andITis the Kubinyi function.The QSAR models for p1andtare shown in Table 3.

    With increasing the number of independent varia- bles in the model, in addition to2, all other statis- tical indicators show turning points in the three- variable equation, among whichadj2,cv2,IT,are the largest andIC,D,CVare the smallest, with the results summarized in Table 3. Therefore, the best QSAR model of the three variables is chosen:

    p1= 12.061(±0.311) – 0.086(±0.006)14– 0.461(±0.021)77+ 2.900(±0.455)78(8)

    = 19,2= 0.976adj2=0.971,= 201.833,

    D=0.128 (Modeling);

    cv2= 0.949,CV=0.187(LOO Cross-validation)

    The QSAR models for p2andtare shown in Table 4. With the increase of the number of independent variables in the model, in addition to2andadj2, all other statistical indicators show turning points in the three-variable equation, among whichcv2,IT,are the largest andIC,D,CVare the smallest. The results are listed in Table 4. Thus, we choose the best QSAR model of three variables as below:

    p2= 12.243(±0.347) – 0.346(±0.028)17– 0.149(±0.022)21– 0.584(±0.021)77(9)

    = 19,2= 0.985adj2=0.982,= 319.745,

    D=0.139 (Modeling);

    cv2= 0.977,CV=0.171 (LOO Cross-validation)

    The QSAR models for p6andtare shown in Table 5. Because the change rules of all statistical indicators shown in Table 5 are the same as those in Table 3, the best QSAR model of the three variables is chosen:

    p6= 12.463(±0.323) – 0.092(±0.006)14– 0.485(±0.022)77+ 3.000(±0.306)78(10)

    = 19,2= 0.976adj2=0.971,= 200.751,D=0.133 (Modeling);cv2= 0.932,CV=0.224

    (LOO Cross-validation)

    Table 3. Results of Electronegativity Distance Vector Descriptorsand Anti-tumor Activities pH1 with Leaps-and-bounds Regression

    Table 4. Results of Mtand pH2 with Leaps-and-bounds Regression

    Table 5. Results of Mtand pH6 with Leaps-and-bounds Regression

    3.2 Validation of the QSAR models

    QSAR model fitting ability is usually used to verify the correlationcoefficient (2) to be verified. When the confidence level is 95%, the thresholdvalue (0.05(3,15)) of Fisher ratio () for models (8), (9) and (10) is 3.29. Substituting0.05(3,15) = 3.29into the formula[22]between2and:

    α2=α((–– 1)α)-1(11)

    whereα2andαare the thresholdvalues of2and, respectively.α2obtainedis 0.397, and the critical value (0.05(3,15)2) of correlation coefficient for the above models is only 0.232[22]. They are significantly smaller than2of models (8), (9) and (10), which are 0.976, 0.985 and 0.976, respectively, indicating that the models have good robustness and prediction ability.

    Using QSAR equations (8), (9) and (10), the pre- dicted values of inhibitory activity p1, p2, and p6(see p1(cal.), p2(cal.) and p6(cal.) in Table 2) are given respectively, which are very close to the corresponding experimental values (see p1(exp.), p2(exp.), and p6(exp.) in Table 2).

    Where the values in models (8) to (10) with symbol ‘‘±’’ refer to the standard deviation, corres- ponding to the regression coefficient. All standarddeviationsare less than1/2 of the regression coefficients, indicating that the model is stable. The standard regression coefficients (R) andvalue of three independent variables in model (8) are listed in Table 6. When the confidence level is 95%, the standardvalue (α/2) of the models is 2.131. From Table 6, we can see that the absolute value ofof each independent variable in model (8) is bigger than the standardt/2value, which proves the credibility of the models. In the meantime, the absolute values ofof77,78and14decrease in turn, which is consistent with the law ofR, indicating that77has the strongest effect on p1. For models (9) and (10), a similar rule is obtained from Table 6:77is the strongest factor affecting the inhibitory activity. As shown in Table 6, theIFvalues of the variables in models (8)~(10) are less than 5.0, indicating that all the models are statistically significant with good stability.

    Table 6. SRand t Values of in Dependent Variables in Models (8) to (10)

    The inhibitory activity (p1) range of the samples between the maximum and minimum values is 2.30 (7.51~5.21 = 2.30). The ratio of the standard deviation (D= 0.128) to 2.30 is 5.57%. The standard deviation ratios for p2and p6are 4.51% and 5.36%, respectively. They are less than 10%, indica- ting that the model has acceptable predictive accuracy.

    In order to further validate the external prediction capabilities of the QSAR model, the samples are usually divided into the training and test sets, and the number of compounds in the two sets is generally 4:1. The biological activity of the test set was predicted by the QSAR model of the training set. In this paper, 19 LHCcs were divided into 15 compounds in the training set and 4 compounds in the test set. 3876 training and test sets were formed according to the arrangement rules. The traditionalcorrelation coefficient (2) and cross validation correlation coefficient (cv-42) of the leave-four-out (LFO) of these training sets are calculated using the MATLAB program. The correlation coefficient average of the ternary equation for the 3876 p1training sets is 0.977 and the correspondingcv-42= 0.946. The correlation coefficient average of ternary equations for the 3876 p2training sets is 0.985, corresponding tocv-42= 0.976; The correlation coefficient average of ternary equations for the 3876 p6training sets is 0.977 and the correspondingcv-42= 0.933. Their correlation coefficients andcv-42are close to those of models (8)~(10).

    After eliminating compounds 4, 8, 13 and 18 from the test set, the remaining is the training set for the establishment of the following models:

    p1= 12.271(±0.357) – 0.091(±0.008)14– 0.479(±0.024)77+ 2.939(±0.325)78(12)

    = 15,2= 0.980,adj2=0.975,=180.675,

    D=0.130

    p2= 12.489(±0.414) – 0.336(±0.031)17– 0.163(±0.026)21– 0.595(±0.023)77(13)

    = 15,2= 0.987,adj2=0.983,= 268.301,

    D=0.144

    p6= 12.764(±0.350) – 0.099(±0.007)14– 0.507(±0.024)77+ 3.097(±0.318)78(14)

    = 15,2= 0.982adj2=0.977,= 203.334,

    D=0.128

    The calculated and predicted values given by models (12)~(14) are in good agreement with the corresponding experimental values (Figs. 2 to 4). For the 4, 8, 13 and 18 compounds, the predicted relative error rates given by model (12) are 2.7%, 2.4%, –1.5% and 1.5%, respectively; 3.4%, –1.6%, –2.4%, –1.8% for model (13); and 3.2%, –3.2%, –0.8%, 2.1% for model (14); all are within the biometric deter- mination error ranges. It is shown that models (8)~(10) are highly robust with significant correlation.The models are not only for estimating and predic- ting the inhibitory activity of the title compounds, but also for explaining the inhibitory mechanism of the above compounds.

    Fig. 2. Relationship between experimental and calculated inhibitoryactivities of the title compounds toHDAC1

    Fig. 3. Relationship between experimental and Calculated inhibitory activities of the title compounds to HDAC2

    Fig. 4. Relationship between experimental and calculated inhibitory activities of the title compounds to HDAC6

    3.3 Analysis of the QSAR equation

    Li Hui.[16]chose the molecular docking of the strongest inhibitory activity between conjugate10 with HDAC1 and HDAC6, and the main interactions between HDACs inhibitor and HDACs are hydrophobic interaction, hydrogen bond, and coordination with Zn2+to form compounds.

    According to the theory of molecular electrone- gativity distance vector, the electrical distance vector14in the models reflects the interaction of the second carbon atom (-CH-,= 1, 2) with the second carbon atom, and17reflects the interaction of the second type of carbon atom with the five groups of nitrogen atom (-NH2).21reflects the interaction between the ninth kind of oxygen atom (=O, -OH) and the second carbon atom,77reflects the interaction between the ninth kind of oxygen atoms themselves, and78reflects the interaction between the ninth kind of oxygen atom and the tenth kind of oxygen atom (-O-) in ether (-O-)) or sulfur atom (-S-) in thioether. The five electronegativity-distance vectors imply the structure information of six non- hydrogen atoms, respectively.

    Wherein-CH- is a non-polar group with hydro- phobicity, while the remaining five classes are high charge polar groups capable of forming hydrogen bonds, and the lone electronic pairs can form coordination compounds with Zn2+.

    In addition, the determination coefficient2is also called the reduction error ratio.2= 0.976 for model (8) indicatesthat14,77,78and constant items show 97.6% of the factors affecting the anti-tumor activities (p1) of HDACs inhibitors to HDAC1, and only 2.4% is random factors;2= 0.985 of model (9) means that17,21,77and constant items implies 98.5% of the factors affecting the inhibitory activities (p2) of HDACs inhibitors to HDAC2, and only 1.5% is random factors;2= 0.976 in model (10) suggest that14,77,78and constant items show 97.6% of the factors affecting the inhibitory activities (p6) of HDACs inhibitors to HDAC6, and only 2.4% is the random factors; which further prove the correctness of the models.

    4 CONCLUSION

    The optimal QSAR models of three variablesbetween the inhibitory activity (p1, p2and p6) and molecular electronegativity distance vector (t) of HDACi to HDACs was constructed by using the leaps-and-bounds regression method. The QSAR models show good correlation, as well as robustness and prediction ability by statistical indicators:2,cv2,R,IF,ITandICtests. To successfully establish QSAR models of three inhibitory activities is rarely seen in QSAR studies by using one class of topological indices. According to the electrical distance vector entering the three models, the main molecular structural units that affect their inhibitory activity p1, p2and p6may be-CH- (= 1, 2), -NH2, -OH, =O, -O- and -S-. The interactions between HDACsinhibitor molecules and HDACs are mainly the hydrophobic interaction, hydrogen bond, and coordination with Zn2+to form compounds,which is consistent with the molecular docking results of reference 16.77is the most important factor affecting the inhibitory activity. =O and -OH become the most important structural groups that affect the inhibitory activity. Hydrogen bond and Zn2+coordination compounds formed between LHCc and HDACs play a major role, greater than the hydrophobic interaction. According to above conclu- sions, it can be deduced that HDAC1, HDAC2 and HDAC6 have similar structures and belong to the histone deacetylase family.

    In summary, this study provides theoretical gui- dance for further design of novel and efficient HDACs inhibitors.

    (1) Feng, C. J.; Yang, W. H. Linear QSAR regression models for the prediction of bioconcentration factors of chloroanilines in fish by density functional theory.. 2014, 33, 830–834.

    (2) Feng, C. J. Theoretical studies on quantitative structure-activity relationship and structural modification for 3-substituted sulfur-5-

    (2-hydroxyphenyl)-4H-1,2,4-triazole compounds.2012, 70, 512–518.

    (3) Wang, C.; Feng, C. J. Atomic partition parameter, partition connectivity index and their applications.2002, 18, 792–796.

    (4) Shi, J. C.; Tu, W. T.; Luo, M.; Huang, C. S. Structural insight into the design on oleanolic acid derivatives as potent protein tyrosine phosphatase 1B inhibitors.2017, 36, 1063–1076.

    (5) Xiong, D.; Ma, Y. Z.; Zhao, Z. X.; Liu, Y. X.; Xiang, Y. Docking and 3D-QSAR analysis on a series of pyridone-based EZH2 inhibitors.2017, 36, 575–588.

    (6) Wang, C.; Feng, C. J. QSAR study of the action strength ofOMof phenyl-isopropyl-amine dopes using MLR and BP-ANN.2017, 36, 1720–1728.

    (7) Xiang, S. G.; Wang, J. Y.; Sun, X. Y. Quantum chemistry based computational study on the conformational population of a neodymium neodecanoate complex.2016, 35, 833–838.

    (8) Liao, L. M.; Li, J. F.; Lei, G. D. Structural characterization andKovats retention indices (RI) prediction for alkylbenzene compounds.2016, 57, 1627–1634.

    (9) Randic, M. On charmacterization of molecular branching.1975, 97, 6609–6615.

    (10) Kier, L. B.; Hall, L. H.. Research Studies Press, England 1986, p82.

    (11) Liu, S. S.; Yin, C. S.; Li, Z. L.; Cai, S. X. QSAR study of steroid benchmark and dipeptides based on MEDV-13.2001, 41,321–329.

    (12) Liu, S. S.; Yin, C. S.; Wang, L. S. Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors.2002, 42, 749–756.

    (13) Zhang, Y. H.; Xia, Z. N.; Qin, L. T.; Liu, S. S. Prediction of blood-brain partitioning: a model based on molecular electronegativity distance vector descriptors.2010, 29, 214–220.

    (14) Lai, M. J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T. K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis and biological evaluation of 1-arylsulfonyl-5- (N-hydroxyacrylamide) indoles as potent histone deacetylase inhibitors with antitumor activity in vivo.2012, 55, 3777?3791.

    (15) Tang, C.; Li, C. H.; Zhang, S. L.; Hu, Z. Y.; Jun, W.; Dong, C. N.; Huang, J.; Zhou, H. B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer.2015, 58, 4550?4572.

    (16) Li, H.; Han, X.; Li, D. W. Synthesis and anti-tumor activity of levofloxacin-thiadiazole histone deacetylase inhibitor conjugates.2017, 52, 582–591.

    (17) Wei, D. B.; Zhang, A. Q.; Wu, C. D.; Han, S. K.; Wang, L. S. Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected polychlorinated organic compounds.2001, 44, 1421–1428.

    (18) Sung-Sau, S.; Kaprlus, M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors.1999, 13, 243–258.

    (19) Urra, L. S.; Gonza′lez, M. P.; Teijeira, M. 2-autocorrelation descriptors for predicting cytotoxicity of naphthoquinone ester derivatives against oral human epidermoid carcinoma.2007, 15, 3565–3571.

    (20) Urra, L. S.; Gonza′lez, M. P.; Teijeira, M. QSAR studies about cytotoxicity of benzophenazines with dual inhibition toward both topoisomerases I and II: 3-MoRSE descriptors and statistical considerations about variable selection.2006, 14, 7347–7358.

    (21) Guo, Z. R.. Science Press, Beijing 2005, p20.

    (22) Liu, H. L.. Shanghai University of Finance and Economics Press, Shanghai 1995, p238, 431.

    ① This project was supported by theNational Natural Science Foundation of China (21473081, 21075138) and special fund of State Key Laboratory of Structure Chemistry (20160028)

    . Feng Chang-Jun, male, born in 1954, professor, majoring in quantitative structure-activity relationship. E-mail: fengcj@xzit.edu.cn

    12 April 2018;

    17 September 2018

    10.14102/j.cnki.0254-5861.2011-1827

    国产精品一区二区免费欧美| 国内精品久久久久精免费| 亚洲五月天丁香| 一个人观看的视频www高清免费观看| 成人午夜高清在线视频| а√天堂www在线а√下载| 夜夜爽天天搞| 在现免费观看毛片| bbb黄色大片| 精品无人区乱码1区二区| 九九爱精品视频在线观看| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 日日摸夜夜添夜夜添av毛片 | www.色视频.com| 噜噜噜噜噜久久久久久91| 日本 欧美在线| 一进一出抽搐动态| 91精品国产九色| 亚洲三级黄色毛片| 欧美日本视频| 一个人看视频在线观看www免费| 国产大屁股一区二区在线视频| 亚洲无线在线观看| 噜噜噜噜噜久久久久久91| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放| 日日干狠狠操夜夜爽| 舔av片在线| 搡老妇女老女人老熟妇| 日日干狠狠操夜夜爽| 国产成人影院久久av| 熟女人妻精品中文字幕| 午夜老司机福利剧场| 性色avwww在线观看| 亚洲成人久久爱视频| 亚洲一区高清亚洲精品| 精品久久久久久成人av| 十八禁国产超污无遮挡网站| 亚洲av中文字字幕乱码综合| 搞女人的毛片| 婷婷精品国产亚洲av| 免费观看在线日韩| 大型黄色视频在线免费观看| 久久亚洲精品不卡| 国产一区二区亚洲精品在线观看| 69av精品久久久久久| 久9热在线精品视频| 国产亚洲欧美98| 又爽又黄无遮挡网站| 黄色丝袜av网址大全| 国产高清激情床上av| 一级黄色大片毛片| 色哟哟哟哟哟哟| 亚洲 国产 在线| 国产乱人视频| 黄色配什么色好看| 亚洲av中文av极速乱 | 成年免费大片在线观看| 精品久久久噜噜| 久久久久免费精品人妻一区二区| 国产精品亚洲一级av第二区| 国产精品福利在线免费观看| 五月玫瑰六月丁香| 日本 欧美在线| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线观看网站| 亚洲性夜色夜夜综合| 欧美zozozo另类| 日韩 亚洲 欧美在线| 一级av片app| 99久久中文字幕三级久久日本| 两个人的视频大全免费| 亚洲中文字幕日韩| 国产三级在线视频| 精品午夜福利在线看| 日韩欧美免费精品| 免费观看人在逋| 亚洲精品一区av在线观看| 日本 av在线| 亚洲最大成人av| 丰满乱子伦码专区| 人妻夜夜爽99麻豆av| 变态另类成人亚洲欧美熟女| 精品人妻偷拍中文字幕| 久久久久久九九精品二区国产| 两性午夜刺激爽爽歪歪视频在线观看| 男人舔奶头视频| 少妇的逼好多水| 国产精华一区二区三区| 国产在视频线在精品| 国产白丝娇喘喷水9色精品| 国产真实伦视频高清在线观看 | 日本 欧美在线| 亚洲欧美日韩高清专用| 国产色爽女视频免费观看| 国语自产精品视频在线第100页| 国产一区二区三区av在线 | 国产色爽女视频免费观看| 中文资源天堂在线| 久久久久久久久久成人| 精品福利观看| 成年女人看的毛片在线观看| 国产精品无大码| 亚洲av免费在线观看| 亚洲性夜色夜夜综合| 精品欧美国产一区二区三| 国产单亲对白刺激| 国内精品久久久久精免费| 国内精品久久久久精免费| 一本久久中文字幕| 久99久视频精品免费| 成人亚洲精品av一区二区| 国产激情偷乱视频一区二区| 欧美日本视频| 欧美绝顶高潮抽搐喷水| 成人毛片a级毛片在线播放| av在线观看视频网站免费| 日本 av在线| 精品国产三级普通话版| 热99在线观看视频| 国产精品福利在线免费观看| 99久久精品热视频| 黄色视频,在线免费观看| 亚洲va在线va天堂va国产| 成人鲁丝片一二三区免费| 日韩大尺度精品在线看网址| 亚洲av二区三区四区| 最好的美女福利视频网| 天堂√8在线中文| 欧美成人a在线观看| 亚洲成a人片在线一区二区| 精品一区二区三区av网在线观看| 久久精品国产亚洲av涩爱 | 最近最新免费中文字幕在线| 在线看三级毛片| 在线播放国产精品三级| 亚洲午夜理论影院| 变态另类成人亚洲欧美熟女| 亚洲国产精品sss在线观看| 亚洲国产欧美人成| 中亚洲国语对白在线视频| 很黄的视频免费| 亚洲在线自拍视频| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 久久6这里有精品| 又爽又黄a免费视频| av在线蜜桃| 国产一区二区三区在线臀色熟女| 国产av一区在线观看免费| 国产一区二区三区视频了| or卡值多少钱| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 欧美日韩乱码在线| 大又大粗又爽又黄少妇毛片口| 精品人妻1区二区| 亚洲欧美日韩卡通动漫| 国产精品电影一区二区三区| 黄片wwwwww| 俺也久久电影网| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩卡通动漫| 精品一区二区三区av网在线观看| 婷婷色综合大香蕉| 能在线免费观看的黄片| 在线观看66精品国产| 精品久久久久久久久av| 久久精品国产亚洲av天美| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 精品久久久久久久久亚洲 | 午夜影院日韩av| 午夜福利在线观看吧| 国产精品电影一区二区三区| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 亚洲三级黄色毛片| 国产爱豆传媒在线观看| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 美女高潮的动态| 在线播放无遮挡| 欧美激情久久久久久爽电影| 大型黄色视频在线免费观看| 亚州av有码| 欧美成人a在线观看| 亚洲精品456在线播放app | 麻豆国产97在线/欧美| 欧美激情在线99| 国产精品久久久久久久久免| 搡老熟女国产l中国老女人| 国产精品综合久久久久久久免费| 波多野结衣高清作品| 欧美xxxx黑人xx丫x性爽| 精品日产1卡2卡| 午夜免费男女啪啪视频观看 | 色综合亚洲欧美另类图片| 简卡轻食公司| 国产老妇女一区| 国国产精品蜜臀av免费| av在线老鸭窝| 精品国产三级普通话版| 51国产日韩欧美| 亚洲经典国产精华液单| 深爱激情五月婷婷| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 成人av在线播放网站| 成人永久免费在线观看视频| 日韩欧美精品v在线| 亚洲熟妇中文字幕五十中出| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区 | 国产亚洲精品久久久com| 日韩欧美国产在线观看| 97碰自拍视频| 国产精品女同一区二区软件 | 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 99热网站在线观看| 简卡轻食公司| 人人妻人人看人人澡| 亚洲 国产 在线| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 伦理电影大哥的女人| 黄色女人牲交| 春色校园在线视频观看| netflix在线观看网站| 亚洲成人精品中文字幕电影| 亚洲av日韩精品久久久久久密| 韩国av在线不卡| 欧美潮喷喷水| 日本三级黄在线观看| 大又大粗又爽又黄少妇毛片口| 国产乱人视频| 国产精品自产拍在线观看55亚洲| 两人在一起打扑克的视频| 一级黄色大片毛片| 亚洲精华国产精华液的使用体验 | 国产色婷婷99| 国产爱豆传媒在线观看| 亚洲av日韩精品久久久久久密| 日本撒尿小便嘘嘘汇集6| 搞女人的毛片| av国产免费在线观看| 毛片一级片免费看久久久久 | 最近视频中文字幕2019在线8| 一区二区三区免费毛片| 最近最新中文字幕大全电影3| 999久久久精品免费观看国产| a级毛片a级免费在线| aaaaa片日本免费| 中文字幕人妻熟人妻熟丝袜美| 久久精品91蜜桃| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| 免费看光身美女| 免费电影在线观看免费观看| 在线免费十八禁| 国产伦精品一区二区三区四那| 91久久精品电影网| 久久久久久大精品| 欧美中文日本在线观看视频| 99久久九九国产精品国产免费| 99热网站在线观看| www.www免费av| 麻豆一二三区av精品| 村上凉子中文字幕在线| 日本爱情动作片www.在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 在线免费观看的www视频| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 久久人人精品亚洲av| 国产高清有码在线观看视频| 精品久久久久久成人av| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 1024手机看黄色片| 成人无遮挡网站| 久久精品国产亚洲av天美| 女同久久另类99精品国产91| 亚洲国产欧美人成| 久久久国产成人免费| 色综合婷婷激情| 中文资源天堂在线| 色综合婷婷激情| 午夜福利18| 国产黄色小视频在线观看| 久久草成人影院| 国产精品国产高清国产av| 国产男人的电影天堂91| 午夜福利在线观看吧| 好男人在线观看高清免费视频| 久久久久精品国产欧美久久久| 国产高潮美女av| 欧美精品国产亚洲| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观| 少妇猛男粗大的猛烈进出视频 | 国产伦在线观看视频一区| 精品久久久久久久久亚洲 | 欧美日韩黄片免| 男女边吃奶边做爰视频| 成人鲁丝片一二三区免费| 在线a可以看的网站| 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品乱码一区二三区的特点| 久久精品夜夜夜夜夜久久蜜豆| 国产精品嫩草影院av在线观看 | eeuss影院久久| 日本欧美国产在线视频| 中国美白少妇内射xxxbb| 99热网站在线观看| 一级黄片播放器| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 干丝袜人妻中文字幕| .国产精品久久| 天堂√8在线中文| 免费看av在线观看网站| 国产一区二区三区视频了| 男女之事视频高清在线观看| 国产色爽女视频免费观看| 午夜影院日韩av| 夜夜爽天天搞| 欧美潮喷喷水| 国产 一区精品| 成人午夜高清在线视频| av在线老鸭窝| 国产精品福利在线免费观看| 精品久久久久久久末码| 国产亚洲精品综合一区在线观看| 美女免费视频网站| 久久九九热精品免费| 日韩欧美在线乱码| 两个人的视频大全免费| 校园人妻丝袜中文字幕| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av在线| 一个人观看的视频www高清免费观看| 五月玫瑰六月丁香| 在线观看av片永久免费下载| 校园人妻丝袜中文字幕| 国产精品一区二区免费欧美| 日本黄大片高清| 男女之事视频高清在线观看| 一级av片app| 国产在线男女| 夜夜夜夜夜久久久久| 亚洲男人的天堂狠狠| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲av香蕉五月| 午夜精品一区二区三区免费看| 免费观看在线日韩| 日本免费a在线| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 亚洲av免费高清在线观看| 国产探花极品一区二区| 国产精品一及| 干丝袜人妻中文字幕| 三级国产精品欧美在线观看| 久久久精品欧美日韩精品| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 国产黄色小视频在线观看| 亚洲三级黄色毛片| 男女下面进入的视频免费午夜| 一本一本综合久久| 中国美白少妇内射xxxbb| 久久中文看片网| 夜夜夜夜夜久久久久| 免费观看在线日韩| 男女之事视频高清在线观看| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄 | 精品乱码久久久久久99久播| 午夜激情福利司机影院| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 禁无遮挡网站| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 男人狂女人下面高潮的视频| 身体一侧抽搐| 亚洲av熟女| 美女被艹到高潮喷水动态| 国产主播在线观看一区二区| 国产淫片久久久久久久久| 少妇高潮的动态图| 舔av片在线| 国产精品一区二区免费欧美| av国产免费在线观看| 少妇人妻精品综合一区二区 | 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 99久久精品热视频| 免费无遮挡裸体视频| 国产三级在线视频| 在现免费观看毛片| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 成熟少妇高潮喷水视频| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 亚洲午夜理论影院| 国产男人的电影天堂91| 日本在线视频免费播放| 在线观看av片永久免费下载| 午夜免费激情av| 少妇高潮的动态图| 黄色视频,在线免费观看| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 一级黄片播放器| 欧美日韩黄片免| 欧美黑人巨大hd| 国产精品乱码一区二三区的特点| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 中文字幕精品亚洲无线码一区| 日韩中文字幕欧美一区二区| av视频在线观看入口| 搡老熟女国产l中国老女人| 有码 亚洲区| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件 | 午夜免费激情av| 国产毛片a区久久久久| 99九九线精品视频在线观看视频| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 午夜精品一区二区三区免费看| 精品免费久久久久久久清纯| 国产激情偷乱视频一区二区| 丰满人妻一区二区三区视频av| 精品午夜福利视频在线观看一区| 久久精品人妻少妇| 午夜老司机福利剧场| 免费无遮挡裸体视频| 亚洲av一区综合| 赤兔流量卡办理| 免费高清视频大片| 亚洲不卡免费看| 美女免费视频网站| 国内精品久久久久久久电影| 亚洲一区二区三区色噜噜| 性色avwww在线观看| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 久久久久免费精品人妻一区二区| 国产成人福利小说| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 老司机午夜福利在线观看视频| 22中文网久久字幕| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 亚洲av第一区精品v没综合| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 免费av毛片视频| 亚洲avbb在线观看| 国产 一区精品| 成人鲁丝片一二三区免费| 欧美+亚洲+日韩+国产| 在线免费十八禁| 不卡一级毛片| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 一区二区三区四区激情视频 | 毛片一级片免费看久久久久 | 99热网站在线观看| av黄色大香蕉| 国产精品av视频在线免费观看| 一级av片app| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 久久精品人妻少妇| 国产真实乱freesex| 国产精品综合久久久久久久免费| 久久午夜亚洲精品久久| 国产午夜福利久久久久久| 国产精华一区二区三区| 99久久九九国产精品国产免费| 嫩草影院新地址| 一个人看视频在线观看www免费| 搡老妇女老女人老熟妇| 久久久久久久久久成人| 免费看美女性在线毛片视频| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 中文在线观看免费www的网站| www.色视频.com| av黄色大香蕉| 我的女老师完整版在线观看| 国产aⅴ精品一区二区三区波| 国产精品国产三级国产av玫瑰| 九色国产91popny在线| 丰满人妻一区二区三区视频av| av黄色大香蕉| 国产精品一及| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 观看免费一级毛片| 天堂动漫精品| 日日夜夜操网爽| 少妇的逼好多水| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 成人欧美大片| 亚洲狠狠婷婷综合久久图片| 中国美白少妇内射xxxbb| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 免费搜索国产男女视频| 白带黄色成豆腐渣| 国产精品久久视频播放| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 色5月婷婷丁香| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 一个人观看的视频www高清免费观看| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| 日本三级黄在线观看| 97超视频在线观看视频| 日韩大尺度精品在线看网址| 成年女人永久免费观看视频| 国产亚洲精品av在线| 国产黄色小视频在线观看| 色综合色国产| a在线观看视频网站| 日本黄大片高清| 乱系列少妇在线播放| 男人舔奶头视频| 午夜精品久久久久久毛片777| 午夜福利高清视频| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 午夜福利视频1000在线观看| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 免费看a级黄色片| 免费看日本二区| 亚洲综合色惰| 成人一区二区视频在线观看| 欧美性猛交╳xxx乱大交人| 两性午夜刺激爽爽歪歪视频在线观看| 最近中文字幕高清免费大全6 | 他把我摸到了高潮在线观看| 亚洲人成网站高清观看| 久久久久久国产a免费观看| 91在线观看av| 亚洲aⅴ乱码一区二区在线播放| 女同久久另类99精品国产91| 亚洲国产色片| 精品久久久久久,| 亚洲久久久久久中文字幕| 色吧在线观看| 中文字幕高清在线视频| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 简卡轻食公司| 国产真实伦视频高清在线观看 | 国产伦精品一区二区三区视频9| 九色国产91popny在线| 欧美性猛交黑人性爽| 婷婷亚洲欧美| 亚洲最大成人手机在线| av中文乱码字幕在线|