• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于 3,3′,4,4′-四羧基偶氮苯構(gòu)筑的三個(gè)金屬配合物的合成、晶體結(jié)構(gòu)及性質(zhì)

    2018-12-10 06:49:20陳小莉崔華莉任宜霞王記江
    關(guān)鍵詞:延安大學(xué)偶氮化工學(xué)院

    陳小莉 崔華莉 楊 華 任宜霞 王記江 王 瀟

    (延安大學(xué)化學(xué)與化工學(xué)院,陜西省反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,新能源新功能材料實(shí)驗(yàn)室,延安 716000)

    0 Introduction

    The crystal engineering of metal-organic frameworks (MOFs)have been attracted extensive attention,not only because of their fantastic topological structures but also promising properties in luminescence,magnetism,catalysis,gas absorption and separation and so on[1-7].Although a variety of metal MOFs with desired structures and functions have been synthesized to date,rational control in the construction of polymers remains a great challenge in crystal engineering.In order to prepared MOFs with diverse structures and desired functionalities,judicious selection of appropriate polydentate organic ligands and metal ions is one of the most efficient strategies[8-11].So many polycarboxylate ligands are often employed as bridging ligands to construct MOFs,due to their extension ability both in covalent bonding and in supramolecular interactions (H-bonding and aromatic stacking)[12-15].

    As a member of polycarboxylate ligands,3,3′,4,4′-tetracarboxyazobenzene (H4ddb)has four carboxyl groups that may be completely or partially deprotonated,and can provide hydrogen bond donors and acceptors,which makes it a wonderful candidate for the construction of supramolecular networks depending upon the number of deprotonated carboxylate groups.Therefore,H4ddb may be an excellent candidate for the construction of multidimensional coordination polymers.

    However,to the best of our knowledge,ddb-metal complex have rarely been reported[16-21],and much work is still necessary to understand the coordination chemistry of ddb4-ligand.We also notice that the introduction of N-containing auxiliary ligands such as 1,10-phenanthroline (phen),4,4′-bipyridine (bpy),1,2-bis(4-pyridyl)ethane (bpe)or 1,2-di(4-pyridyl)ethylene(dpe)via adjustment of the carboxylate bridging mode into the system may lead to new structural evolution and fine-tuningthestructural motif of thecomplexes[22-25].With the aim of understanding the coordination chemistry of them and studying the influence on the framework structure of the complexes,we have recently engaged in the research of this kind of complex.Luckily,we have now obtained three complexes,[Co2(ddb)(phen)2(H2O)6]·3H2O (1),[Co(ddb)0.5(bpy)0.5(H2O)3]n(2)and{[Ag(dpe)]·0.5(H2ddb)·H2O}n(3).Herein we reported their syntheses,structures,thermal stabilities and luminescent properties.

    1 Experimental

    1.1 Reagents and physical measurements

    All chemicals and reagents were used as received from commercial sources without further purification.All reactions were carried out under hydrothermal conditions.Elemental analyses (C,H,N)were determined with a Elementar Vario ELⅢelemental analyzer.IR spectra were recorded as KBr pellets on a Bruker EQUINOX55 spectrophotometer in the 4 000~400 cm-1region.Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectro-photometer at room temperature.Thermogravimetric analyses(TGA)were performed in a nitrogen atmo-sphere with a heating rate of 10℃·min-1with a NETZSCHSTA 449C thermogravimetric analyzer.The X-ray powder diffraction pattern (XRD)was recorded with a Rigaku D/MaxⅢdiffractometer operating at 40 kV and 30 mA using Mo Kα radiation (λ=0.154 18 nm)in the range of 5°~50°.

    1.2 Synthesis of[Co2(ddb)(phen)2(H 2O)6]·3H 2O(1)

    A mixture of Co(Ac)2·4H2O (24.9 mg,0.1 mmol),H4ddb (35.8 mg,0.1 mmol),phen (19.8 mg,0.1 mmol)and water (10 mL)was stirred and adjusted to pH 6.5 with 0.5 mol·L-1NaOH solution,then sealed in a 25 mL Telfon-lined stainless steel container,which was heated to 160℃for 96 h.Then cooling to room temperature at a rate of 5℃·h-1.Brown crystals were obtained in ca.53%yield based on Co.Anal.Calcd.for C40H40Co2N6O17(%):C,48.30;H,4.05;N,8.45.Found(%):C,48.49;H,3.72;N,8.45.FI-IR (KBr,cm-1):3 394(s),3 072(s),1 628(m),1 553(s),1 486(m),1 422(s),1 209(w),1 140(w),1 070(w),922(w),845(m),801(m),726(m),671(w).

    1.3 Synthesis of[Co(ddb)0.5(bpy)0.5(H 2O)3]n(2)

    The brown crystals of 2 were prepared by a similar method used in the synthesis of 1 except that

    phen was replaced by bpy (Yield:45%based on Co).Anal.Calcd.for C13H13CoN2O7(%):C,42.41;H,3.56;N,7.61.Found(%):C,42.43;H,3.52;N,7.63.FI-IR(KBr,cm-1):3 387 (s),3 090 (s),1 610 (m),1 564(s),1 473(m),1 409(s),1 202(w),1 056(w),1 102(w),906(w),845(m),804(m),720(m),678(w).

    1.4 Synthesis of{[Ag(dpe)]·0.5(H 2ddb)·H 2O}n(3)

    The colorless crystals of 3 were prepared by a similar method used in the synthesis of 1 except that phen was replaced by dpe and Co(Ac)2·4H2O (24.9 mg,0.1 mmol)was replaced by AgNO3(16.9 mg,0.1 mmol) (Yield:39%based on Ag).Anal.Calcd.for C20H16AgN3O5(%):C,49.61;H,2.91;N,8.68.Found(%):C,49.67;H,2.85;N,8.65.FI-IR (KBr,cm-1):3 429(s),3 037(w),1 701(s),1 607(s),1 495(s),1 357(s),1 240 (w),1 202 (m),1 068 (w),969 (m),831 (m),771(w),617(w),547(m).

    1.5 X-ray crystallography

    Intensity data were collected on a Bruker Smart APEXⅡCCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.071 073 nm)at room temperature.Empirical absorption corrections were applied using the SADABSprogram[26a].The structures were solved by direct methods and refined by the fullmatrix least-squares based on F2using SHELXTL-97 program[26b].In 3,one dpe molecule and two oxygen atoms were split into two site with an occupancy ratio 0.5∶0.5 for C6/C6A,C7/C7A,O3/O3A and O6/O6A.All non-hydrogen atoms were refined anisotropically and hydrogen atoms of organic ligands were generated geometrically.Crystal data and structural refinement parameters for 1~3 are summarized in Table1,selected bond distances and bond angles are listed in Table 2.

    CCDC:1861508,1;1861509,2;1861510,3.

    Table 1 Crystal data and structural refinement parameters for the title complexes 1~3

    Table 2 Selected bond distances(nm)and bond angles(°)for complexes 1~3

    2 Results and discussion

    2.1 Structure description of complex 1

    Single-crystal X-ray diffraction analysis reveals that complex 1 is a binuclear structure crystallizing in monoclinic system with C2/c space group.The asymmetric unit of 1 contains one independent Coギion,half ddb4-ligand,one coordinated phen ligand,three coordinated water molecules and one and a half lattice water molecules.As shown in Fig.1,Co1 is surrounded by two nitrogen atoms (N2,N3)from one chelating phen ligand,one oxygen atom (O1)from one bridging carboxylate groups of ddb4-ligand,three oxygen atoms from three coordinated water molecule.The Co1-O distances fall in the range of 0.207 2(2)~0.212 9(2)nm and are similar to those found in other cobalt carboxylate complexes[27]. The coordination geometry of the Co1 center can be described as a distorted octahedral geometry.

    Fig.1 Coordination environment of Coギion in 1

    Scheme 1 Coordination modes of ddb4-in 1~2

    In 1,H4ddb is completely deprotonated and adopts a μ2∶η1,η0,η1,η0coordination mode (Scheme 1a).Two carboxylate groups coordinate with two Coギions monodentately.Although ddb4-ion participate in the coordination,two benzene rings of ddb4-ion have not been distorted,and the dihedral angle between the two phenyl rings is 0°for 1.On the basis of the connection mode,each pair of Coギions are bridged by two carboxylate groups from one ddb4-ligand to form a binuclear structure with the Co1…Co1 distances of 1.626 8 nm.The binuclear structure are linked by the hydrogen bonding interactions (O5…O4B,0.284 8(3)nm;O6…O3B,0.269 6 nm)generating a 1D double-chain (Fig.2).The adjacent double-chain recognizes each other to generate a 2D bilayer supramolecular network via hydrogen bonding interactions(O5…O4,0.284 8(3)nm;O5…O4C,0.277 5 nm),which is further developed into 3D supramolecular structure by hydrogen bonding interactions (O7…O2 0.275 5 nm,O6…O2 0.264 3(3)nm,O7…O8 0.279 1(6)nm,O7…O8A 0.258 7(8)nm,O8…O3 0.272 9 nm,O9…O3 0.283 0 nm,Fig.3).

    Fig.2 View of 1D double-chain of 1 formed by hydrogen bonding interactions

    Fig.3 View of 2D bilayer supramolecular network of 1 via hydrogen bonding interactions along b-axis

    2.2 Structure description of complex 2

    Fig.4 View of 3D supramolecular architecture of 1 basedon hydrogen bonding interaction along b-axis

    To further examine the influence of the auxiliary ligands on the structure of 1,a longer bridge ligand bpy is used instead of phen.Consequently,a novel 2D polymeric network was obtained.The asymmetric unit of 2 contains one Coギa(chǎn)tom,a half ddb4-ligand,a half bpy ligand and three coordinated water molecules(Fig.5).Each Co1 atom is six coordinated by one nitrogen atom (Co1-N2 0.217 82(17)nm)from one bpy ligand,two carboxylate group oxygen atoms from two ddb4-ligands and three water molecules.The bond lengthsof Co-Oare comparable tothepublished ones[28],varying between 0.201 92(15)and 0.219 89(13)nm.The coordination geometry of Co1 center can be described as a distorted octahedral geometry.

    Fig.5 Coordination environment of Coギion in 2

    In 2,H4ddb are completely deprotonated and adopts a μ4∶η1,η1,η1,η1coordination mode (Scheme 1b).Four carboxylate groups adopt a bridging monodentate coordination mode connecting four Coギ ions (Scheme 1b).Based on the connection mode,a pair of Coギions are bridged by four carboxylate oxygen atoms from two ddb4-ions to form a 14-membered ring{Co2O4C8} (ring a)with the Co1… Co1 distance of 0.646 1 nm.Meanwhile,four Coギionsare also bridged by two ddb4-ions and two bpy ligands to form a 46-membered ring{Co4O4N8C30} (ring b)containing a type of pore with size of ca.2.481 8 nm×2.520 8 nm based on the distances of Co1…Co1 and C1…C1.Interestingly,these 14-member and 46-membered rings were arranged alternately to form a 2D network (Fig.6).Two adjacent 2D networks are packed into 3D supramolecular structure by the hydrogen bonding interactions(O5D…O4C 0.266 3 nm,O7D…O2C 0.289 4 nm,O6E…O3C 0.274 3 nm,O6E…O2 0.259 3 nm,O5D…O6E 0.284 6 nm,Fig.7).

    Fig.6 View of 2D network of 2 along a-axis

    Fig.7 View of 3D supramolecular architecture based on hydrogen bonding interaction along c-axis

    2.3 Structure description of complex 3

    The asymmetric unit of 3 has one independent Agガion,one dpe ligand,a half free H2ddb2-ion and one lattice water molecule (Fig.8).Ag1 center coordinated with two nitrogen atoms (N1,N2)from two different dpe ligands (Ag1-N2 0.215 5(3)nm,Ag1-N1 0.215 3(3)nm) to form a slightly distorted linear geometry.However,the distance of 0.283 9 nmbetween Ag1-O2 suggests a non-negligible interaction between them.Thus,the coordination polyhedron of Agガion can also be described as a T-shaped coordination geometry.The N1-Ag1-N2 bond angle is 172.02°,and the three atoms almost in a line.The pyridyl rings of dpe ligand are non-coplanar with a dihedral angle of 7.18°and the Ag1…Ag1 separation based on dpe ligand is 1.364 5 nm.Hence,the dpe ligands bridge Ag1 centers to form 1D linear chain.The Ag1…Ag1distance between two parallel linear chains is 0.321 0 nm,which is less than the van der Waals contact whose distance is 0.340 nm,illustrating the existence of argentophilic interactions between Agガions.Based on the argentophilic interactions between Agガions,the adjacent linear chains form a 1D double chain structure.Interestingly,the adjacent double chains interact with each other to generate a 2Dsupramolecular network through theπ…πstacking interactions with an edge-to-edge distance of 0.338 7 nm between two pyridine rings of dpe ligands and 0.337 0,0.338 8 nm between the pyridine ring of dpe ligand and the double bonds of dpe ligand,respectively(Fig.9).These kinds ofπ…π stacking interactions are in an alternate fashion and consolidate the stacked arrangement.The adjacent 2D structures further form a 3D supramolecular structure through O-H…O hydrogen bonds (O6A…O4 0.289 9 nm,O5…O3 0.288 4 nm,O6B…O6A 0.254 7 nm,O5…O6 0.285 0 nm,O6A…O6B 0.270 9 nm)and Ag…O week interactions(Ag1A…O1 0.276 0 nm,Ag1…O2 0.283 9 nm,Fig.10).

    Fig.8 Coordination environment of Agガion in 3

    Fig.9 View of 2D supramolecular network of 3 via Ag…Ag interactions andπ…πstacking interactions

    Fig.10 View of 3D supramolecular structure of 3 based on hydrogen bonding interaction and Ag…O week interactions

    2.2 IR Spectra of 1 and 2

    In the FT-IR spectra,the absorption bands in the region of 3 387~3 429 cm-1may attribute to the stretching vibrations of O-H and N-H.The bands in the region 3 037~3 090 cm-1can be ascribed to C-H stretching vibrations of the benzene ring[29].The absence of the absorption bands at 1 730~1 690 cm-1in 1 and 2 indicates the H4ddb ligand adopts the complete deprotonated ddb4-form,which is consistent with the X-ray structural analysis.The bands in the region of 1 578~1 628 cm-1for 1~3 can be assigned to the N=N stretching vibrations.The asymmetric stretching vibrations of the carboxylate groups (νas)were observed at 1 553,1 564 and 1 495 cm-1,and the symmetric stretching vibration (νs) of the carboxylate groups were observed at 1 422,1 409 and 1 357 cm-1,respectively[30].The separation Δν(COO)between the νas(COO)and νs(COO)band for 1~3 are 131,155 and 138 cm-1,which is smaller than 200 cm-1,indicating that the carboxyl groups are coordinated in bridging mode[31].

    2.3 Luminescent properties

    The photoluminescence properties of complexes 1~3 were examined at room temperature,and the emission spectra are shown in Fig.11.The H4ddb ligand exhibited one very week emission band at 470 nm upon excitation at 294 nm.Upon excitation of solid samples of 1~3 at 284 nm,these complexes showed one emission peak at 421 nm for 1,438 nm for 2,410 nm for 3.In comparison with H4ddb ligand,the emission peaks of complexes 1~3 were blueshifted,which may be due to theπ*→π intraligand fluorescence because of close resemblance to the emission band of H4ddb ligand[32].By comparing the emission spectra of 1~3 and the free ligand,we can conclude that the enhancement of luminescence in 1~3 may be attributed to the ligation of ligand to the metal center,which effectively increases the rigidity and reduces the loss of energy by radiationless decay[33-34].

    Fig.11 Emission spectra of 1~3 in the solid state at room temperature

    2.4 Thermal properties and PXRD measurement of complexes 1~3

    To study the thermal stabilities of these complexes,thermal gravimetric analysis (TGA)were performed.The TG curve of 1~3 are shown in Fig.12.Complex 1 first lost its coordinated and lattice water molecule below 210 ℃ (Obsd.14.68%,Calcd.14.52%).Then 1 was relatively stable up to 210~345 ℃.The second weight loss is 74.49%in the temperature range of 345~400 ℃ corresponding to the decomposition ddb4-and phen ligands (Calcd.75.23%).Complex 2 first lost its coordinated water molecules below 225℃(Obsd.14.88%,Calcd.14.67%).Then 2 was relatively stable up to 225~320 ℃,followed by a continuously two-step weight loss of 73.41%from 320 to 515℃(Calcd.72.42% ),corresponding to the loss of ddb4-and phen ligands.The remaining weight of 12.69%is the final product CoO (Calcd.12.91%).The TG curve of 3 showed an initial weight loss of 3.69%below 130℃ corresponding to the removal of lattice water molecules (Calcd.3.72% ).Then 3 was stable up to 260℃and followed by the weight loss in the range of 260~490 ℃,assigned to the decomposition of ddb4-and dpe ligands (Calcd.73.18%,Obsd.72.57%).The remaining weight of 23.68% is Ag2O that is in agreement with the calculated value of 23.76%.

    Fig.12 TGA curves of complexes 1~3

    In order to confirm the phase purity of the bulk materials,powder X-ray diffraction (PXRD)patterns were measured at room temperature.The PXRD experimental and computer-simulated patterns of all of them are shown in Fig.13.The peaks of the simulated and experimental PXRD patterns are in good agreement with each other,confirming the phase purities of 1~3.

    Fig.13 PXRD patterns of complexes 1 (a),2 (b)and 3 (c)

    3 Conclusions

    In summary,we succeeded in getting access to three transition metal complexes based on 3,3′,4,4′-tetracarboxyazobenzene and different auxiliary ligands through hydrothermal method.Complex 1 is binuclear structure.Complex 2 shows 2D network constructed from Co2+ion cross-linked by ddb4-and bpy ligand.Complex 3 is linear chain structure.Interestingly,the guest molecule ddb4-exists in the structure and extends a 3D supramolecular structure through hydrogen bonding,Ag…Ag and Ag…O interactions.Different structures of complexes 1~3 indicate that the ddb4-ligand has the ability of adjusting its coordination modes and configurations in different reaction systems.Furthermore,theπ…πstacking interactions probably play a crucial role to the arrangement and stability of the chain structure, which influence the final supramolecular structures together with abundant hydrogen-bond interactions.

    猜你喜歡
    延安大學(xué)偶氮化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    延安大學(xué)王必成教授書(shū)寫(xiě)
    《延安大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    偶氮類(lèi)食品著色劑誘惑紅與蛋溶菌酶的相互作用研究
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Research on the Application of English Reading Strategies for Junior High School Students
    無(wú) 題
    文苑(2016年17期)2016-11-26 12:40:05
    《化工學(xué)報(bào)》贊助單位
    小麥粉中偶氮甲酰胺的太赫茲時(shí)域光譜檢測(cè)
    精品久久久久久电影网| 国产黄频视频在线观看| 美女主播在线视频| 久久综合国产亚洲精品| 韩国av在线不卡| 国产免费又黄又爽又色| 国产男女超爽视频在线观看| 亚洲精品成人久久久久久| 九色成人免费人妻av| 欧美性猛交╳xxx乱大交人| 插阴视频在线观看视频| 高清在线视频一区二区三区| 99视频精品全部免费 在线| 亚洲精品成人久久久久久| a级毛片免费高清观看在线播放| 大片免费播放器 马上看| 蜜桃亚洲精品一区二区三区| 国产精品99久久久久久久久| 国产 一区精品| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 成人综合一区亚洲| 三级国产精品欧美在线观看| 国产成人福利小说| 精品一区二区三区视频在线| 青春草视频在线免费观看| 色网站视频免费| 久久精品国产自在天天线| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 亚洲精品一二三| av网站免费在线观看视频 | 午夜福利视频精品| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 欧美激情国产日韩精品一区| 日本色播在线视频| 嫩草影院入口| 国产高清三级在线| 22中文网久久字幕| 激情五月婷婷亚洲| 99热这里只有是精品在线观看| 波多野结衣巨乳人妻| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 日本一二三区视频观看| av在线老鸭窝| 国产精品综合久久久久久久免费| 高清av免费在线| 男人爽女人下面视频在线观看| 国产日韩欧美在线精品| 午夜日本视频在线| 国产视频首页在线观看| 麻豆av噜噜一区二区三区| 免费av观看视频| 蜜臀久久99精品久久宅男| 舔av片在线| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 国产成人91sexporn| 精品久久久久久久末码| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 免费不卡的大黄色大毛片视频在线观看 | 亚洲在线观看片| 国产成人精品久久久久久| xxx大片免费视频| 午夜精品在线福利| 美女被艹到高潮喷水动态| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 免费看光身美女| 日本与韩国留学比较| 日韩伦理黄色片| 精品久久久久久久久久久久久| 日日啪夜夜爽| 久久久久久久久久久丰满| 亚洲人与动物交配视频| 美女高潮的动态| 欧美成人精品欧美一级黄| 狠狠精品人妻久久久久久综合| 久热久热在线精品观看| 欧美成人精品欧美一级黄| 久久久a久久爽久久v久久| 久久久精品免费免费高清| 欧美三级亚洲精品| 国产日韩欧美在线精品| 欧美日本视频| 欧美最新免费一区二区三区| 男的添女的下面高潮视频| 午夜日本视频在线| 久久国产乱子免费精品| 精品久久久久久电影网| 国产黄a三级三级三级人| 久久综合国产亚洲精品| 国产免费视频播放在线视频 | 欧美高清成人免费视频www| 欧美+日韩+精品| 岛国毛片在线播放| 国产午夜福利久久久久久| 国产精品福利在线免费观看| 97超视频在线观看视频| 女人十人毛片免费观看3o分钟| 丝瓜视频免费看黄片| 在线a可以看的网站| 免费不卡的大黄色大毛片视频在线观看 | 亚洲无线观看免费| 久久99热这里只有精品18| 男女视频在线观看网站免费| 亚洲av成人精品一区久久| 边亲边吃奶的免费视频| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 国产高潮美女av| 国产精品爽爽va在线观看网站| 麻豆乱淫一区二区| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 亚洲四区av| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 亚洲精品久久午夜乱码| 天堂网av新在线| 亚洲精品亚洲一区二区| 嫩草影院新地址| 亚洲图色成人| 久久精品人妻少妇| 日日干狠狠操夜夜爽| 别揉我奶头 嗯啊视频| av.在线天堂| 夫妻午夜视频| 干丝袜人妻中文字幕| 白带黄色成豆腐渣| 黑人高潮一二区| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 亚洲精品乱久久久久久| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 久久精品夜色国产| 国产男女超爽视频在线观看| 一级a做视频免费观看| 成年免费大片在线观看| 熟女电影av网| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 激情五月婷婷亚洲| 日韩欧美国产在线观看| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 久久久亚洲精品成人影院| 日本免费a在线| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 青春草亚洲视频在线观看| 精品久久久久久成人av| 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 丝袜喷水一区| 深夜a级毛片| 午夜老司机福利剧场| av专区在线播放| 深夜a级毛片| 最近手机中文字幕大全| 伦精品一区二区三区| 亚洲伊人久久精品综合| 美女高潮的动态| 插逼视频在线观看| 最近视频中文字幕2019在线8| 熟妇人妻不卡中文字幕| 国产黄色免费在线视频| 午夜免费激情av| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 日本欧美国产在线视频| 久久久久久久久久成人| 高清av免费在线| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 69av精品久久久久久| 免费观看精品视频网站| 亚洲av成人精品一二三区| 成人av在线播放网站| 久久鲁丝午夜福利片| 国产欧美另类精品又又久久亚洲欧美| 欧美 日韩 精品 国产| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 成年版毛片免费区| 99九九线精品视频在线观看视频| 亚洲在线自拍视频| 免费观看a级毛片全部| 亚洲最大成人手机在线| 成年版毛片免费区| 在线观看美女被高潮喷水网站| 最近最新中文字幕大全电影3| 人人妻人人澡欧美一区二区| 老司机影院成人| 欧美激情国产日韩精品一区| 一级毛片电影观看| 在线观看人妻少妇| 成人国产麻豆网| 51国产日韩欧美| 亚洲色图av天堂| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 91aial.com中文字幕在线观看| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 久久久久久久久久黄片| 免费黄网站久久成人精品| 在线观看av片永久免费下载| 高清欧美精品videossex| 欧美激情国产日韩精品一区| av一本久久久久| 精品亚洲乱码少妇综合久久| 国产 一区精品| 亚洲国产色片| 精品酒店卫生间| 一级毛片电影观看| 国产色婷婷99| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 床上黄色一级片| 久久久色成人| 精品一区二区三卡| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频 | 国产伦一二天堂av在线观看| 久久久久久久午夜电影| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看 | 国产成人精品久久久久久| 一区二区三区四区激情视频| 日日摸夜夜添夜夜添av毛片| 97在线视频观看| 国产在视频线在精品| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 成年版毛片免费区| 超碰av人人做人人爽久久| 黄色欧美视频在线观看| 久久久成人免费电影| 国产视频内射| 亚洲精品自拍成人| 插阴视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 插逼视频在线观看| 一区二区三区免费毛片| 女人久久www免费人成看片| 嫩草影院精品99| 亚洲在线观看片| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 蜜臀久久99精品久久宅男| 在线 av 中文字幕| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| 国产午夜精品论理片| 高清av免费在线| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看| 亚洲成人久久爱视频| 一级毛片黄色毛片免费观看视频| 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜 | 午夜免费观看性视频| 最近最新中文字幕免费大全7| 欧美日韩亚洲高清精品| 国产 一区精品| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 午夜久久久久精精品| 丝袜喷水一区| 亚洲国产精品国产精品| 精品国产露脸久久av麻豆 | 国产av国产精品国产| 久久草成人影院| 欧美人与善性xxx| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 欧美人与善性xxx| 成人国产麻豆网| 好男人视频免费观看在线| 国产色爽女视频免费观看| 人妻夜夜爽99麻豆av| 搡老乐熟女国产| 国产精品蜜桃在线观看| 欧美日韩综合久久久久久| 天堂√8在线中文| 国产精品一二三区在线看| 在线a可以看的网站| 欧美另类一区| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 99久久中文字幕三级久久日本| 日本一二三区视频观看| 真实男女啪啪啪动态图| 大话2 男鬼变身卡| or卡值多少钱| 日韩不卡一区二区三区视频在线| 高清日韩中文字幕在线| 大片免费播放器 马上看| 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 久久99精品国语久久久| 丰满少妇做爰视频| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 久久精品久久久久久久性| 国产免费福利视频在线观看| 嫩草影院新地址| 夜夜爽夜夜爽视频| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 97热精品久久久久久| 伦精品一区二区三区| 国产av不卡久久| 极品教师在线视频| 中文字幕av成人在线电影| 大片免费播放器 马上看| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 在线免费十八禁| 搞女人的毛片| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| 久久久久免费精品人妻一区二区| 在线免费观看的www视频| 成年免费大片在线观看| 国产精品1区2区在线观看.| 久久久久久久久久黄片| 午夜激情福利司机影院| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花 | 女人十人毛片免费观看3o分钟| 免费观看精品视频网站| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 91久久精品电影网| 午夜福利在线观看吧| 十八禁网站网址无遮挡 | or卡值多少钱| 欧美极品一区二区三区四区| av网站免费在线观看视频 | 又爽又黄无遮挡网站| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 七月丁香在线播放| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 欧美成人一区二区免费高清观看| 免费看不卡的av| 亚洲伊人久久精品综合| 好男人在线观看高清免费视频| 99re6热这里在线精品视频| 久久人人爽人人爽人人片va| 亚洲国产成人一精品久久久| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 免费看不卡的av| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 内射极品少妇av片p| 亚洲av福利一区| 欧美高清性xxxxhd video| 亚洲激情五月婷婷啪啪| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 日韩欧美精品v在线| 久久午夜福利片| 久久久久久久久中文| 五月伊人婷婷丁香| 99久国产av精品国产电影| 夫妻性生交免费视频一级片| 欧美激情在线99| 国产伦在线观看视频一区| 国产精品日韩av在线免费观看| 久久久a久久爽久久v久久| 精品久久久久久久久亚洲| 成人性生交大片免费视频hd| av天堂中文字幕网| 成人漫画全彩无遮挡| 精品国内亚洲2022精品成人| 少妇被粗大猛烈的视频| 97精品久久久久久久久久精品| 高清午夜精品一区二区三区| 国产高清有码在线观看视频| 亚洲精品一二三| 国产国拍精品亚洲av在线观看| 午夜精品国产一区二区电影 | 不卡视频在线观看欧美| 街头女战士在线观看网站| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 观看美女的网站| 成人午夜精彩视频在线观看| 高清日韩中文字幕在线| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 午夜福利视频1000在线观看| 少妇高潮的动态图| 听说在线观看完整版免费高清| 国产色婷婷99| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 22中文网久久字幕| 午夜福利视频1000在线观看| 亚洲成色77777| 一区二区三区四区激情视频| 久久久久久久久中文| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 成年人午夜在线观看视频 | 美女黄网站色视频| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 日韩一区二区视频免费看| 亚洲18禁久久av| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 1000部很黄的大片| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 在线观看免费高清a一片| 久久鲁丝午夜福利片| 国产综合精华液| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 十八禁国产超污无遮挡网站| 在线观看一区二区三区| 国产成人aa在线观看| 成人亚洲精品一区在线观看 | 熟女人妻精品中文字幕| 欧美人与善性xxx| 少妇的逼好多水| 99久久人妻综合| 国产三级在线视频| 国模一区二区三区四区视频| 国产毛片a区久久久久| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 九草在线视频观看| 听说在线观看完整版免费高清| av专区在线播放| 少妇的逼好多水| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 永久网站在线| 美女cb高潮喷水在线观看| 成人高潮视频无遮挡免费网站| 青春草亚洲视频在线观看| a级一级毛片免费在线观看| 美女黄网站色视频| 天堂影院成人在线观看| 久久精品久久久久久噜噜老黄| 一级av片app| 国产极品天堂在线| 午夜爱爱视频在线播放| 一区二区三区高清视频在线| 精品一区二区三区视频在线| av在线蜜桃| 国产精品久久久久久精品电影小说 | 亚洲国产欧美人成| 18+在线观看网站| or卡值多少钱| 91狼人影院| 校园人妻丝袜中文字幕| 免费看光身美女| 日日摸夜夜添夜夜爱| 大香蕉久久网| 午夜福利视频精品| 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频| 国产有黄有色有爽视频| 丰满少妇做爰视频| av网站免费在线观看视频 | 国产精品福利在线免费观看| 最近最新中文字幕大全电影3| 听说在线观看完整版免费高清| 精品不卡国产一区二区三区| 青春草国产在线视频| 99热网站在线观看| 人妻一区二区av| 午夜免费激情av| 亚洲成人精品中文字幕电影| 免费少妇av软件| 最近中文字幕高清免费大全6| h日本视频在线播放| 一本久久精品| 亚洲国产高清在线一区二区三| 性插视频无遮挡在线免费观看| 日本黄色片子视频| 日本与韩国留学比较| 中文字幕亚洲精品专区| 久久久久久久久大av| 国产色婷婷99| 我要看日韩黄色一级片| 国产精品一区二区三区四区免费观看| 能在线免费看毛片的网站| 麻豆久久精品国产亚洲av| 亚洲一区高清亚洲精品| 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 久久久久久久午夜电影| kizo精华| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | av女优亚洲男人天堂| 免费高清在线观看视频在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区久久| 国产亚洲精品av在线| 男女视频在线观看网站免费| 麻豆久久精品国产亚洲av| a级毛色黄片| 最新中文字幕久久久久| 亚洲在线观看片| 男女国产视频网站| 少妇高潮的动态图| 国产精品熟女久久久久浪| 精品一区二区三区人妻视频| 能在线免费观看的黄片| ponron亚洲| 如何舔出高潮| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 六月丁香七月| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 国产不卡一卡二| 在线观看人妻少妇| 丰满乱子伦码专区| 特级一级黄色大片| 午夜福利在线观看吧| 日韩欧美 国产精品| 99久国产av精品| 国产欧美另类精品又又久久亚洲欧美| 免费av观看视频| 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 国产人妻一区二区三区在| 精品人妻视频免费看| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最后的刺客免费高清国语| 国内精品美女久久久久久| 99热全是精品| 亚洲精品成人久久久久久| 亚洲天堂国产精品一区在线| 色哟哟·www| 亚洲最大成人中文| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 国产91av在线免费观看| 亚洲熟妇中文字幕五十中出| 国产亚洲精品av在线| 天天躁日日操中文字幕| 我的老师免费观看完整版|