• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of a High-Efficiency Quasi-Optical Mode Converter for a 0.42 THz-TE17,4 Gyrotron

    2018-12-06 07:08:02WANGWeiSONGTaoLIUDiweiandLIUShenggang

    WANG Wei, SONG Tao, LIU Di-wei, and LIU Sheng-gang

    (1. Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054;2. Key Laboratory of Terahertz Technology, Ministry of Education Chengdu 610054)

    Abstract Theoretical investigation on a highly efficient quasi-optical mode converter for a 0.42THz-TE17,4 gyrotron is presented in this paper. The converter consists of a dimpled-wall Denisov-type launcher and three mirrors. Based on the coupled-mode theory, the vector diffraction theory, and phase unwrapping technique, a computer code has been developed to evaluate the field distributions, which agrees well with the simulated result. It shows that a well-focused wave beam is achieved with a high Gaussian mode purity (scalar content greater than 99.1%, vector content greater than 97.3%) and high power conversion efficiency of greater than 97.4% at the output window.

    Key words gyrotron; phase-corrector; quasi-optical mode converter; terahertz

    Quasi-optical mode converters (QOMC) are mainly applied in high power gyrotrons in millimeter and sub-millimeter wave range by transforming the cavity-generated high-order cylindrical waveguide TE modes into linearly polarized fundamental Gaussianlike beams, which can be directly used for low-loss transmission in free space[1-2]. The QOMC inside the gyrotron vacuum envelope directly after the cavity enables separation of the spent electron beam from the RF power. That allows for a depressed collector, which increases tube efficiency and decreases the size and cooling requirements for collector[3-4]. QOMC is a proper combination of a specific mode-converting waveguide slot radiator (launcher) together with a few curved mirrors[5-6]. In order to get a superior quality output beam with low diffraction losses and high purity,a dimpled-wall (Denisov-type) launcher and a mirror system are usually adopted[7-8].

    1 Launcher

    The Denisov-type launcher with deformed wallconverts the high-order waveguide mode into Gaussian-like distribution on the waveguide wall before it is radiated from the waveguide cut[9].Currently, many kinds of methods have been proposed for analysis and synthesis of the launcher, such as analytical methods, formulation of the scalar integral equation (SIE), and the magnetic field integral equation (MFIE)[10-14]. In this paper, an improved method for analyzing the radiation characteristic of the Denisov-type launcher is employed[15-16]. Through decomposing the launcher into an open-end waveguide and a helical cut, radiations from the launcher could be represented in terms of radiation fields by the circular waveguide and the helical cut. The coupled-mode theory is adopted to investigate the dimpled-wall Denisov-type launcher, where the waveguide tapper is also taken into account[17]. The vector diffraction theory[18-19]is used to analyze the radiated fields. The radiated electromagnetic waves at an observation point can be calculated with the Stratton-Chu formula, which is a vector formulation of Huygens’ principle, by integrating the response to the point source Green’s function over all source regions. Based on abovementioned method, a computer code has been developed for calculating the field of the launcher. For a 0.42 THz-TE17,4gyrotron, the profile of the launcher inner wall can be described as

    wherer0= 4 mm , α = 0 .004,δ1=22 μm andδ2=37 μm, Δβ1= 0 .582 mm-1and Δβ2= 0 .061 mm-1,l1=1andl2=3, and ?andzare the angular and axial coordinates, respectively.

    Fig. 1. Normalized field distribution on the unrolled waveguide wall of the launcher (The red line represents the launcher cut)

    Fig. 2. Normalized field distribution at the waveguide port before the helical cut

    The field distribution of the launcher evaluated by the coupled-mode method is shown in Fig. 1, which is evaluated over the entire launcher wall surface from 0 to 43.02 mm for zand 0 to2π for?. Atz=0,corresponding to the start of the wall variation, a pure rotating TE17,4mode is injected. By travelling along thezaxis, the power of the main mode is coupled into several mixed modes through the wall perturbations to form a Gaussian-like filed distribution on the waveguide wall. The helical cut of the launcher is located atθ = 4 .26 rad , begins at z = 3 2.35 mm, and the cut length is 10.67 mm. Fig. 2a shows the field distribution of the waveguide port before the helical cut, which is compared with the result shown in Fig.2b simulated by a commercial electromagnetic simulation software FEKO. Regarding the field shown in Fig. 2 as an original source, the field on the helical cut is evaluated by using the improved method and modified Stratton-Chu equations. The result in Fig. 3a is calculated with the code and the result in Fig. 3b isobtained by using the simulation tool. The results indicate that the field intensities are very small along the Denisov-type launcher cut, which can effectively decrease the diffraction losses, and the field can be radiated directionally without side lobes by the launcher.

    Fig. 3. Normalized field distribution on the launcher

    2 Mirrors

    In order to get an output beam with a higher conversion efficiency and higher correlation coefficients to the desired fundamental Gaussian mode,a quasi-elliptical mirror and two adapted phasecorrecting mirrors are used to reflect and focus radiated fields from the launcher. The quasi-elliptical mirror is a kind of bifocal mirror which has been studied[20]. And focal lengths of the quasi-elliptical mirror should be carefully designed for matching the asymptotic beam growth (ABG) angle θ0=λ0/(π ω0)(λ0is the wavelength andω0represents the beam waist)of the fundamental Gaussian wave beam to provide a high conversion efficiency[8]. For a high-order gyrotron operating mode, the quasi-elliptical reflector could not focus the complicated input well in both angular and axial directions. Therefore, two adapted phasecorrecting mirrors are employed to continue focusing the output beam and improving its quality, which are optimized with the error correction Katsenelenbaunm-Semenov Algorithm (KSA)[21]. The main idea of KSA is to reduce the error between the propagating beam and desired field distribution by introducing a mirror deformation, which changes the phase differences, as shown in Fig. 4.

    Fig. 4. Phase shift on a perturbed surface of a phase correcting mirror

    where1φ is the phase of one field component propagated to one mirror and2φis the phase of the desired field back-propagated to the same mirror, and βis the angle of incidence.

    Fig. 5. Pictorial illustration of KSA for two phase-correctors

    A pictorial explanation of KSA for two phase correctors is presented in Fig. 5. At first, the starting surfaces (initial guess) of the phase correctors are planer-shaped. In Fig. 5, the initial incident field radiated from the quasi-elliptical mirror EF1and the target beam EGat the output window can be regarded as linearly polarized.EF1is propagated through(reflected) Mirror 1 and acquires an extra phase change,and EGis back propagated through (reflected) Mirror 2 and also attains an extra phase change. Initially, thesemirrors have no perturbations so the extra phase changes are zero. Then EGis back propagated to Mirror 1, resulting in a field distribution EB1. Δx1is obtained by applying Eq. (2), taking as the phase difference between EF1and EB1, and it is added to the perturbation on Mirror 1. This process is repeated for Mirror 2, and EF1with an extra phase 2 k0Δ x1β is forward propagated to Mirror 2, resulting in a field distribution EF2. Δx2is obtained by applying Eq. (2),being taken as the phase difference between EF2and EB2, and then it is added to the perturbation on Mirror 2. These steps can be repeated until convergence is achieved, for example, correlation coefficients (ηsand ηv) between EFand EGare greater than a chosen value. And the flowchart of this algorithm is presented in Fig. 7. The target field EGis a fundamental Gaussian mode propagating along the z-direction, and can be described as[22]

    where wGis the beam waist of the Gaussian mode.

    In the procedure, the beam waist is about 2mm.The correlation coefficients are used to examine the convergence of the iterative optimization, for example,the scalar correlation coefficient satisfies ηs≥99%and vector correlation coefficient satisfies ηv≥ 9 5%,which means that a very high purity Gaussian beam output is demanded. Theoretically, the perturbation on the reflecting mirror could be obtained by applying Eq.(6), in which the phases of forward and backward propagating waves are wrapped. Because of the wrapped phase varying periodically in the range[-π,+π), as a matter of fact, it brings out that the phase-correcting mirror with complicated perturbation may not be manufactured exactly. Hence, phase unwrapping technique should be applied to smoothen the mirror surface via converting the phase into the range(-∞,+∞), which is referred to as unwrapped.After making the phase distributions smooth based on the phase unwrapping method, smooth phase shifters responding to the deformations of mirrors could be created from their differences. The problem of unwrapping the phase on the planar-based mirror can be treated as two-dimensional (2D) phase unwrapping,which has been solved effectively by using different kinds of methods[23-24]. In this paper, a 2D quality guided path following the phase unwrapping algorithm[25]is employed to solve the phase unwrapping problem.

    Fig. 7. Flowchart of iterative algorithm for mirror system optimization

    3 Results and Discussion

    Based on the abovementioned method andalgorithm, a mirror system has been designed and field distributions have been also calculated. The iterative algorithm begins to converge after about 30 iterations.The profile of QOMC is shown in Fig. 8. Overall sizes of the phase-correcting mirrors are about 40*40mm2.

    Fig. 8. The profile of QOMC

    Fig. 9. Normalized field distribution at the output window.

    Amplitude and phase distributions at the output window calculated by a computer code and simulated by the electromagnetic software FEKO are shown in Figs. 9-10, which indicates that a well-focused wave beam has been obtained. The scalar correlation coefficientsηand vector correlation coefficient vηused as the criteria for the descriptions of the results’ accuracy are estimated as

    where A1and A2are two vectors, which can represent the numerical and simulated field components,respectively. In above formulae, if A2is an ideal fundamental Gaussian distribution, thensηandvη give fundamental Gaussian mode scalar and vector contents of the field distribution A1and estimate its Gaussian mode purity. Finally, the power conversion efficiency of the QOMCεηis estimated as

    Fig. 10. Phase distribution at the output window.

    where0P is total power injected into the launcher,Eand Hrepresent electric field and magnetic vector fields at the output window, and the superscript “*”denotes the conjugate of a complex function.

    There is a good agreement between the two field distributions. Scalar and vector correlation coefficients of the fields calculated by the computer code related to the simulation results are given in Table 1. Table 1 also gives the power conversion efficiency of QOMC. The results show that after being prebunched by the Denisov-type launcher, focused and corrected by the mirror system, a well-focused wave beam is obtained.The power conversion efficiency is 98.5%, and the fundamental Gaussian mode scalar and vector contents are 99.7% and 97.5%. The corresponding simulation results are ηε=97.4%, ηs=99.1%, and ηv=97.3%,and the relative deviations between numerical calculation and simulation results about ηε, ηsand ηvare 1.1%, 0.6% and 0.2%, respectively. The fact that the numerical results yield slight difference from the simulation results can be attributed mainly to two factors. One is the different ways of meshing and solving methods. The other is due totruncation errors of the model size that the complicated and irregular models of Denisov-type launcher and phase correcting mirrors are unable to be directly built, which has to be imported from the professional CAD software.

    Table 1 Comparisons between numerical and simulation results

    4 Conclusions

    Theoretical investigation on a highly efficient quasi-optical mode converter for a 0.42 THz-TE17,4gyrotron is presented in this paper. The converter consists of a dimpled-wall Denisov-type launcher, a quasi-elliptical mirror, and two phase correcting mirrors. The operation of the launcher has been analyzed by using the coupled-mode theory; fields on the helical cut and mirrors have been calculated with the vector diffraction theory; the phase-correcting mirrors have been optimized based on the Katsenelenbaunm-Semenov algorithm and phase unwrapping technique. A computer code has been developed to evaluate the field distributions, which is compared with that obtained by using the simulation tool FEKO. There are small relative deviation values between the results. It shows that the dimpled-wall Denisov-type launcher generates a Gaussian radiation pattern with low diffraction losses, and the wave beam is corrected by the mirror system. A well-focused wave beam is achieved with a high Gaussian mode purity(scalar content greater than 99.1% and vector content greater than 97.3%) and a high power conversion efficiency greater than 97.4% at the output window.

    久久久久久久亚洲中文字幕 | 亚洲成av人片在线播放无| 三级毛片av免费| 18禁黄网站禁片午夜丰满| 熟女人妻精品中文字幕| 一进一出抽搐动态| 亚洲最大成人手机在线| 少妇裸体淫交视频免费看高清| 亚洲av电影在线进入| 麻豆国产97在线/欧美| 国产成年人精品一区二区| 国产av不卡久久| 欧美午夜高清在线| 九九久久精品国产亚洲av麻豆| 国内揄拍国产精品人妻在线| 亚洲真实伦在线观看| 久久精品91蜜桃| 精品福利观看| 又黄又爽又刺激的免费视频.| 禁无遮挡网站| 欧美zozozo另类| 欧美性猛交黑人性爽| 在线免费观看的www视频| 国产白丝娇喘喷水9色精品| 免费黄网站久久成人精品 | 久久国产精品人妻蜜桃| 麻豆av噜噜一区二区三区| 嫩草影院新地址| 香蕉av资源在线| 欧美bdsm另类| 无遮挡黄片免费观看| 村上凉子中文字幕在线| 动漫黄色视频在线观看| 精品一区二区三区视频在线观看免费| 亚洲经典国产精华液单 | 国产精品一区二区三区四区久久| 最好的美女福利视频网| 亚洲成人中文字幕在线播放| 熟女电影av网| 欧美激情久久久久久爽电影| 人人妻人人看人人澡| 久久久久久久久中文| 国产av麻豆久久久久久久| 国内精品久久久久精免费| 别揉我奶头 嗯啊视频| 欧美丝袜亚洲另类 | x7x7x7水蜜桃| 久9热在线精品视频| 亚洲成av人片免费观看| 最近中文字幕高清免费大全6 | 搡老熟女国产l中国老女人| 亚洲人成网站高清观看| 免费看日本二区| 老司机午夜十八禁免费视频| 成人性生交大片免费视频hd| 欧美xxxx黑人xx丫x性爽| 午夜亚洲福利在线播放| 国产精品爽爽va在线观看网站| 国产精品自产拍在线观看55亚洲| 超碰av人人做人人爽久久| 欧美性感艳星| 国产精品av视频在线免费观看| 日韩国内少妇激情av| 老司机深夜福利视频在线观看| 直男gayav资源| 嫩草影院入口| 18禁黄网站禁片免费观看直播| 国产极品精品免费视频能看的| 亚洲va日本ⅴa欧美va伊人久久| 成人美女网站在线观看视频| 欧美另类亚洲清纯唯美| 国产真实乱freesex| 亚洲精品影视一区二区三区av| 一个人免费在线观看电影| 国产一区二区在线av高清观看| 日韩欧美三级三区| 亚洲av成人av| 美女高潮喷水抽搐中文字幕| 亚洲综合色惰| 久久这里只有精品中国| 丁香欧美五月| 亚洲精品在线观看二区| 午夜免费成人在线视频| 精品人妻1区二区| 色在线成人网| 日韩成人在线观看一区二区三区| 又粗又爽又猛毛片免费看| 国产高清视频在线播放一区| 全区人妻精品视频| 在线天堂最新版资源| 午夜两性在线视频| 三级男女做爰猛烈吃奶摸视频| 黄色日韩在线| 黄色配什么色好看| 欧美日韩国产亚洲二区| 91在线观看av| 夜夜躁狠狠躁天天躁| 国产又黄又爽又无遮挡在线| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看 | 99国产极品粉嫩在线观看| 国内少妇人妻偷人精品xxx网站| av在线蜜桃| 三级国产精品欧美在线观看| 夜夜看夜夜爽夜夜摸| 黄色日韩在线| 伊人久久精品亚洲午夜| 中文字幕高清在线视频| 可以在线观看毛片的网站| 国产成人a区在线观看| 乱码一卡2卡4卡精品| 成熟少妇高潮喷水视频| 中出人妻视频一区二区| 国产精品一区二区免费欧美| 国产探花在线观看一区二区| 日韩欧美在线二视频| 精品久久久久久久久久久久久| 国产成人啪精品午夜网站| 国产 一区 欧美 日韩| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品人妻一区二区三区麻豆 | 日本熟妇午夜| 精品国内亚洲2022精品成人| 国产伦精品一区二区三区四那| 啦啦啦观看免费观看视频高清| 精品久久久久久成人av| 国产成人欧美在线观看| aaaaa片日本免费| 1024手机看黄色片| 毛片一级片免费看久久久久 | 成人毛片a级毛片在线播放| 中文亚洲av片在线观看爽| 国产毛片a区久久久久| 国产精品乱码一区二三区的特点| avwww免费| 日韩免费av在线播放| 国产精品亚洲一级av第二区| 亚洲国产精品合色在线| 内射极品少妇av片p| 国产亚洲精品av在线| 黄色丝袜av网址大全| 成人亚洲精品av一区二区| 91麻豆av在线| 免费黄网站久久成人精品 | 精品人妻1区二区| 国产三级在线视频| 亚洲 国产 在线| 一区二区三区高清视频在线| 亚洲中文字幕日韩| 欧美日韩黄片免| 动漫黄色视频在线观看| av中文乱码字幕在线| 色吧在线观看| 国产成人福利小说| 国产三级黄色录像| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| 两个人视频免费观看高清| 欧美zozozo另类| 天天躁日日操中文字幕| 精品人妻熟女av久视频| 日韩欧美在线二视频| 美女被艹到高潮喷水动态| 久久久久久久久中文| 成人精品一区二区免费| 欧美日韩国产亚洲二区| 好看av亚洲va欧美ⅴa在| 99久久精品一区二区三区| 亚洲成av人片在线播放无| 波多野结衣巨乳人妻| 亚洲中文日韩欧美视频| 国产精品不卡视频一区二区 | 亚洲自偷自拍三级| 99国产综合亚洲精品| 性色av乱码一区二区三区2| 欧美成人一区二区免费高清观看| 精品人妻熟女av久视频| 免费黄网站久久成人精品 | 国产免费av片在线观看野外av| 88av欧美| 噜噜噜噜噜久久久久久91| 男女之事视频高清在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲成av人片免费观看| x7x7x7水蜜桃| 在线播放国产精品三级| 特级一级黄色大片| 黄色配什么色好看| 精品不卡国产一区二区三区| 国产爱豆传媒在线观看| 午夜福利欧美成人| 国产精品久久久久久亚洲av鲁大| 搡老岳熟女国产| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 日韩欧美免费精品| 成人无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲av一区麻豆| 欧洲精品卡2卡3卡4卡5卡区| 十八禁国产超污无遮挡网站| 看黄色毛片网站| 欧美日韩瑟瑟在线播放| 久久香蕉精品热| 三级国产精品欧美在线观看| 精品人妻1区二区| 国产精品,欧美在线| 欧美性猛交黑人性爽| 69av精品久久久久久| xxxwww97欧美| 国产大屁股一区二区在线视频| 高潮久久久久久久久久久不卡| 午夜视频国产福利| 校园春色视频在线观看| 十八禁国产超污无遮挡网站| 啦啦啦韩国在线观看视频| 9191精品国产免费久久| 婷婷亚洲欧美| 日韩免费av在线播放| 在线观看一区二区三区| 欧美黄色片欧美黄色片| 日本免费a在线| 亚洲五月婷婷丁香| 亚洲精品乱码久久久v下载方式| 高潮久久久久久久久久久不卡| 在线观看舔阴道视频| h日本视频在线播放| 国产高潮美女av| 18禁黄网站禁片免费观看直播| 亚州av有码| 两个人视频免费观看高清| 午夜福利视频1000在线观看| 国产真实乱freesex| 免费在线观看亚洲国产| 很黄的视频免费| 欧美成人免费av一区二区三区| 赤兔流量卡办理| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区三| 日韩高清综合在线| 亚洲在线自拍视频| 成人国产综合亚洲| 国内揄拍国产精品人妻在线| 日韩欧美一区二区三区在线观看| 久久久久久久久大av| 丰满人妻一区二区三区视频av| 一二三四社区在线视频社区8| 超碰av人人做人人爽久久| 午夜亚洲福利在线播放| 午夜亚洲福利在线播放| 免费人成视频x8x8入口观看| 国产成人影院久久av| 久9热在线精品视频| 97热精品久久久久久| 禁无遮挡网站| 国产人妻一区二区三区在| 久久久色成人| 国产淫片久久久久久久久 | 亚洲成av人片免费观看| 亚洲精品粉嫩美女一区| av天堂在线播放| 国产乱人伦免费视频| 午夜久久久久精精品| 午夜激情欧美在线| 狠狠狠狠99中文字幕| 香蕉av资源在线| 中文字幕av成人在线电影| 天天一区二区日本电影三级| 欧美国产日韩亚洲一区| 亚洲欧美清纯卡通| a级毛片免费高清观看在线播放| 午夜福利在线在线| 久久久久国产精品人妻aⅴ院| 国产成人啪精品午夜网站| 99在线视频只有这里精品首页| 听说在线观看完整版免费高清| 精品一区二区免费观看| 91午夜精品亚洲一区二区三区 | or卡值多少钱| 国产成年人精品一区二区| 亚洲熟妇熟女久久| 一区二区三区免费毛片| 国产真实乱freesex| 美女 人体艺术 gogo| 老女人水多毛片| 少妇的逼水好多| 好看av亚洲va欧美ⅴa在| 一个人看视频在线观看www免费| av国产免费在线观看| 国产精品一及| 国内毛片毛片毛片毛片毛片| 日韩av在线大香蕉| 国产麻豆成人av免费视频| 午夜久久久久精精品| av专区在线播放| 国产精品亚洲美女久久久| 小说图片视频综合网站| 波多野结衣高清无吗| 草草在线视频免费看| 99国产综合亚洲精品| 18美女黄网站色大片免费观看| 亚洲精品乱码久久久v下载方式| 国产探花在线观看一区二区| 成人高潮视频无遮挡免费网站| 日本黄大片高清| 中文字幕人成人乱码亚洲影| 欧美黑人欧美精品刺激| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 在线看三级毛片| 99热这里只有是精品50| 在线国产一区二区在线| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| 国产主播在线观看一区二区| 九色成人免费人妻av| 精品熟女少妇八av免费久了| 麻豆成人午夜福利视频| 亚洲欧美精品综合久久99| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 国产高清视频在线播放一区| 一进一出好大好爽视频| 男女之事视频高清在线观看| 99riav亚洲国产免费| 欧美3d第一页| 国产色爽女视频免费观看| 免费av观看视频| 精品不卡国产一区二区三区| 搡老岳熟女国产| 欧美午夜高清在线| 哪里可以看免费的av片| 美女xxoo啪啪120秒动态图 | 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| 美女大奶头视频| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 18禁黄网站禁片午夜丰满| 国产精品永久免费网站| 色尼玛亚洲综合影院| 精品日产1卡2卡| 欧美绝顶高潮抽搐喷水| 日韩免费av在线播放| 最新中文字幕久久久久| 欧美成人性av电影在线观看| 国产成人a区在线观看| 精品国产亚洲在线| 亚洲 国产 在线| 一进一出好大好爽视频| 偷拍熟女少妇极品色| 一级作爱视频免费观看| av在线老鸭窝| 麻豆成人av在线观看| 欧美日本亚洲视频在线播放| 色吧在线观看| 久久久久久久精品吃奶| 亚洲欧美清纯卡通| 日韩亚洲欧美综合| 天堂影院成人在线观看| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 男人的好看免费观看在线视频| 国产精品永久免费网站| 日韩人妻高清精品专区| 亚洲av日韩精品久久久久久密| 亚洲欧美精品综合久久99| 三级国产精品欧美在线观看| 嫩草影院新地址| 亚洲第一电影网av| 我的老师免费观看完整版| 丰满的人妻完整版| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 国产av在哪里看| 国产精品女同一区二区软件 | 欧美成狂野欧美在线观看| 国产亚洲精品综合一区在线观看| 美女免费视频网站| 在线观看午夜福利视频| a级一级毛片免费在线观看| 97碰自拍视频| 我要搜黄色片| 一级av片app| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 国产成人a区在线观看| 我的老师免费观看完整版| 久久精品影院6| 日韩有码中文字幕| 淫妇啪啪啪对白视频| h日本视频在线播放| 亚洲美女视频黄频| 亚洲成av人片免费观看| 国产探花在线观看一区二区| 成人三级黄色视频| 69人妻影院| 午夜福利成人在线免费观看| 老司机深夜福利视频在线观看| 婷婷六月久久综合丁香| 桃红色精品国产亚洲av| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 一区二区三区四区激情视频 | 性欧美人与动物交配| 757午夜福利合集在线观看| av欧美777| 麻豆成人午夜福利视频| 一本综合久久免费| 久久精品国产自在天天线| 国产精品久久久久久人妻精品电影| 免费黄网站久久成人精品 | 亚洲av第一区精品v没综合| 精品午夜福利视频在线观看一区| 亚洲经典国产精华液单 | 亚洲久久久久久中文字幕| 国产精品亚洲一级av第二区| 久久精品影院6| 久久久国产成人精品二区| 免费无遮挡裸体视频| 亚洲,欧美精品.| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 久久久久亚洲av毛片大全| 宅男免费午夜| av视频在线观看入口| 亚洲欧美激情综合另类| 国产av一区在线观看免费| 亚洲国产日韩欧美精品在线观看| 在线观看66精品国产| 精品久久久久久,| 国产亚洲欧美在线一区二区| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播| .国产精品久久| 精品久久久久久久久亚洲 | av福利片在线观看| 搡老岳熟女国产| or卡值多少钱| 欧美日韩福利视频一区二区| 久久久久精品国产欧美久久久| 欧美日本视频| 色哟哟哟哟哟哟| 国产精品久久久久久精品电影| 精品免费久久久久久久清纯| bbb黄色大片| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 亚洲精品成人久久久久久| 男人的好看免费观看在线视频| 天天一区二区日本电影三级| 天堂√8在线中文| 91麻豆av在线| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 成人精品一区二区免费| 亚洲片人在线观看| 国产真实乱freesex| 国产精品1区2区在线观看.| 99国产综合亚洲精品| 中文字幕久久专区| 男人舔女人下体高潮全视频| 久99久视频精品免费| 欧美日韩综合久久久久久 | 99国产极品粉嫩在线观看| 欧美成人一区二区免费高清观看| 欧美日本视频| 天堂动漫精品| 久久精品国产亚洲av天美| 人人妻人人澡欧美一区二区| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 免费高清视频大片| 亚洲久久久久久中文字幕| 午夜福利在线在线| 亚洲av免费高清在线观看| 亚洲国产精品合色在线| 欧美性猛交黑人性爽| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲 | 成人性生交大片免费视频hd| av福利片在线观看| 91在线精品国自产拍蜜月| 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 小说图片视频综合网站| 18禁在线播放成人免费| 成年女人毛片免费观看观看9| 搞女人的毛片| АⅤ资源中文在线天堂| 人妻久久中文字幕网| 久久精品人妻少妇| 国模一区二区三区四区视频| 91狼人影院| 日本精品一区二区三区蜜桃| 一级av片app| 12—13女人毛片做爰片一| 国模一区二区三区四区视频| 色综合婷婷激情| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 嫩草影视91久久| 禁无遮挡网站| 看十八女毛片水多多多| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 午夜福利欧美成人| 精品无人区乱码1区二区| 亚洲国产高清在线一区二区三| 51午夜福利影视在线观看| 日韩大尺度精品在线看网址| eeuss影院久久| 国产视频内射| 久久久久久九九精品二区国产| 日本 欧美在线| 欧美+日韩+精品| 精品久久国产蜜桃| 一本精品99久久精品77| 午夜a级毛片| 日本黄色片子视频| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 久久久久免费精品人妻一区二区| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 午夜福利18| 国产淫片久久久久久久久 | 欧美又色又爽又黄视频| 一本久久中文字幕| 亚洲,欧美,日韩| 亚洲av电影在线进入| 免费在线观看日本一区| www.色视频.com| 一级av片app| 国产乱人视频| 1024手机看黄色片| 日韩中文字幕欧美一区二区| 免费搜索国产男女视频| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 精品不卡国产一区二区三区| 久久九九热精品免费| 久久精品91蜜桃| 最近在线观看免费完整版| 999久久久精品免费观看国产| 中亚洲国语对白在线视频| 久久香蕉精品热| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 国产精品自产拍在线观看55亚洲| 色5月婷婷丁香| 国产黄色小视频在线观看| 又黄又爽又免费观看的视频| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 色综合站精品国产| 国产成人a区在线观看| 亚洲18禁久久av| 国产在线男女| 偷拍熟女少妇极品色| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 天堂av国产一区二区熟女人妻| 在线免费观看的www视频| 精品久久久久久久久久久久久| 国产精品av视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品成人久久久久久| 国产精品久久久久久久久免 | 国产私拍福利视频在线观看| 日本三级黄在线观看| av欧美777| 久久久久精品国产欧美久久久| 他把我摸到了高潮在线观看| 欧美另类亚洲清纯唯美| 日韩中字成人| 亚洲一区高清亚洲精品| 国产三级中文精品| 别揉我奶头~嗯~啊~动态视频| 熟女电影av网| 十八禁人妻一区二区| 欧美最新免费一区二区三区 | 美女 人体艺术 gogo| 一区二区三区高清视频在线| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 国模一区二区三区四区视频| 欧美日韩综合久久久久久 | 亚洲自拍偷在线| 99热6这里只有精品| 91字幕亚洲| 欧美色视频一区免费| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 免费在线观看影片大全网站| 亚洲最大成人手机在线| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看 | 亚洲av第一区精品v没综合| 老司机深夜福利视频在线观看| а√天堂www在线а√下载| 激情在线观看视频在线高清| 色播亚洲综合网| 日本成人三级电影网站| 久久午夜亚洲精品久久| 国产高潮美女av| 久久久久性生活片|