• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    污染控制—燃料電池的使能技術(shù)

    2018-12-05 07:02:56
    汽車文摘 2018年12期
    關(guān)鍵詞:冷卻劑主題詞陰極

    主題詞:燃料電池系統(tǒng) 裂化 污染物 陰極空氣過濾器 離子交換過濾器 冷卻劑粒子過濾器

    1 INTRODUCTION

    Climate change is one of the major threats to mankind.To reach the target of maximum 1.5°C temperature rise compared to pre-industrial levels set by the COP21 Conference in Paris[1],emissions from transport,accounting for 23%of the total CO2emissions[2],have to be drastically reduced.

    FuelCellElectric Vehicles(FCEV)offeran alternative to BEV for local zero-emission transport.The energy for electric driving is generated on-board by the catalytic reaction of hydrogen and oxygen from ambient air in a cold combustion reaction,yielding only water as the reaction product.

    As BEV′s driving range depends on the capacity and consequently in battery pack weight,their application for higher duty applications is limited.Fuel cell technology offers an alternative for transport with high daily driving ranges in combination with high vehicle weight[3],as shown in Figure 1.

    To improve the LT PEM fuel cell stack′s durability,degradation rates must be significantly reduced to reach the expected lifetime.The following chapterswill highlight solutions to this challenge.

    2 CLEAN CATHODE AIR

    2.1 Prior State-of-The-Art

    Laboratory Investigation

    Figure 1:Favorable applications of fuel cell technology in transport[3]

    Gaseous contaminations in the cathode air have a negative impact on the durability of LT PEM fuel cell systems,e.g.through poisoning of the platinum catalyst or damaging the membrane.The sensitivity of the stack will increase as platinum loading must be reduced to achieve necessary cost savings.In a publically funded project[4],the main sources for degradation were investigated systematically.Gases containing S-and N-atoms like SO2and NOxturned out to be especially critical for the system performance.Particles,e.g.salt crystals,also have a negative impact and have to be separated.The presence of ammonia at concentration levels even below 1 ppm poisons the electrodes of the cell which in turn affects the cell voltage as well[5].

    Poisoning the cathode with different gases showed that the pollutants cause a significant loss of performance,which can be irreversible without active regeneration.Further investigations showed that the critical concentration level can be as low as 100 ppb.Besides the harmful gases,a negative effect of ions,originating from salt particles like sodium chloride,negatively affect the cell voltage as well(Figure 2).The risk of such a contamination is especially high in coastal areas[6].

    Figure 2:Laboratory tests of effect from contamination on fuel cell voltage[6]

    Proof of Concept:Protection of stationary Fuel Cells against Real-Life Contamination

    Current research focusses on the transfer of the findings from laboratory tests to real-life environments.The positive effect of adsorptive filter elements on fuel cell degradation was proven in a field trial.In long-term test runs with cyclic NO load,the degradation rate after run-in was cut by almost 50%-from 60μV/h to 32μV/h[7].In a stationary fuel cell system containing two shortstacks,one stack was run without a filter element while a cathode air filter protected the other stack.Both started at the same cell voltage and were operated at 65°C and 400 mA/cm2.As shown in Figure 3,the degradation of the unprotected cell was more severe[4].In addition,it was demonstrated through continuous gas measurements that NOxhas a direct influence on the cell voltage under reallife conditions. The detected peaks in pollutant concentration directly lead to a partly reversible voltage drop of the fuel cell voltage.At the end of the test,a voltage difference of 70 mV was observed,equalling approximately 2.2%of the initial voltage,already after 650 hours of operation.The reaction of the filterprotected stack was much less pronounced which proved the functionality of the adsorptive cathode air filter.

    Figure 3:Filter performance under real-life conditions[4]

    The negative effect of NO on stack voltage is associated with molecular adsorption to the platinum catalyst.As NO binds at the same coordination sites as O2,NO adsorption is slowing down the oxygen reduction reaction.To reverse the negative effect,regeneration strategies can be employed.Tests reveal that a complete regeneration will only take place after several hours of regeneration,and the air has to be free of any NOx.In addition,reduction of NO can create NH4+which in turn is harmful for the Ionomer as it irreversibly occupies active sites for proton transport[7].

    2.2 New Insights Into Real-Life Effects On Fuel Cell Durability:ALASKA

    The ALASKA Project:Targets and Approach

    To investigate the effect of real-life contamination on fuel cell durability in mobile applications,the funded projectALASKA(“Auswertungvon Luftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotive Brennstoffzellen”, support code 03ET6036A)was initiated with the project partners Zentrum fürBrennstoffzellenTechnik (ZBT)GmbH,Forschungszentrum Jülich GmbH,Daimler AG,and MANN+HUMMEL Innenraumfilter GmbH&Co.KG.Oneoftheproject′stargetswasto continue the development of adsorbents against gases poisoning the fuel cell and to gain a better understanding of the necessary capacity and lifetime,with a special focus on the effect of peak concentrations.To gain the necessary data with high precision,a truck equipped with several analysers for the designated harmful gases operated as a mobile lab,measuring the concentration of the harmful substances with high spatiotemporal resolution.

    Figure 4:MOBILAB vehicle[8]

    A test lap to gather the required data was defined,containing all relevant types of roads,and also a representative height profile.The lap′s length was about 93 km,the road profile is depicted in Figure 5.

    Figure 5:Test lap for measurements of airborne contaminants[8]

    After a statistically relevant number of measurements,the typical concentration levels of the target gases were related to the different types of roads.The results of the measurements supported the knowledge-based development of the cathode air filter(Figure 6).Furthermore,the highly sensitive test equipment was being used to investigate the behaviour of the adsorbent under real-life condition to achieve additional performance improvements.

    Figure 6:Real-life NOXpollution levels on different road types(adapted from[9])Material Development:Activated Carbon

    The contaminants′profiles collected in the ALASKA project showed the need to develop specific adsorbents with tailored selectivity(Figure 7).

    Figure 7:Adsorption profiles of modified activated carbons for different target gases

    Activated carbons have proven to be a superior adsorbent choice.Since activated carbons mostly possess non-polar groups on their surfaces,impregnation is important for adsorbing polar gases such as NH3or NOx[10].

    Media Development

    Adsorbent materials

    Bulk measurements(Figure 7)of different activated carbon types show that different treatments are beneficial for some characteristic groups,but lead to a performance drop for other substances.Additionally the separation efficiency for some gases can be lower if other,more strongly bonding molecules,are present in gas mixtures.As protection against a broad range of harmful substances is required,further research led to the development of multilayer media containing these tailored adsorbents in different layers(Figure 8).Special care has to be taken of the rightsequence of layers for fulladsorption performance.Very selective adsorbent should be placed on the upstream side so that the pollutants do not block the binding sites of the less specific ones.

    Figure 8:Multilayer design for gas mixtures

    By selection of the most specific activated carbons and mixing them in the right proportion,the performance range of the adsorption media can be optimized.If the systemsareoperated in areaswith ahigh sulfur concentrations,e.g.areas with geysers or volcanoes,the share of catalytic activated carbon should be higher.For regions with high NH3levels,media with a higher content of the activated carbon with an acid impregnation yield higher capacity.Through this,multilayer media can be easily tailored for specific requirements.

    Figure 9:Breakthrough and capacity measurements of tailored filter media

    Figure 9 shows the adsorption performance of such media compositions.By using a higher share of the acidimpregnated carbon,the NH3adsorption capacity is enhanced.

    Underreal-life operating conditions,the gas concentrations will not be constant,but fluctuating.To analyse the adsorption performance,several filter media samples were tested on-road as part of the ALASKA project (Figure 10),showing excellent separation efficiency even at low concentration levels[11].

    Figure 10:Filter sample NH3separation efficiency under real-life driving conditions

    Particle filter media

    Salt particles can drain the cell voltage as well.HEPA mediaaccording to EN1822 show particle separation efficiencies of 99.95%at the most penetrating particle size.Therefore,such media protect the cathode againstsodium chloride particles very well.The disadvantage is a potentially fast media clogging,which requires a pre filter in dusty environments.To avoid an extended demand of mounting space,a double layer bellow was developed[11],as shown in Figure 11.

    Here,a HEPA media layer is pleated together with a media having a lower efficiency and a higher dust holding capacity.In this structure it is possible to generate a secure protection against fine particles as well as a sufficient dust holding capacity in a minimum mounting space.

    Figure 11:Double layer bellow

    Filter Element Designs

    Laminated media offer the advantage of adsorbent′s immobilization,so negative influence from movement or vibrations of the system can be avoided.Furthermore,the pressure drop can be optimized in relation to the performance density ofthe activated carbon with different design concepts(Figure 12).The trade-off between the performance characteristics (separation efficiency,capacity and pressure loss)on filter element level requires to find the best compromise between packaging constraints and adsorption performance.

    Figure 12:Typical air flow/pressure loss profiles for different element designs

    A standard pleated filter brings the benefit of a high filtration surface which leads to a lower media velocity and a low pressure drop,especially important for high volume flows,e.g.in FCEV.The open structure of a pleated filter results in a lower performance density.Alternatively,a stacked filter can be applied to gain a higher utilization of the available mounting space.The higher amount of activated carbon in the same volume brings more capacity and a longer contact time with the adsorbent.The higher carbon and performance density leads to a higher pressure loss of the filter element.

    For the automotive application investigated in the ALASKA project,a combination of stacked adsorbent layers(Figure 13)with pleated filter media turned out to be the best design option[11].

    Figure 13:ALASKA filter element

    The projectresultsclearly show thatharmful contamination levels of airborne contamination are easily exceeded in selected environments,and that cathode air filters with adsorbent stages are efficient means to reduce degradation rates of LT PEM stacks.

    3 CLEANFUELCELLCOOLANT

    3.1 Removal of Ions:Ion Exchanger Filter

    Scientific background

    To remove the heat generated by the fuel cell stack,liquid cooling with water-glycol mixtures is often used.It is crucial to keep the liquid at a very low electric conductivity to avoid electric shorts in the fuel cell stack.During operation,ions can enter the liquid e.g.from metal surfaces of coolant loop components,additives from plastics,and corrosive effects,leading to an increase in electric conductivity.Furthermore,the reactive ions will further propagate corrosion in the cooling circuit,acting as catalysts.Deposits containing different metal ions(Cr,Mn,Fe,Ni and Ca)indicate a degradation of the material′ssurfaceswhich can harm the fuelcell additionally.H2O2can be formed in the fuel cell(Figure 14)and even if the membrane is resistant against it under normal conditions,the presence of metal ions together with H2O2will catalyze the chemical degradation of the membrane.Additionally,almost all cations(except Li+)can replace the protons in the sulfonic acid functions of the membrane,which leads to a decreased protonic conductivity and therefore a performance drop[12].

    Figure 14:(l.)Vents corroded in De-Ionized(DI)water(r.)deposits of metal ions[12]

    To keep the conductivity low and to protect the coolant loop from accelerated corrosion,ion exchange technology must be applied.

    Ion Exchange Filters for Automotive Applications:Material and Product Design

    A mixture of strongly acidic and basic resins was developed which maintains its high volumetric capacity even at elevated temperatures,enabling the use in automotive applications.Strongly basic ion exchange resins often show a loss of capacity caused by thermal degradation of the anion-binding groups.This effect is attributed to the“Hofmann Degradation” which eliminatesone methylgroup from the quaternary functional group,yielding a tertiary amine,or even eliminates the whole amine block.Both mechanisms require the presence of OH--anions.For thermal aging tests,the resins where immersed in a water/ethylene glycol mixture and stored for three weeks at 90°C.The samples′remaining ion exchange capacity were measured and compared to the initial values,showing the degree of temperature- induced degradation.Monodisperse styrene-divinylbenzene copolymer(PSDVB) resins with sulfonic acid and quaternary ammonium functions combined good volume-based capacity with a very low degradation after the aging procedure.

    To achieve full utilization of the resin mix,an innovative grid structure was developed.The internal lattice structure directs the coolant flow in a way that all resin is used efficiently(Figure 15).In addition,the internal matrix structure keeps the resin beads slightly apart,thus lowering the pressure loss in operation.The internal structure also prevents resin de-mixing caused by vibration in fuel cell systems(Figure 16).

    Figure 15:Homogenous flow field at ion exchange filter inlet

    Proof of Concept:Breakthrough Curves

    As the levels of initial ionic contamination and dragin rates are often not available,typical contamination levels, main contaminants and time- dependent concentration levels were defined,based on literature research,for proof-of-concept testing.The fulfilment of the separation task was proven by breakthrough measurements.The increase in electric conductivity indicates that the resins′capacities are fully spent,and that a filter change is required.

    Figure 16:Typical ion exchange filter breakthrough curve

    The qualification of the service interval depends on the unique application and is done together with the customer,based on the concrete operation requirements.

    3.2 Removal of Particles:Coolant Particle Filter

    Problem Description

    In addition to ions,the fuel cell coolant can be contaminated by particles.Potential sources for these particles can be the internal surfaces of piping and other components if the parts are not manufactured,stored and assembled in special environments,e.g.in clean rooms.These primary particles can lead to the formation of secondary particles,thus increasing the particle load.Hard particles can lead to several problems,e.g.blocking of narrow coolant channels through agglomeration and inducing wear inside the coolant pump.Both factors can lead to a reduction in cooling efficiency.In contrast to ion exchange filters which are typically installed in a bypass loop,coolant particle filters are placed in the coolant fullflow.This makes it necessary to choose product designs with very low pressure loss at high volume flow.In addition,the material selection for all components is strictly limited to materials which are compatible with the coolant to avoid degradation and leaching of additives which would increase the electric conductivity.

    Coolant Particle Filters:Material and Product Design

    Often simple meshes are used to hold back particles.These have the disadvantage that large splinters can easily passthrough iforiented in flow direction,perpendicular to the mesh(Figure 17).3D fibre structures overcome this concept′s drawback.

    Figure 17:MULTIGRADE media for coolant particle filters

    Media with high porosity are applied for low pressure drop.As these have a low thickness,an additional supporting grid must be applied downstream to stabilize the filterpleatsunderhigh volume flow conditions.

    ThroughComputationalFluidDynamics(CFD)analysis,a pressure-drop optimized filter design was developed,as shown in Figure 18.

    Figure 18:CFD simulation and product design for coolant particle filters

    4 SUMMARY

    Efficient contaminant removal from cathode air and coolant is required to pave the way to robust and durable,yet affordable fuel cell systems.With ever lower catalyst concentration,the need for a highly efficient protection will increase if the expected system lifetime shall be achieved.Special emphasis will remain on the separation of NH3as it does not only block the catalyst,but also damages the ionomer/membrane material[13].In Selective Catalytic Reduction (SCR)exhaustaftertreatment devices,ammonia slip can occur if an excess of AdBlue/urea solution is sprayed into the system,which will challenge the stack lifetime even more as these systems are expected to strongly penetrate the market.Research on the sensitivity of a LT PEM fuel cell against airborne contamination under real-life automotive conditions led to the knowledge-based development of adsorbents and media for cathode air filters,tailored to effective protection.

    To enable the efficient heat removal from the fuel cell stack,the required cleanliness level of the coolant has to be maintained.To protect the fuel cell system from corrosion and electric shorts,ion exchange resins have been developed to keep the electric conductivity and ion contamination in the liquid cooling circuit low.Innovative product features enhance the performance and resin utilization.In addition to ion removal,a coolant particle filter was developed to prevent wear in the coolant pump and blocking of narrow coolant channels.

    ABBREVATIONS

    ALASKA AuswertungvonLuftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotiv-Brennstoffzellen

    BEV Battery Electric Vehicle

    CFD Computational Fluid Dynamics

    CHP Combined Heat and Power

    DI De-Ionized

    FCEV Fuel Cell Electric Vehicle

    HEPA High Efficiency ParticulateAir filter

    LT PEM Low Temperature Proton Exchange Membrane

    PS-DVB Styrene-Divinylbenzene copolymer

    SCR Selective Catalytic Reduction

    Author Introduction of Dr.Michael Harenbrock

    Dr.Michael Harenbrock joined MANN+HUMMEL GmbH,a global leader in Filtration,in 1998.He works on fuel cell and battery projects since 2010.In his current position as Principal Expert Electric Mobility,he strategically identifies the need for new filtration solutions for Electric Mobility including Fuel Cell systems through technology and marketscouting,and coordinates all innovation- related activities globally.Networking and collaboration in industry organizations are essential parts of his work as well as presentations in international conferences.

    Contact at michael.harenbrock@mann-hummel.com

    猜你喜歡
    冷卻劑主題詞陰極
    核電站主冷卻劑泵可取出部件一體化吊裝檢修工藝探索
    Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    反應(yīng)堆冷卻劑pH對核電廠安全運(yùn)行影響研究
    中國核電(2017年1期)2017-05-17 06:10:13
    冷卻劑泄漏監(jiān)測系統(tǒng)在核電廠的應(yīng)用
    中國核電(2017年1期)2017-05-17 06:10:05
    冷卻劑管道取樣管焊縫裂紋分析
    焊接(2015年8期)2015-07-18 10:59:14
    IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
    微生物燃料電池空氣陰極的研究進(jìn)展
    我校學(xué)報(bào)第32卷第5期(2014年10月)平均每篇有3.04個(gè)21世紀(jì)的Ei主題詞
    我校學(xué)報(bào)第32卷第6期(2014年12月)平均每篇有3.00個(gè)21世紀(jì)的Ei主題詞
    91狼人影院| 高清不卡的av网站| 男男h啪啪无遮挡| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩另类电影网站 | 亚洲av综合色区一区| 久久久久性生活片| 国产爽快片一区二区三区| 亚洲国产精品国产精品| 国产成人精品福利久久| 汤姆久久久久久久影院中文字幕| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久精品一区二区三区| 男人和女人高潮做爰伦理| 久久精品夜色国产| 丝袜喷水一区| 欧美激情极品国产一区二区三区 | 亚洲精品久久午夜乱码| 国产成人aa在线观看| a级毛色黄片| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 国产av码专区亚洲av| av播播在线观看一区| 亚洲精品乱久久久久久| 久久国内精品自在自线图片| 新久久久久国产一级毛片| 中国美白少妇内射xxxbb| 欧美xxⅹ黑人| 日本vs欧美在线观看视频 | 最近中文字幕高清免费大全6| 能在线免费看毛片的网站| 麻豆精品久久久久久蜜桃| 观看免费一级毛片| 国产精品.久久久| 2022亚洲国产成人精品| 亚洲精品乱久久久久久| 欧美精品一区二区免费开放| 国产精品一及| 女人十人毛片免费观看3o分钟| 毛片女人毛片| 少妇熟女欧美另类| 免费看不卡的av| 亚洲成色77777| 亚洲欧美精品专区久久| 国产综合精华液| 人妻少妇偷人精品九色| 久久久久久久国产电影| 国产精品99久久久久久久久| 国产永久视频网站| 国产精品欧美亚洲77777| 好男人视频免费观看在线| 亚洲成人一二三区av| 精品一品国产午夜福利视频| 日本免费在线观看一区| 国产精品秋霞免费鲁丝片| 偷拍熟女少妇极品色| 大香蕉97超碰在线| 欧美97在线视频| 久久久久久久久久人人人人人人| 免费观看a级毛片全部| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜爱| 三级国产精品片| 精品视频人人做人人爽| 成人毛片a级毛片在线播放| 亚洲av.av天堂| 久久6这里有精品| 国产美女午夜福利| 国产日韩欧美在线精品| 两个人的视频大全免费| 一区二区av电影网| 国产在视频线精品| 一级爰片在线观看| 色网站视频免费| 草草在线视频免费看| 精品一区在线观看国产| 午夜激情福利司机影院| 久久久久久久亚洲中文字幕| 日本黄大片高清| 中文欧美无线码| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 色吧在线观看| 天美传媒精品一区二区| 男人爽女人下面视频在线观看| 国产一级毛片在线| 伦理电影大哥的女人| 婷婷色麻豆天堂久久| 免费久久久久久久精品成人欧美视频 | 国产爱豆传媒在线观看| 最近最新中文字幕免费大全7| 日本av手机在线免费观看| 欧美精品亚洲一区二区| 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 国产黄片视频在线免费观看| 免费看日本二区| 少妇精品久久久久久久| 在线看a的网站| 亚洲一级一片aⅴ在线观看| 一本久久精品| 老师上课跳d突然被开到最大视频| 熟女av电影| 国产亚洲5aaaaa淫片| 偷拍熟女少妇极品色| 国产 精品1| 大又大粗又爽又黄少妇毛片口| 免费av不卡在线播放| 只有这里有精品99| 久久久久久久精品精品| 香蕉精品网在线| 亚洲国产精品999| 国产亚洲5aaaaa淫片| 成人18禁高潮啪啪吃奶动态图 | 观看av在线不卡| 免费大片18禁| 日本黄色片子视频| 中文资源天堂在线| 亚洲精品视频女| 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 久久久久久人妻| 亚洲欧美日韩东京热| 亚洲电影在线观看av| 色婷婷av一区二区三区视频| 日本欧美国产在线视频| 中文在线观看免费www的网站| 人人妻人人看人人澡| 成人毛片60女人毛片免费| 欧美另类一区| 美女高潮的动态| 中文字幕久久专区| 久久99蜜桃精品久久| 99九九线精品视频在线观看视频| 久久久久国产精品人妻一区二区| 联通29元200g的流量卡| 国产免费一级a男人的天堂| 成人国产av品久久久| 欧美精品一区二区大全| 欧美另类一区| 国产欧美日韩一区二区三区在线 | 高清在线视频一区二区三区| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件| 亚洲精品国产色婷婷电影| 一级黄片播放器| 少妇熟女欧美另类| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 久久久久久久精品精品| 国产片特级美女逼逼视频| 99久久精品一区二区三区| 在线看a的网站| 国产国拍精品亚洲av在线观看| av国产久精品久网站免费入址| 成人二区视频| 午夜福利在线观看免费完整高清在| 久久久久久久久大av| 亚洲成人手机| 联通29元200g的流量卡| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| 欧美97在线视频| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 又爽又黄a免费视频| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 亚洲国产色片| 国产淫语在线视频| 国产午夜精品久久久久久一区二区三区| 成人影院久久| 亚洲美女搞黄在线观看| av在线蜜桃| 一级a做视频免费观看| 51国产日韩欧美| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆| 国产精品免费大片| 国产精品伦人一区二区| 国产成人精品久久久久久| 免费av中文字幕在线| 午夜激情福利司机影院| 国产精品国产av在线观看| 少妇人妻一区二区三区视频| 久久 成人 亚洲| 尤物成人国产欧美一区二区三区| av.在线天堂| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 在线观看一区二区三区| 日韩 亚洲 欧美在线| 尾随美女入室| av免费在线看不卡| 麻豆乱淫一区二区| 永久网站在线| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 午夜视频国产福利| 国产乱人视频| 亚洲精品色激情综合| 国产av国产精品国产| 97精品久久久久久久久久精品| 精品亚洲成国产av| 日产精品乱码卡一卡2卡三| 色视频在线一区二区三区| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 成人一区二区视频在线观看| 两个人的视频大全免费| 久久久精品94久久精品| 久久久久久久国产电影| 1000部很黄的大片| 天堂8中文在线网| 国产深夜福利视频在线观看| 男女边摸边吃奶| 久久久久人妻精品一区果冻| 国产乱人偷精品视频| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久电影网| 一级黄片播放器| 人人妻人人爽人人添夜夜欢视频 | 国产成人91sexporn| 女性被躁到高潮视频| 亚洲,欧美,日韩| 少妇人妻 视频| 简卡轻食公司| 精品视频人人做人人爽| 99久久精品热视频| 国内精品宾馆在线| 亚洲国产日韩一区二区| 免费久久久久久久精品成人欧美视频 | 国产人妻一区二区三区在| 国产毛片在线视频| 午夜激情久久久久久久| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 视频中文字幕在线观看| 联通29元200g的流量卡| 国产成人91sexporn| 亚洲精品第二区| 欧美激情极品国产一区二区三区 | 国产精品久久久久久精品古装| 精品酒店卫生间| 国产精品人妻久久久影院| 妹子高潮喷水视频| 1000部很黄的大片| 免费观看性生交大片5| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 熟女人妻精品中文字幕| 免费看光身美女| 亚洲欧洲国产日韩| 妹子高潮喷水视频| 中文字幕av成人在线电影| 亚洲av电影在线观看一区二区三区| 国产久久久一区二区三区| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜 | 日本午夜av视频| 在线 av 中文字幕| h日本视频在线播放| 亚洲精品色激情综合| 久久久久国产精品人妻一区二区| 免费av不卡在线播放| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 欧美xxxx黑人xx丫x性爽| 联通29元200g的流量卡| 久久久成人免费电影| av女优亚洲男人天堂| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 欧美另类一区| 国产色婷婷99| 成人黄色视频免费在线看| 国产精品熟女久久久久浪| 内射极品少妇av片p| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频 | 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 中国三级夫妇交换| av线在线观看网站| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 两个人的视频大全免费| 国产成人免费无遮挡视频| 赤兔流量卡办理| 精品一区二区免费观看| 中文字幕亚洲精品专区| 深夜a级毛片| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| 亚洲欧美日韩卡通动漫| 精品视频人人做人人爽| 亚洲av福利一区| 欧美 日韩 精品 国产| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 精品少妇黑人巨大在线播放| 我要看日韩黄色一级片| 在线观看免费视频网站a站| 亚洲综合色惰| 国产深夜福利视频在线观看| 久久精品国产自在天天线| 国产人妻一区二区三区在| 国产黄片美女视频| 丰满迷人的少妇在线观看| 又黄又爽又刺激的免费视频.| 国产一区二区三区av在线| 精品人妻熟女av久视频| 九九在线视频观看精品| 一级二级三级毛片免费看| 日本欧美视频一区| 色吧在线观看| 日本黄色片子视频| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 午夜免费观看性视频| 国产精品一及| 国产爽快片一区二区三区| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 三级经典国产精品| 视频中文字幕在线观看| 国产毛片在线视频| 成人漫画全彩无遮挡| av视频免费观看在线观看| av又黄又爽大尺度在线免费看| 色视频www国产| av.在线天堂| 男男h啪啪无遮挡| 看免费成人av毛片| 国产综合精华液| 久久毛片免费看一区二区三区| av播播在线观看一区| 欧美精品亚洲一区二区| av网站免费在线观看视频| 国产免费一区二区三区四区乱码| 日韩成人伦理影院| 精品一区在线观看国产| 小蜜桃在线观看免费完整版高清| 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 欧美精品一区二区大全| 国产美女午夜福利| 99精国产麻豆久久婷婷| 日韩欧美精品免费久久| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 只有这里有精品99| 少妇人妻精品综合一区二区| 男女边摸边吃奶| 国内精品宾馆在线| 大话2 男鬼变身卡| 亚洲精品日本国产第一区| 天堂中文最新版在线下载| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 久久久久久久久久久丰满| 哪个播放器可以免费观看大片| 色婷婷久久久亚洲欧美| 成年美女黄网站色视频大全免费 | 久久久成人免费电影| 亚洲精品中文字幕在线视频 | 国产一区二区三区综合在线观看 | 免费少妇av软件| 中国三级夫妇交换| 亚洲av成人精品一区久久| 精品国产三级普通话版| 久久人人爽人人片av| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 观看免费一级毛片| av国产免费在线观看| 少妇人妻精品综合一区二区| 国产精品偷伦视频观看了| 人妻系列 视频| 日韩人妻高清精品专区| 久久国内精品自在自线图片| 欧美xxⅹ黑人| 国产淫片久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲一级一片aⅴ在线观看| 新久久久久国产一级毛片| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 国产精品一及| 直男gayav资源| 久久久久久久久大av| 久久人人爽人人片av| 久久久久久九九精品二区国产| 噜噜噜噜噜久久久久久91| 新久久久久国产一级毛片| 日日撸夜夜添| 色视频www国产| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 一个人看的www免费观看视频| 观看美女的网站| 80岁老熟妇乱子伦牲交| a级毛片免费高清观看在线播放| 秋霞伦理黄片| 久久久久视频综合| 中文字幕免费在线视频6| av播播在线观看一区| 亚洲精品中文字幕在线视频 | 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站 | av国产久精品久网站免费入址| 18+在线观看网站| 日韩中文字幕视频在线看片 | 黑人高潮一二区| videos熟女内射| 亚洲国产精品专区欧美| 国产精品麻豆人妻色哟哟久久| av播播在线观看一区| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 亚洲国产av新网站| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久| 久热久热在线精品观看| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 免费人妻精品一区二区三区视频| 99热6这里只有精品| 久久久久久九九精品二区国产| 六月丁香七月| 久久人妻熟女aⅴ| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 女性被躁到高潮视频| 在线观看av片永久免费下载| 老司机影院成人| 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 亚洲久久久国产精品| 黄色怎么调成土黄色| 色综合色国产| 国产免费一区二区三区四区乱码| 一个人看的www免费观看视频| 美女内射精品一级片tv| 国产免费福利视频在线观看| 午夜激情福利司机影院| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 精品一区二区三卡| 久久影院123| 欧美+日韩+精品| 超碰av人人做人人爽久久| 国产探花极品一区二区| 国产精品女同一区二区软件| 看十八女毛片水多多多| 精品久久久久久久末码| 国产av精品麻豆| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 国精品久久久久久国模美| 成人亚洲欧美一区二区av| 久久久色成人| 国产白丝娇喘喷水9色精品| 最近手机中文字幕大全| 国产高潮美女av| 亚洲人与动物交配视频| 男女免费视频国产| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片 | 综合色丁香网| 久久这里有精品视频免费| 欧美一区二区亚洲| 岛国毛片在线播放| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在| 在线 av 中文字幕| 亚洲精品亚洲一区二区| 国产视频内射| 最黄视频免费看| 乱码一卡2卡4卡精品| 麻豆国产97在线/欧美| 另类亚洲欧美激情| 久久99热这里只频精品6学生| 日韩国内少妇激情av| 97热精品久久久久久| 天堂中文最新版在线下载| 人妻系列 视频| 99热国产这里只有精品6| 亚洲第一av免费看| 欧美性感艳星| 亚洲欧美日韩东京热| 久久青草综合色| 欧美三级亚洲精品| 国产美女午夜福利| 91aial.com中文字幕在线观看| a级毛色黄片| 少妇人妻 视频| 中文字幕久久专区| 午夜免费鲁丝| 高清午夜精品一区二区三区| 人妻少妇偷人精品九色| 日本午夜av视频| 极品少妇高潮喷水抽搐| 国产精品一区二区在线不卡| 国产黄片美女视频| av国产久精品久网站免费入址| 精品国产露脸久久av麻豆| 狂野欧美激情性bbbbbb| 26uuu在线亚洲综合色| 一个人免费看片子| 夫妻午夜视频| 十八禁网站网址无遮挡 | 亚洲精品国产av成人精品| 国产高潮美女av| 老司机影院成人| 国产精品无大码| 亚洲av在线观看美女高潮| 一级a做视频免费观看| 国产成人精品福利久久| 国产精品一区www在线观看| 国产一区二区在线观看日韩| 联通29元200g的流量卡| 亚洲欧美日韩卡通动漫| 制服丝袜香蕉在线| 成人二区视频| 国产亚洲91精品色在线| kizo精华| 国语对白做爰xxxⅹ性视频网站| 交换朋友夫妻互换小说| 亚洲av综合色区一区| 国产一区亚洲一区在线观看| 国产伦理片在线播放av一区| 春色校园在线视频观看| 国产真实伦视频高清在线观看| 免费黄网站久久成人精品| 夫妻午夜视频| av天堂中文字幕网| 久久久久精品性色| 日韩不卡一区二区三区视频在线| 日韩电影二区| 午夜福利视频精品| 亚洲av中文av极速乱| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 伊人久久精品亚洲午夜| 亚洲四区av| 国产一区二区三区av在线| 欧美一级a爱片免费观看看| 久久综合国产亚洲精品| 夜夜看夜夜爽夜夜摸| 成年免费大片在线观看| 亚洲av男天堂| 久久亚洲国产成人精品v| 一级毛片我不卡| 久久99精品国语久久久| videos熟女内射| 色视频在线一区二区三区| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 多毛熟女@视频| 99精国产麻豆久久婷婷| 亚洲av综合色区一区| 久久久国产一区二区| 亚洲色图av天堂| 少妇熟女欧美另类| 亚州av有码| 伊人久久精品亚洲午夜| 色婷婷久久久亚洲欧美| 日韩精品有码人妻一区| 国产av一区二区精品久久 | 亚洲人成网站在线观看播放| 午夜老司机福利剧场| 日韩av在线免费看完整版不卡| 九九爱精品视频在线观看| 搡老乐熟女国产| 国产有黄有色有爽视频| 干丝袜人妻中文字幕| 日韩av免费高清视频| 十八禁网站网址无遮挡 | 最近最新中文字幕大全电影3| 成人18禁高潮啪啪吃奶动态图 | 丝瓜视频免费看黄片| 青春草亚洲视频在线观看| 寂寞人妻少妇视频99o| 国产爽快片一区二区三区| 我要看日韩黄色一级片| 三级国产精品欧美在线观看| 晚上一个人看的免费电影|