• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    污染控制—燃料電池的使能技術(shù)

    2018-12-05 07:02:56
    汽車文摘 2018年12期
    關(guān)鍵詞:冷卻劑主題詞陰極

    主題詞:燃料電池系統(tǒng) 裂化 污染物 陰極空氣過濾器 離子交換過濾器 冷卻劑粒子過濾器

    1 INTRODUCTION

    Climate change is one of the major threats to mankind.To reach the target of maximum 1.5°C temperature rise compared to pre-industrial levels set by the COP21 Conference in Paris[1],emissions from transport,accounting for 23%of the total CO2emissions[2],have to be drastically reduced.

    FuelCellElectric Vehicles(FCEV)offeran alternative to BEV for local zero-emission transport.The energy for electric driving is generated on-board by the catalytic reaction of hydrogen and oxygen from ambient air in a cold combustion reaction,yielding only water as the reaction product.

    As BEV′s driving range depends on the capacity and consequently in battery pack weight,their application for higher duty applications is limited.Fuel cell technology offers an alternative for transport with high daily driving ranges in combination with high vehicle weight[3],as shown in Figure 1.

    To improve the LT PEM fuel cell stack′s durability,degradation rates must be significantly reduced to reach the expected lifetime.The following chapterswill highlight solutions to this challenge.

    2 CLEAN CATHODE AIR

    2.1 Prior State-of-The-Art

    Laboratory Investigation

    Figure 1:Favorable applications of fuel cell technology in transport[3]

    Gaseous contaminations in the cathode air have a negative impact on the durability of LT PEM fuel cell systems,e.g.through poisoning of the platinum catalyst or damaging the membrane.The sensitivity of the stack will increase as platinum loading must be reduced to achieve necessary cost savings.In a publically funded project[4],the main sources for degradation were investigated systematically.Gases containing S-and N-atoms like SO2and NOxturned out to be especially critical for the system performance.Particles,e.g.salt crystals,also have a negative impact and have to be separated.The presence of ammonia at concentration levels even below 1 ppm poisons the electrodes of the cell which in turn affects the cell voltage as well[5].

    Poisoning the cathode with different gases showed that the pollutants cause a significant loss of performance,which can be irreversible without active regeneration.Further investigations showed that the critical concentration level can be as low as 100 ppb.Besides the harmful gases,a negative effect of ions,originating from salt particles like sodium chloride,negatively affect the cell voltage as well(Figure 2).The risk of such a contamination is especially high in coastal areas[6].

    Figure 2:Laboratory tests of effect from contamination on fuel cell voltage[6]

    Proof of Concept:Protection of stationary Fuel Cells against Real-Life Contamination

    Current research focusses on the transfer of the findings from laboratory tests to real-life environments.The positive effect of adsorptive filter elements on fuel cell degradation was proven in a field trial.In long-term test runs with cyclic NO load,the degradation rate after run-in was cut by almost 50%-from 60μV/h to 32μV/h[7].In a stationary fuel cell system containing two shortstacks,one stack was run without a filter element while a cathode air filter protected the other stack.Both started at the same cell voltage and were operated at 65°C and 400 mA/cm2.As shown in Figure 3,the degradation of the unprotected cell was more severe[4].In addition,it was demonstrated through continuous gas measurements that NOxhas a direct influence on the cell voltage under reallife conditions. The detected peaks in pollutant concentration directly lead to a partly reversible voltage drop of the fuel cell voltage.At the end of the test,a voltage difference of 70 mV was observed,equalling approximately 2.2%of the initial voltage,already after 650 hours of operation.The reaction of the filterprotected stack was much less pronounced which proved the functionality of the adsorptive cathode air filter.

    Figure 3:Filter performance under real-life conditions[4]

    The negative effect of NO on stack voltage is associated with molecular adsorption to the platinum catalyst.As NO binds at the same coordination sites as O2,NO adsorption is slowing down the oxygen reduction reaction.To reverse the negative effect,regeneration strategies can be employed.Tests reveal that a complete regeneration will only take place after several hours of regeneration,and the air has to be free of any NOx.In addition,reduction of NO can create NH4+which in turn is harmful for the Ionomer as it irreversibly occupies active sites for proton transport[7].

    2.2 New Insights Into Real-Life Effects On Fuel Cell Durability:ALASKA

    The ALASKA Project:Targets and Approach

    To investigate the effect of real-life contamination on fuel cell durability in mobile applications,the funded projectALASKA(“Auswertungvon Luftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotive Brennstoffzellen”, support code 03ET6036A)was initiated with the project partners Zentrum fürBrennstoffzellenTechnik (ZBT)GmbH,Forschungszentrum Jülich GmbH,Daimler AG,and MANN+HUMMEL Innenraumfilter GmbH&Co.KG.Oneoftheproject′stargetswasto continue the development of adsorbents against gases poisoning the fuel cell and to gain a better understanding of the necessary capacity and lifetime,with a special focus on the effect of peak concentrations.To gain the necessary data with high precision,a truck equipped with several analysers for the designated harmful gases operated as a mobile lab,measuring the concentration of the harmful substances with high spatiotemporal resolution.

    Figure 4:MOBILAB vehicle[8]

    A test lap to gather the required data was defined,containing all relevant types of roads,and also a representative height profile.The lap′s length was about 93 km,the road profile is depicted in Figure 5.

    Figure 5:Test lap for measurements of airborne contaminants[8]

    After a statistically relevant number of measurements,the typical concentration levels of the target gases were related to the different types of roads.The results of the measurements supported the knowledge-based development of the cathode air filter(Figure 6).Furthermore,the highly sensitive test equipment was being used to investigate the behaviour of the adsorbent under real-life condition to achieve additional performance improvements.

    Figure 6:Real-life NOXpollution levels on different road types(adapted from[9])Material Development:Activated Carbon

    The contaminants′profiles collected in the ALASKA project showed the need to develop specific adsorbents with tailored selectivity(Figure 7).

    Figure 7:Adsorption profiles of modified activated carbons for different target gases

    Activated carbons have proven to be a superior adsorbent choice.Since activated carbons mostly possess non-polar groups on their surfaces,impregnation is important for adsorbing polar gases such as NH3or NOx[10].

    Media Development

    Adsorbent materials

    Bulk measurements(Figure 7)of different activated carbon types show that different treatments are beneficial for some characteristic groups,but lead to a performance drop for other substances.Additionally the separation efficiency for some gases can be lower if other,more strongly bonding molecules,are present in gas mixtures.As protection against a broad range of harmful substances is required,further research led to the development of multilayer media containing these tailored adsorbents in different layers(Figure 8).Special care has to be taken of the rightsequence of layers for fulladsorption performance.Very selective adsorbent should be placed on the upstream side so that the pollutants do not block the binding sites of the less specific ones.

    Figure 8:Multilayer design for gas mixtures

    By selection of the most specific activated carbons and mixing them in the right proportion,the performance range of the adsorption media can be optimized.If the systemsareoperated in areaswith ahigh sulfur concentrations,e.g.areas with geysers or volcanoes,the share of catalytic activated carbon should be higher.For regions with high NH3levels,media with a higher content of the activated carbon with an acid impregnation yield higher capacity.Through this,multilayer media can be easily tailored for specific requirements.

    Figure 9:Breakthrough and capacity measurements of tailored filter media

    Figure 9 shows the adsorption performance of such media compositions.By using a higher share of the acidimpregnated carbon,the NH3adsorption capacity is enhanced.

    Underreal-life operating conditions,the gas concentrations will not be constant,but fluctuating.To analyse the adsorption performance,several filter media samples were tested on-road as part of the ALASKA project (Figure 10),showing excellent separation efficiency even at low concentration levels[11].

    Figure 10:Filter sample NH3separation efficiency under real-life driving conditions

    Particle filter media

    Salt particles can drain the cell voltage as well.HEPA mediaaccording to EN1822 show particle separation efficiencies of 99.95%at the most penetrating particle size.Therefore,such media protect the cathode againstsodium chloride particles very well.The disadvantage is a potentially fast media clogging,which requires a pre filter in dusty environments.To avoid an extended demand of mounting space,a double layer bellow was developed[11],as shown in Figure 11.

    Here,a HEPA media layer is pleated together with a media having a lower efficiency and a higher dust holding capacity.In this structure it is possible to generate a secure protection against fine particles as well as a sufficient dust holding capacity in a minimum mounting space.

    Figure 11:Double layer bellow

    Filter Element Designs

    Laminated media offer the advantage of adsorbent′s immobilization,so negative influence from movement or vibrations of the system can be avoided.Furthermore,the pressure drop can be optimized in relation to the performance density ofthe activated carbon with different design concepts(Figure 12).The trade-off between the performance characteristics (separation efficiency,capacity and pressure loss)on filter element level requires to find the best compromise between packaging constraints and adsorption performance.

    Figure 12:Typical air flow/pressure loss profiles for different element designs

    A standard pleated filter brings the benefit of a high filtration surface which leads to a lower media velocity and a low pressure drop,especially important for high volume flows,e.g.in FCEV.The open structure of a pleated filter results in a lower performance density.Alternatively,a stacked filter can be applied to gain a higher utilization of the available mounting space.The higher amount of activated carbon in the same volume brings more capacity and a longer contact time with the adsorbent.The higher carbon and performance density leads to a higher pressure loss of the filter element.

    For the automotive application investigated in the ALASKA project,a combination of stacked adsorbent layers(Figure 13)with pleated filter media turned out to be the best design option[11].

    Figure 13:ALASKA filter element

    The projectresultsclearly show thatharmful contamination levels of airborne contamination are easily exceeded in selected environments,and that cathode air filters with adsorbent stages are efficient means to reduce degradation rates of LT PEM stacks.

    3 CLEANFUELCELLCOOLANT

    3.1 Removal of Ions:Ion Exchanger Filter

    Scientific background

    To remove the heat generated by the fuel cell stack,liquid cooling with water-glycol mixtures is often used.It is crucial to keep the liquid at a very low electric conductivity to avoid electric shorts in the fuel cell stack.During operation,ions can enter the liquid e.g.from metal surfaces of coolant loop components,additives from plastics,and corrosive effects,leading to an increase in electric conductivity.Furthermore,the reactive ions will further propagate corrosion in the cooling circuit,acting as catalysts.Deposits containing different metal ions(Cr,Mn,Fe,Ni and Ca)indicate a degradation of the material′ssurfaceswhich can harm the fuelcell additionally.H2O2can be formed in the fuel cell(Figure 14)and even if the membrane is resistant against it under normal conditions,the presence of metal ions together with H2O2will catalyze the chemical degradation of the membrane.Additionally,almost all cations(except Li+)can replace the protons in the sulfonic acid functions of the membrane,which leads to a decreased protonic conductivity and therefore a performance drop[12].

    Figure 14:(l.)Vents corroded in De-Ionized(DI)water(r.)deposits of metal ions[12]

    To keep the conductivity low and to protect the coolant loop from accelerated corrosion,ion exchange technology must be applied.

    Ion Exchange Filters for Automotive Applications:Material and Product Design

    A mixture of strongly acidic and basic resins was developed which maintains its high volumetric capacity even at elevated temperatures,enabling the use in automotive applications.Strongly basic ion exchange resins often show a loss of capacity caused by thermal degradation of the anion-binding groups.This effect is attributed to the“Hofmann Degradation” which eliminatesone methylgroup from the quaternary functional group,yielding a tertiary amine,or even eliminates the whole amine block.Both mechanisms require the presence of OH--anions.For thermal aging tests,the resins where immersed in a water/ethylene glycol mixture and stored for three weeks at 90°C.The samples′remaining ion exchange capacity were measured and compared to the initial values,showing the degree of temperature- induced degradation.Monodisperse styrene-divinylbenzene copolymer(PSDVB) resins with sulfonic acid and quaternary ammonium functions combined good volume-based capacity with a very low degradation after the aging procedure.

    To achieve full utilization of the resin mix,an innovative grid structure was developed.The internal lattice structure directs the coolant flow in a way that all resin is used efficiently(Figure 15).In addition,the internal matrix structure keeps the resin beads slightly apart,thus lowering the pressure loss in operation.The internal structure also prevents resin de-mixing caused by vibration in fuel cell systems(Figure 16).

    Figure 15:Homogenous flow field at ion exchange filter inlet

    Proof of Concept:Breakthrough Curves

    As the levels of initial ionic contamination and dragin rates are often not available,typical contamination levels, main contaminants and time- dependent concentration levels were defined,based on literature research,for proof-of-concept testing.The fulfilment of the separation task was proven by breakthrough measurements.The increase in electric conductivity indicates that the resins′capacities are fully spent,and that a filter change is required.

    Figure 16:Typical ion exchange filter breakthrough curve

    The qualification of the service interval depends on the unique application and is done together with the customer,based on the concrete operation requirements.

    3.2 Removal of Particles:Coolant Particle Filter

    Problem Description

    In addition to ions,the fuel cell coolant can be contaminated by particles.Potential sources for these particles can be the internal surfaces of piping and other components if the parts are not manufactured,stored and assembled in special environments,e.g.in clean rooms.These primary particles can lead to the formation of secondary particles,thus increasing the particle load.Hard particles can lead to several problems,e.g.blocking of narrow coolant channels through agglomeration and inducing wear inside the coolant pump.Both factors can lead to a reduction in cooling efficiency.In contrast to ion exchange filters which are typically installed in a bypass loop,coolant particle filters are placed in the coolant fullflow.This makes it necessary to choose product designs with very low pressure loss at high volume flow.In addition,the material selection for all components is strictly limited to materials which are compatible with the coolant to avoid degradation and leaching of additives which would increase the electric conductivity.

    Coolant Particle Filters:Material and Product Design

    Often simple meshes are used to hold back particles.These have the disadvantage that large splinters can easily passthrough iforiented in flow direction,perpendicular to the mesh(Figure 17).3D fibre structures overcome this concept′s drawback.

    Figure 17:MULTIGRADE media for coolant particle filters

    Media with high porosity are applied for low pressure drop.As these have a low thickness,an additional supporting grid must be applied downstream to stabilize the filterpleatsunderhigh volume flow conditions.

    ThroughComputationalFluidDynamics(CFD)analysis,a pressure-drop optimized filter design was developed,as shown in Figure 18.

    Figure 18:CFD simulation and product design for coolant particle filters

    4 SUMMARY

    Efficient contaminant removal from cathode air and coolant is required to pave the way to robust and durable,yet affordable fuel cell systems.With ever lower catalyst concentration,the need for a highly efficient protection will increase if the expected system lifetime shall be achieved.Special emphasis will remain on the separation of NH3as it does not only block the catalyst,but also damages the ionomer/membrane material[13].In Selective Catalytic Reduction (SCR)exhaustaftertreatment devices,ammonia slip can occur if an excess of AdBlue/urea solution is sprayed into the system,which will challenge the stack lifetime even more as these systems are expected to strongly penetrate the market.Research on the sensitivity of a LT PEM fuel cell against airborne contamination under real-life automotive conditions led to the knowledge-based development of adsorbents and media for cathode air filters,tailored to effective protection.

    To enable the efficient heat removal from the fuel cell stack,the required cleanliness level of the coolant has to be maintained.To protect the fuel cell system from corrosion and electric shorts,ion exchange resins have been developed to keep the electric conductivity and ion contamination in the liquid cooling circuit low.Innovative product features enhance the performance and resin utilization.In addition to ion removal,a coolant particle filter was developed to prevent wear in the coolant pump and blocking of narrow coolant channels.

    ABBREVATIONS

    ALASKA AuswertungvonLuftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotiv-Brennstoffzellen

    BEV Battery Electric Vehicle

    CFD Computational Fluid Dynamics

    CHP Combined Heat and Power

    DI De-Ionized

    FCEV Fuel Cell Electric Vehicle

    HEPA High Efficiency ParticulateAir filter

    LT PEM Low Temperature Proton Exchange Membrane

    PS-DVB Styrene-Divinylbenzene copolymer

    SCR Selective Catalytic Reduction

    Author Introduction of Dr.Michael Harenbrock

    Dr.Michael Harenbrock joined MANN+HUMMEL GmbH,a global leader in Filtration,in 1998.He works on fuel cell and battery projects since 2010.In his current position as Principal Expert Electric Mobility,he strategically identifies the need for new filtration solutions for Electric Mobility including Fuel Cell systems through technology and marketscouting,and coordinates all innovation- related activities globally.Networking and collaboration in industry organizations are essential parts of his work as well as presentations in international conferences.

    Contact at michael.harenbrock@mann-hummel.com

    猜你喜歡
    冷卻劑主題詞陰極
    核電站主冷卻劑泵可取出部件一體化吊裝檢修工藝探索
    Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    反應(yīng)堆冷卻劑pH對核電廠安全運(yùn)行影響研究
    中國核電(2017年1期)2017-05-17 06:10:13
    冷卻劑泄漏監(jiān)測系統(tǒng)在核電廠的應(yīng)用
    中國核電(2017年1期)2017-05-17 06:10:05
    冷卻劑管道取樣管焊縫裂紋分析
    焊接(2015年8期)2015-07-18 10:59:14
    IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
    微生物燃料電池空氣陰極的研究進(jìn)展
    我校學(xué)報(bào)第32卷第5期(2014年10月)平均每篇有3.04個(gè)21世紀(jì)的Ei主題詞
    我校學(xué)報(bào)第32卷第6期(2014年12月)平均每篇有3.00個(gè)21世紀(jì)的Ei主題詞
    757午夜福利合集在线观看| 免费搜索国产男女视频| 村上凉子中文字幕在线| 免费看a级黄色片| 超碰97精品在线观看| 老司机靠b影院| 黑人巨大精品欧美一区二区蜜桃| 欧美+亚洲+日韩+国产| 黄色 视频免费看| 婷婷精品国产亚洲av在线| 涩涩av久久男人的天堂| 午夜免费成人在线视频| 老司机靠b影院| 国产一区二区三区视频了| 99久久久亚洲精品蜜臀av| 婷婷精品国产亚洲av在线| 亚洲成人免费av在线播放| 日本欧美视频一区| 另类亚洲欧美激情| 日韩三级视频一区二区三区| 国产精品自产拍在线观看55亚洲| 久久99一区二区三区| 午夜免费激情av| 亚洲人成伊人成综合网2020| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区在线不卡| 午夜日韩欧美国产| 国产精品一区二区精品视频观看| 亚洲欧美精品综合一区二区三区| 热re99久久精品国产66热6| 在线观看66精品国产| 少妇粗大呻吟视频| 亚洲国产精品sss在线观看 | 变态另类成人亚洲欧美熟女 | 大型黄色视频在线免费观看| av中文乱码字幕在线| 丁香欧美五月| a级片在线免费高清观看视频| av有码第一页| 中文字幕人妻丝袜制服| 国产精品 国内视频| 青草久久国产| 亚洲欧美激情综合另类| 精品一区二区三区四区五区乱码| 十分钟在线观看高清视频www| 日本三级黄在线观看| 正在播放国产对白刺激| 看免费av毛片| 亚洲欧美日韩高清在线视频| 热re99久久国产66热| 亚洲国产精品合色在线| 每晚都被弄得嗷嗷叫到高潮| 巨乳人妻的诱惑在线观看| 欧美午夜高清在线| 精品一品国产午夜福利视频| 亚洲熟妇中文字幕五十中出 | 91九色精品人成在线观看| 亚洲va日本ⅴa欧美va伊人久久| 不卡av一区二区三区| 老司机在亚洲福利影院| 身体一侧抽搐| 国产成人系列免费观看| 中文字幕人妻丝袜一区二区| 大陆偷拍与自拍| 日韩高清综合在线| 麻豆国产av国片精品| 亚洲一区高清亚洲精品| 久久国产精品人妻蜜桃| 窝窝影院91人妻| av电影中文网址| 久热爱精品视频在线9| 久久久久久人人人人人| 久久狼人影院| 免费高清视频大片| 中文字幕另类日韩欧美亚洲嫩草| 国产黄色免费在线视频| 国产亚洲欧美98| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 9热在线视频观看99| 国产精品综合久久久久久久免费 | 欧美日韩黄片免| 男女午夜视频在线观看| 亚洲精品美女久久av网站| 大型av网站在线播放| 国产色视频综合| av网站在线播放免费| 精品国产乱子伦一区二区三区| 国产免费av片在线观看野外av| 嫩草影视91久久| 国产高清激情床上av| 久久久久久大精品| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 高清欧美精品videossex| 国产一区二区三区视频了| 亚洲精品一区av在线观看| 国产精品久久久人人做人人爽| 久久久精品欧美日韩精品| 国产精华一区二区三区| 中文字幕色久视频| 最新美女视频免费是黄的| 一级毛片女人18水好多| 黄色成人免费大全| www.自偷自拍.com| 欧美午夜高清在线| 精品免费久久久久久久清纯| 后天国语完整版免费观看| 精品午夜福利视频在线观看一区| 最近最新中文字幕大全电影3 | 亚洲熟妇熟女久久| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| xxx96com| 色播在线永久视频| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 午夜福利免费观看在线| 一级片免费观看大全| 国产成人欧美在线观看| 久久影院123| 色老头精品视频在线观看| 久久人人精品亚洲av| 岛国视频午夜一区免费看| 性色av乱码一区二区三区2| 国产精品秋霞免费鲁丝片| 久久国产精品人妻蜜桃| av免费在线观看网站| 午夜影院日韩av| 久久精品影院6| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 亚洲专区字幕在线| 悠悠久久av| 日本 av在线| 亚洲七黄色美女视频| e午夜精品久久久久久久| 久久久久久久久中文| 免费在线观看影片大全网站| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| 老司机午夜十八禁免费视频| 黄色a级毛片大全视频| 麻豆成人av在线观看| 免费av毛片视频| 欧美成人性av电影在线观看| 桃色一区二区三区在线观看| 亚洲午夜理论影院| 日韩免费av在线播放| 国产成年人精品一区二区 | 手机成人av网站| 18禁观看日本| 色综合站精品国产| 免费在线观看亚洲国产| 脱女人内裤的视频| 精品电影一区二区在线| 国产精品二区激情视频| 最近最新中文字幕大全免费视频| 97超级碰碰碰精品色视频在线观看| 啦啦啦在线免费观看视频4| 高清欧美精品videossex| 久久欧美精品欧美久久欧美| 亚洲成av片中文字幕在线观看| 夜夜爽天天搞| 校园春色视频在线观看| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| 天堂动漫精品| 亚洲五月婷婷丁香| 黄片大片在线免费观看| 亚洲精品国产一区二区精华液| netflix在线观看网站| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 久久伊人香网站| 欧美性长视频在线观看| 亚洲少妇的诱惑av| 五月开心婷婷网| tocl精华| av天堂久久9| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 久久亚洲精品不卡| 一级,二级,三级黄色视频| 大码成人一级视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产欧美日韩av| 久久久精品欧美日韩精品| 久久久国产成人免费| 久久国产精品人妻蜜桃| 国产精品免费视频内射| 一区二区日韩欧美中文字幕| 国产成人精品无人区| 日韩欧美在线二视频| 热99国产精品久久久久久7| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 精品一区二区三卡| 久久精品人人爽人人爽视色| 久99久视频精品免费| 国产人伦9x9x在线观看| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 国产精品久久视频播放| 欧洲精品卡2卡3卡4卡5卡区| 黄色成人免费大全| 免费在线观看完整版高清| 成人手机av| 国产在线精品亚洲第一网站| 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 黄色怎么调成土黄色| 丝袜在线中文字幕| 免费高清在线观看日韩| 18禁黄网站禁片午夜丰满| 一级毛片精品| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 黄网站色视频无遮挡免费观看| 久久精品国产清高在天天线| 久久久国产成人免费| 免费观看精品视频网站| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 久久香蕉激情| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 精品第一国产精品| 精品一区二区三区视频在线观看免费 | 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 曰老女人黄片| 精品一区二区三卡| 免费搜索国产男女视频| 亚洲情色 制服丝袜| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 亚洲中文av在线| 国产麻豆69| 老司机深夜福利视频在线观看| 自线自在国产av| 欧美日韩亚洲综合一区二区三区_| 成人三级做爰电影| 黄色成人免费大全| 啦啦啦 在线观看视频| 欧美日韩一级在线毛片| 在线观看免费高清a一片| 国产三级在线视频| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 不卡一级毛片| 日韩三级视频一区二区三区| 女警被强在线播放| 久久国产亚洲av麻豆专区| 国产精品久久久av美女十八| 久久久久久久精品吃奶| 黄色a级毛片大全视频| 成人特级黄色片久久久久久久| 丰满的人妻完整版| 欧美黄色片欧美黄色片| 久久性视频一级片| 美女福利国产在线| 少妇粗大呻吟视频| 成人免费观看视频高清| 十分钟在线观看高清视频www| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 久久中文字幕一级| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 99久久精品国产亚洲精品| 免费日韩欧美在线观看| 亚洲激情在线av| 午夜精品久久久久久毛片777| 亚洲午夜理论影院| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 正在播放国产对白刺激| 亚洲专区中文字幕在线| 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 九色亚洲精品在线播放| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频 | 免费在线观看影片大全网站| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 天堂俺去俺来也www色官网| av有码第一页| av片东京热男人的天堂| 在线观看66精品国产| 一二三四社区在线视频社区8| 免费不卡黄色视频| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 国产97色在线日韩免费| 在线观看66精品国产| 国产午夜精品久久久久久| 欧美丝袜亚洲另类 | 国内毛片毛片毛片毛片毛片| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| www.999成人在线观看| 国产单亲对白刺激| 超碰97精品在线观看| 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站| 少妇 在线观看| 成人免费观看视频高清| 高清在线国产一区| 嫩草影视91久久| 电影成人av| 久久 成人 亚洲| 国产主播在线观看一区二区| 麻豆国产av国片精品| 国产精品久久久久成人av| 亚洲av美国av| www国产在线视频色| 黄网站色视频无遮挡免费观看| 99精国产麻豆久久婷婷| 国产亚洲欧美精品永久| 亚洲精品在线美女| videosex国产| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 欧美日韩乱码在线| 搡老乐熟女国产| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 国产精品电影一区二区三区| 精品久久久久久,| 午夜精品在线福利| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 日本vs欧美在线观看视频| 国产精品一区二区精品视频观看| 国产精品日韩av在线免费观看 | 天堂影院成人在线观看| 丝袜在线中文字幕| 男女下面插进去视频免费观看| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 国产精品自产拍在线观看55亚洲| 国产片内射在线| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 在线看a的网站| 亚洲精品av麻豆狂野| 欧美在线黄色| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 天堂动漫精品| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 精品人妻1区二区| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 丁香欧美五月| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 日本免费a在线| 久久 成人 亚洲| 国产不卡一卡二| 午夜老司机福利片| 国产精品亚洲一级av第二区| 亚洲九九香蕉| 一级毛片女人18水好多| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码| 一区二区三区激情视频| 欧美日韩乱码在线| 91精品国产国语对白视频| 国产91精品成人一区二区三区| www国产在线视频色| 亚洲专区中文字幕在线| 日日干狠狠操夜夜爽| 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区蜜桃| 超色免费av| 一级毛片高清免费大全| 精品一品国产午夜福利视频| 欧美日韩一级在线毛片| 777久久人妻少妇嫩草av网站| www.999成人在线观看| 最新美女视频免费是黄的| 免费少妇av软件| 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 51午夜福利影视在线观看| netflix在线观看网站| 99国产精品免费福利视频| 婷婷丁香在线五月| 国产高清视频在线播放一区| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 露出奶头的视频| 高潮久久久久久久久久久不卡| 国产av一区二区精品久久| 成年女人毛片免费观看观看9| 日韩免费av在线播放| 99riav亚洲国产免费| www日本在线高清视频| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 黄色女人牲交| 人妻久久中文字幕网| 丁香欧美五月| aaaaa片日本免费| 国产成人欧美| 久久精品成人免费网站| 女人爽到高潮嗷嗷叫在线视频| 久久精品影院6| xxx96com| 在线永久观看黄色视频| 夜夜夜夜夜久久久久| 18禁观看日本| 精品熟女少妇八av免费久了| 侵犯人妻中文字幕一二三四区| 久久中文字幕一级| 亚洲色图综合在线观看| 一a级毛片在线观看| 在线av久久热| 超碰97精品在线观看| 青草久久国产| 亚洲色图av天堂| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 亚洲美女黄片视频| 中文字幕人妻丝袜一区二区| 高清在线国产一区| av欧美777| 中文字幕色久视频| 男女午夜视频在线观看| 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品粉嫩美女一区| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 亚洲少妇的诱惑av| 精品国产一区二区久久| 午夜视频精品福利| 欧美成狂野欧美在线观看| 又紧又爽又黄一区二区| 男女下面插进去视频免费观看| 老司机亚洲免费影院| 欧美日韩乱码在线| 韩国av一区二区三区四区| 久久久久久久午夜电影 | 丰满的人妻完整版| 夫妻午夜视频| 在线观看免费视频网站a站| 老司机福利观看| 亚洲国产精品999在线| 首页视频小说图片口味搜索| 亚洲少妇的诱惑av| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 69精品国产乱码久久久| 少妇粗大呻吟视频| 99热国产这里只有精品6| 99久久久亚洲精品蜜臀av| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区视频了| 欧美乱妇无乱码| 丰满饥渴人妻一区二区三| 久久精品成人免费网站| 国产亚洲av高清不卡| 国产精品久久视频播放| 国产精品1区2区在线观看.| 国产精品久久久久久人妻精品电影| 老司机深夜福利视频在线观看| 天堂中文最新版在线下载| 不卡av一区二区三区| 久久99一区二区三区| 色老头精品视频在线观看| av网站免费在线观看视频| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 久久青草综合色| 中文字幕人妻丝袜一区二区| 91老司机精品| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 91九色精品人成在线观看| а√天堂www在线а√下载| a级毛片黄视频| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 久久亚洲真实| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片 | 51午夜福利影视在线观看| 免费日韩欧美在线观看| av网站免费在线观看视频| 久久香蕉精品热| 制服诱惑二区| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| av天堂在线播放| 女人被狂操c到高潮| 国产亚洲精品第一综合不卡| 久久久国产成人精品二区 | 国产97色在线日韩免费| 久久人人精品亚洲av| 精品久久久久久电影网| 99国产极品粉嫩在线观看| 在线av久久热| 精品久久久久久,| 精品久久久久久成人av| 成人三级黄色视频| 成熟少妇高潮喷水视频| 国产蜜桃级精品一区二区三区| 国产高清videossex| 亚洲第一青青草原| 看免费av毛片| 亚洲av成人av| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 成人永久免费在线观看视频| 精品国产乱码久久久久久男人| 女性被躁到高潮视频| 大型av网站在线播放| 久久香蕉精品热| 男人操女人黄网站| 成人国产一区最新在线观看| 国产97色在线日韩免费| 波多野结衣av一区二区av| 欧美中文综合在线视频| 在线免费观看的www视频| 男人的好看免费观看在线视频 | 国产xxxxx性猛交| 成人亚洲精品av一区二区 | 国产高清videossex| www.999成人在线观看| 丝袜美足系列| 亚洲欧美一区二区三区黑人| 亚洲色图av天堂| 人成视频在线观看免费观看| www日本在线高清视频| 麻豆av在线久日| 国产一区二区三区视频了| 一进一出抽搐动态| 在线视频色国产色| 一级片'在线观看视频| 欧美激情 高清一区二区三区| 免费观看精品视频网站| 精品久久久久久久毛片微露脸| 国产成+人综合+亚洲专区| а√天堂www在线а√下载| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 91字幕亚洲| 国产单亲对白刺激| 日本 av在线| 精品国产乱子伦一区二区三区| 黄色视频不卡| 老司机深夜福利视频在线观看| 亚洲五月天丁香| 色哟哟哟哟哟哟| av片东京热男人的天堂| 国产又色又爽无遮挡免费看| 亚洲精品国产色婷婷电影| 亚洲熟妇熟女久久| 久久精品国产综合久久久| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 热99re8久久精品国产| 丁香欧美五月| 久久久久精品国产欧美久久久|