張玉杰 張園園 張華寧 秦 寧,2 李國(guó)良,* 郭秀林,*
?
小麥熱激轉(zhuǎn)錄因子基因特性及耐熱性功能初探
張玉杰1,2,**張園園1,3,**張華寧1秦 寧1,2李國(guó)良1,*郭秀林1,*
1河北省農(nóng)林科學(xué)院遺傳生理研究所 / 河北省植物轉(zhuǎn)基因中心重點(diǎn)實(shí)驗(yàn)室, 河北石家莊 050051;2河北北方學(xué)院, 河北張家口 075000;3河北師范大學(xué)生命科學(xué)學(xué)院, 河北石家莊 050024
植物熱激轉(zhuǎn)錄因子(heat shock transcription factor, Hsf)能夠通過激活熱激蛋白基因的表達(dá)而啟動(dòng)熱激反應(yīng), 在傳遞熱信號(hào)以及提高植物耐熱性方面發(fā)揮重要的調(diào)控作用。植物Hsf屬多基因家族, 數(shù)量因作物不同差異較大。小麥Hsf家族成員多, 特性和功能復(fù)雜多樣。本文在通過生物信息學(xué)推測(cè)分析小麥Hsf家族基因數(shù)目及其分類的基礎(chǔ)上, 從小麥幼葉中同源克隆獲得A2亞族成員(GenBank登錄號(hào)為MG700614)的完整編碼序列, 序列長(zhǎng)1026 bp, 編碼341個(gè)氨基酸殘基, 含完整的DNA結(jié)合結(jié)構(gòu)域DBD、核定位信號(hào)序列NLS、核輸出信號(hào)序列NES和激活域AHA。正常條件下TaHsfA2e蛋白質(zhì)被定位在細(xì)胞核。同源分析表明, TaHsfA2e與小麥HsfA6f蛋白相似性最高, 達(dá)96%。定量分析表明,在小麥多個(gè)組織器官中表達(dá)量均低, 但在成熟種子中高表達(dá)。葉片中的表達(dá)受37℃熱脅迫顯著上調(diào), 處理60 min時(shí)達(dá)峰值, 被SA和H2O2下調(diào)。50℃熱脅迫下轉(zhuǎn)酵母細(xì)胞的耐熱性顯著強(qiáng)于轉(zhuǎn)空載體對(duì)照, TaHsfA2e可不同程度提高轉(zhuǎn)基因擬南芥植株的基礎(chǔ)耐熱性和獲得耐熱性, 上調(diào)熱脅迫條件下熱相關(guān)蛋白基因的表達(dá)。
; 表達(dá)特性; 亞細(xì)胞定位; 遺傳轉(zhuǎn)化; 耐熱性
小麥生育期內(nèi)經(jīng)常遭受高溫和干旱雙重脅迫, 導(dǎo)致產(chǎn)量和品質(zhì)下降。然而, 作物對(duì)生長(zhǎng)逆境有一定的適應(yīng)能力。適當(dāng)?shù)母邷劐憻捘苷T導(dǎo)植株體內(nèi)大量熱激蛋白和保護(hù)酶等相關(guān)基因的表達(dá)而獲得耐熱性, 從而更好地適應(yīng)高溫環(huán)境[1]。熱激轉(zhuǎn)錄因子(Hsf)在這一過程中起重要的調(diào)控作用, 因Hsf能夠與熱激蛋白(Hsp)或其他相關(guān)蛋白啟動(dòng)子區(qū)域的熱激元件(Hse)結(jié)合而直接激活下游基因的表達(dá), 啟動(dòng)熱激反應(yīng), 因此成為生物體在熱脅迫和其他逆境脅迫下基因轉(zhuǎn)錄激活信號(hào)轉(zhuǎn)導(dǎo)途徑中重要的調(diào)節(jié)因子, 在傳遞逆境信號(hào)尤其是熱脅迫信號(hào)以及提高植物抗逆性方面發(fā)揮重要的調(diào)控作用[2-4]。Hsf在植物中普遍存在, 自20世紀(jì)80年代后期酵母基因被克隆以來, 已相繼獲得多個(gè)物種的基因[5-12]。植物基因?qū)儆诙嗷蚣易? 依據(jù)其結(jié)構(gòu)可分為3個(gè)家族A、B和C, 不同家族又分為多個(gè)亞族。Hsf家族基因數(shù)目因物種不同差異較大, 酵母和果蠅中各有1個(gè), 脊椎動(dòng)物中有4個(gè)[13], 而植物中數(shù)量較多, 如擬南芥中21個(gè)[14], 番茄中16個(gè)[15], 玉米中30個(gè)[16]。
前人對(duì)A2亞族基因的研究主要集中在模式植物番茄和擬南芥, 對(duì)HsfA2功能的了解非常有限, 近年來對(duì)其他作物HsfA2的報(bào)道逐漸增加[17-19]。番茄穩(wěn)定性強(qiáng), 嚴(yán)格受熱誘導(dǎo)上調(diào)表達(dá), 在熱脅迫后期及恢復(fù)階段大量積累, HsfA2細(xì)胞質(zhì)定位信號(hào)強(qiáng), 熱激條件下轉(zhuǎn)位入核必須依賴與HsfA1結(jié)合形成異源寡聚體[20-21]。為組成型表達(dá), 在植株抵御熱脅迫過程中發(fā)揮主要調(diào)控作用, HsfA1提高耐熱性是通過誘導(dǎo)激活和的合成, 進(jìn)而誘導(dǎo)熱激蛋白的表達(dá)而實(shí)現(xiàn)的[22]。在擬南芥中,、、和都與植物耐熱性相關(guān),受熱誘導(dǎo)表達(dá)最強(qiáng), 過表達(dá)不僅提高植株基礎(chǔ)和獲得耐熱性, 同時(shí)可增強(qiáng)根系愈傷組織的耐鹽和耐滲透脅迫能力,突變導(dǎo)致植株基礎(chǔ)和獲得耐熱性以及抗氧化能力明顯降低[23]。擬南芥在長(zhǎng)期熱脅迫、重復(fù)循環(huán)熱脅迫和熱脅迫恢復(fù)期都會(huì)積累大量的HsfA2,表達(dá)依賴于,在熱激反應(yīng)的后期, 即植物獲得耐熱性過程中起重要調(diào)控作用[24-25]。通過對(duì)和功能的深入鑒定, 發(fā)現(xiàn)AtHsfA1對(duì)誘導(dǎo)等熱激基因表達(dá)起主要作用, 而一旦被激活, 就成為主要的調(diào)控因子, 激活下游Hsp的表達(dá)[26]。事實(shí)上, 在缺失條件下,也可從細(xì)胞質(zhì)進(jìn)入細(xì)胞核, 行使轉(zhuǎn)錄激活功能, 調(diào)控一系列Hsp或伴侶基因的表達(dá)[27]。和的功能既存在相同點(diǎn)又具特異性,的功能主要集中在脅迫初期的轉(zhuǎn)錄起始方面, 而主要激活氧穩(wěn)態(tài)、碳水化合物和脂類代謝相關(guān)基因的表達(dá), 從而維持熱脅迫后期細(xì)胞的穩(wěn)定性[28]。在不同熱激范圍及氧化脅迫中,可替代行使功能, 對(duì)部分恢復(fù)突變體表型的研究表明,可能比參與更廣譜的耐熱性調(diào)控過程[29]。玉米有4個(gè)A2亞族成員,在多個(gè)組織器官中組成型表達(dá), 受多種逆境脅迫上調(diào), 在酵母細(xì)胞中可被半乳糖誘導(dǎo), 其表達(dá)顯著提高轉(zhuǎn)基因酵母的耐熱性[30]。
小麥Hsf的研究起步晚, 對(duì)其家族基因特性和功能了解甚少。Qin等[31]在研究小麥不同耐熱品種熱脅迫下的基因表達(dá)譜時(shí), 鑒定出6560個(gè)熱脅迫響應(yīng)基因, 包括7個(gè)基因, 其中一個(gè)在40℃熱脅迫后上調(diào)表達(dá)128倍, 暗示該類基因在小麥耐熱性中的調(diào)控作用。小麥的表達(dá)受鎘脅迫上調(diào), 參與小麥耐鎘反應(yīng)[32]; 轉(zhuǎn)酵母細(xì)胞的耐熱性顯著增強(qiáng), 過表達(dá)B2亞族可增強(qiáng)擬南芥植株耐熱性和抗凍性[33]; 轉(zhuǎn)擬南芥植株表現(xiàn)出較強(qiáng)的耐中等高溫、耐鹽和抗旱性, 中等高溫條件下轉(zhuǎn)基因植株能積累相對(duì)較高的生物量和產(chǎn)量[34]。Xue等[5]通過電子表達(dá)譜從小麥中識(shí)別出56個(gè)Hsf成員, A2、B2和A6亞族基因受熱激明顯上調(diào)表達(dá), TaHsfA6f作為轉(zhuǎn)錄激活因子直接調(diào)控小麥、和類基因, 并增強(qiáng)植株耐熱性。正常生長(zhǎng)條件下, 4個(gè)小麥A2亞族Hsf在胚乳中高表達(dá), 同時(shí)伴隨著基因的表達(dá), 暗示A2亞族基因在小麥耐熱過程中對(duì)下游熱激基因的調(diào)控作用[5]。小麥3個(gè)同源基因在灌漿期高表達(dá), 被熱脅迫和ABA顯著上調(diào), 其過表達(dá)可上調(diào)一系列旱、熱和ABA誘導(dǎo)基因的表達(dá)[35]。本實(shí)驗(yàn)室近期研究發(fā)現(xiàn), 小麥家族至少有81個(gè)成員, A2亞族至少有18個(gè), RNA-seq分析表明, 多數(shù)A2亞族成員的表達(dá)受高溫和H2O2上調(diào)(未發(fā)表)。本研究在對(duì)玉米A2亞族基因特性及耐熱性調(diào)控功能研究[36-38]的基礎(chǔ)上, 克隆了小麥A2亞族成員, 并比較不同作物相同亞族成員之間特性與功能異同, 為加速大田作物家族基因研究提供理論依據(jù)和技術(shù)支撐。
供試小麥品種為滄6005, 半冬性, 晚熟, 耐熱性較強(qiáng), 由河北省滄州市農(nóng)業(yè)科學(xué)院提供。健康飽滿的種子經(jīng)0.1% HgCl2表面消毒及自來水反復(fù)沖洗后, 浸泡吸脹12 h, 用Hoagland營(yíng)養(yǎng)液于25℃培養(yǎng)箱中培養(yǎng)。
待幼苗長(zhǎng)至二葉一心時(shí), 參照李慧聰?shù)萚37]描述的方法進(jìn)行熱脅迫處理, 方法略有改進(jìn)。將生長(zhǎng)一致的幼苗分成3組, 第1組于37℃培養(yǎng)箱中進(jìn)行熱脅迫處理(營(yíng)養(yǎng)液于37℃下提前預(yù)熱), 第2組在培養(yǎng)液中加入水楊酸(終濃度0.8 mmol L-1), 第3組在培養(yǎng)液中加入H2O2(終濃度10 mmol L-1), 各組處理時(shí)間均為30、60、90、120和240 min。剪取所有處理的第二展開葉, 液氮速凍后用于基因定量分析。25℃正常生長(zhǎng)的幼苗作對(duì)照。
2016年10月中旬在河北省農(nóng)林科學(xué)院大河試驗(yàn)站進(jìn)行田間試驗(yàn), 常規(guī)種植, 于不同生育期取樣, 液氮中速凍后用于不同組織器官相關(guān)基因的表達(dá)量分析。
采用RNArose Reagent Systems試劑盒(上海華舜生物工程公司)提取總RNA, 經(jīng)DNase I (TaKaRa)處理除去殘留的基因組DNA, 然后取1 μg RNA, 用SuperScript IV First-Strand Synthesis System反轉(zhuǎn)錄試劑盒(Invitrogen)合成cDNA第1鏈。用DNAman設(shè)計(jì)特異引物(F: 5′-CACTGTGCTGAG CAATTCTTTCTTTG-3′; R: 5′-GGCCTGAGTATGA ACTAATTAAGA-3′)。PCR體系25 μL, 含10× Pyrobest buffer 2.5 μL、dNTP mixture (2.5 mmol L-1) 2 μL、1st strand cDNA 2 μL、引物(20 μmol L-1)各0.25 μL、Pyrobest DNA polymerase (TaKaRa) 0.25 μL和ddH2O 17.75 μL。反應(yīng)程序?yàn)?8℃ 10 s, 55℃ 15 s, 72℃ 2 min, 30個(gè)循環(huán)。將擴(kuò)增產(chǎn)物連接T載體后(pEasy-Blunt Simple Cloning Kit, TransGen Biotech), 送上海生工生物工程技術(shù)服務(wù)有限公司測(cè)序, 測(cè)3個(gè)重復(fù)克隆。
依據(jù)Xue等[5]對(duì)小麥基因的分析結(jié)果, 設(shè)計(jì)的特異引物(F: 5′-TACTCTGATGATCT TAATTAG-3′; R: 5′-GCACACTACACCAAAGGCCT C-3′)。PCR體系20 μL, 含SYBR Premix ExII 10 μL、10 μmol L–1引物各0.8 μL、1st strand cDNA 1 μL和ddH2O 7.4 μL。在7500 Real-time PCR System (Applied Biosystems, USA)上進(jìn)行擴(kuò)增, 反應(yīng)程序?yàn)轭A(yù)變性95℃ 10 min; 變性95℃ 5 s; 退火/延伸60℃ 1 min, 45個(gè)循環(huán)。采用2-ΔΔCt法計(jì)算基因相對(duì)表達(dá)水平, 內(nèi)參基因?yàn)?F: 5¢-GCACACGTGCTT TGCAGATAAG-3¢; R: 5¢-GCCCTCAAGCTCAAC CATAACT-3¢)。每組試驗(yàn)3個(gè)生物學(xué)樣本, 每個(gè)生物學(xué)樣本3次技術(shù)重復(fù)。數(shù)據(jù)為3個(gè)生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤, 組織表達(dá)試驗(yàn)以幼根表達(dá)量為1, 其余試驗(yàn)以0 min的表達(dá)量為1。
帶有綠色熒光蛋白(GFP)基因的植物表達(dá)載體pJIT163-hGFP通過35S啟動(dòng)子驅(qū)動(dòng)目的基因和基因的融合表達(dá)[39], 顯示目的蛋白的亞細(xì)胞定位。利用設(shè)計(jì)的特異引物(F: 5′-TGGAGAGGACAG CCCAAGCTTATGGACCGGGTGCTGCTG-3′; R: 5′- GCCCTTGCTCACCATGGATCCCTACGCGTCGAA ACAT-3′)擴(kuò)增編碼序列, 產(chǎn)物經(jīng)限制性內(nèi)切酶d III和H I消化后, 連接到表達(dá)載體pJIT163-hGFP上。參照李慧聰?shù)萚37]描述的方法進(jìn)行金粉包埋和基因槍轉(zhuǎn)化。經(jīng)瞬時(shí)表達(dá)處理的洋蔥表皮細(xì)胞于22℃暗培養(yǎng)16 h, 然后放入濃度為10 μg mL–1的4’,6-二脒基-2-苯基吲哚(4’,6-diam idino-2-ph enylindole, DAPI)染色液中染色3~5 min, 用生理鹽水沖洗干凈, 于激光共聚焦顯微鏡(Zeiss META510)下觀察熒光。
1.5.1 酵母表達(dá)載體的構(gòu)建 酵母表達(dá)載體pYES2 (Invitrogen, 美國(guó))用于釀酒酵母中目的蛋白的表達(dá), 其特點(diǎn)在于GAL1啟動(dòng)子能夠在釀酒酵母中被半乳糖高水平誘導(dǎo)從而驅(qū)動(dòng)目的蛋白表達(dá), 同時(shí)能夠被葡萄糖抑制表達(dá), 可利用基因篩選帶有基因型的酵母宿主菌株轉(zhuǎn)化子。結(jié)合ClonExpress II重組反應(yīng)系統(tǒng)(諾唯贊生物科技有限公司)設(shè)計(jì)擴(kuò)增特異引物(F: 5′-GGGA ATATTAAGCTTGGTACCATGGACCGGGTGCTGC-TG-3′; R: 5′-TGATGGATATCTGCAGAATTCCTACG CGTCGAAACAT-3′), 利用高保真PCR聚合酶擴(kuò)增, 獲得TaHsfB2d的PCR產(chǎn)物。利用限制性內(nèi)切酶I和R I (NEB)對(duì)載體pYES2進(jìn)行酶切, 電泳后回收得到線性化載體。將PCR產(chǎn)物與線性化載體按 1︰2的摩爾比混合, 利用ClonExpress II快速克隆技術(shù)進(jìn)行重組反應(yīng)。于冰水浴中配制反應(yīng)體系, 含4 μL 5× ClonExpress II buffer, 50~200 ng線性化載體, 20~200 ng插入片段擴(kuò)增產(chǎn)物, 2 μLII, 加無菌水至總體積2 μL?;靹蚋鹘M分后, 于37℃反應(yīng)30 min, 立即置冰浴中冷卻5 min, 利用熱激法將反應(yīng)產(chǎn)物直接轉(zhuǎn)化大腸桿菌TOP10感受態(tài)細(xì)胞, 37℃倒置培養(yǎng)過夜。用無菌的牙簽將單個(gè)菌落挑至100 μL新鮮的LB培養(yǎng)基中, 混勻, 取2 μL作為模板進(jìn)行PCR擴(kuò)增, 根據(jù)電泳條帶大小選擇正確的克隆進(jìn)行序列測(cè)定。
1.5.2 轉(zhuǎn)酵母耐熱性鑒定 參照Gietz等[40]的方法, 將測(cè)序正確的重組載體轉(zhuǎn)化酵母INVSc1感受態(tài)細(xì)胞, 然后將細(xì)胞均勻涂抹在SC-Glu-Ura-篩選平板上, 30℃培養(yǎng)2~3 d。采用菌落PCR方法鑒定陽(yáng)性克隆, 分別以重組載體pYES2-TaHsfA2e和空載體pYES2轉(zhuǎn)化酵母細(xì)胞INVSc1, 篩選陽(yáng)性酵母克隆。參照趙立娜等[41]描述的方法進(jìn)行耐熱性鑒定。
1.6.1 轉(zhuǎn)擬南芥植株獲得 利用1.3中的特異引物進(jìn)行RT-PCR擴(kuò)增, 將擴(kuò)增產(chǎn)物克隆到T載體上, 并進(jìn)行序列驗(yàn)證。質(zhì)粒經(jīng)I/I消化和純化后, 構(gòu)建到雙價(jià)載體pCAMBIA1300上, 載體侵染農(nóng)桿菌GV3101后, 通過真空蘸花法轉(zhuǎn)化擬南芥(L., 生態(tài)型為Columbia), 利用含有25 μg mL–1潮霉素的MS培養(yǎng)基篩選轉(zhuǎn)化植株, 直至純合, 收獲種子。選取過表達(dá)純合株系用于耐熱性鑒定。
1.6.2 轉(zhuǎn)基因擬南芥耐熱性鑒定 將消毒后的擬南芥播種于含25 mL培養(yǎng)基(0.8%瓊脂培養(yǎng)基)的培養(yǎng)皿中, 再在培養(yǎng)箱中培養(yǎng)(晝/夜溫度為22℃/18℃,光/暗周期16 h/8 h)。取5 d齡幼苗, 分別進(jìn)行基礎(chǔ)耐熱性(45℃ 40 min, 再于22℃恢復(fù)8 d)和獲得耐熱性(37℃ 1 h, 22℃下恢復(fù)2 d, 46℃ 50 min, 最后22℃恢復(fù)8 d)鑒定, 每個(gè)株系至少40株幼苗, 3次重復(fù)。
經(jīng)基礎(chǔ)耐熱性和獲得耐熱性處理的幼苗, 觀察處理后的生長(zhǎng)情況并照相; 收集地上部蓮座, 測(cè)定葉綠素含量, 用DDS-II型電導(dǎo)率儀(上海雷磁儀器廠)測(cè)定相對(duì)電導(dǎo)率(REC)[38]。
1.6.3 擬南芥熱激蛋白基因表達(dá)分析 熱相關(guān)基因及其引物信息見附表1。內(nèi)參基因?yàn)?F: 5′-GCCAGATCTTCATCGTCGTG-3′; R: 5′-TCTCCA GCGAATCCAGCCTT-3′)。預(yù)備實(shí)驗(yàn)結(jié)果表明, 熱處理后22°C下恢復(fù)培養(yǎng)0~8 h連續(xù)取樣測(cè)定, 發(fā)現(xiàn)處理后0 h和2 h熱激蛋白基因出現(xiàn)表達(dá)峰值。因此, 本研究選擇8 d齡幼苗經(jīng)基礎(chǔ)性和獲得熱處理后恢復(fù)分別0 h和2 h取樣。擬南芥轉(zhuǎn)基因株系為12_2, 以野生型(WT)為對(duì)照, 對(duì)照的相當(dāng)表達(dá)量設(shè)為1。
從經(jīng)37℃熱脅迫處理1.5 h的小麥二葉一心幼苗葉片中克隆獲得A2亞族熱激轉(zhuǎn)錄因子(GenBank序列號(hào)為MG700614)的完整編碼序列, 序列長(zhǎng)1026 bp, 編碼341個(gè)氨基酸殘基。序列相似性比對(duì)發(fā)現(xiàn), 該蛋白序列與小麥HsfA6f (AIY25733)、小麥HsfA2d (AHB61248)和節(jié)節(jié)麥HsfA2d-like (XP_020178141)的相似性較高, 分別為96%、94%和94% (圖1)。
通過構(gòu)建瞬時(shí)表達(dá)載體并轉(zhuǎn)化洋蔥內(nèi)表皮, 借助激光共聚焦顯微鏡觀察發(fā)現(xiàn), 正常條件下TaHsfA2e定位在細(xì)胞核(圖2)。
qRT-PCR分析結(jié)果表明,除了在小麥成熟種子中表達(dá)量較高(約為幼根中的75倍)外, 在其他組織和器官中表達(dá)量均非常低(附圖1)。
37℃熱處理顯著上調(diào)葉片的表達(dá), 處理60 min時(shí)達(dá)峰值, 最大值達(dá)初始值的300倍(圖3-A); 0.8 mmol L–1水楊酸(圖3-B)和10 mmol L–1H2O2(圖3-C)單獨(dú)處理均下調(diào)的表達(dá)。
圖1 小麥TaHsfA2e的氨基酸序列及其結(jié)構(gòu)域
DBD: Hsf家族保守DNA結(jié)合域; OD: 寡聚域; NLS: 核定位信號(hào)序列; AHA: 激活結(jié)構(gòu)域; NES: 核輸出信號(hào)序列。
DBD: conserved DNA binding domain of Hsf family; OD: oligomerization; NLS: nuclear localization signal; AHA: aromatic, large hydrophobic and acidic amino residues; NES: nuclear export signal.
圖2 小麥TaHsfA2e 蛋白質(zhì)在洋蔥表皮細(xì)胞中亞細(xì)胞定位
A: 明場(chǎng); B: GFP綠色熒光; C:細(xì)胞核DAPI 紅色熒光; D: 疊加圖像。
A: bright field; B: green fluorescence of GFP; C: red fluorescence of DAPI; D: merged image.
通過構(gòu)建酵母表達(dá)載體并將在酵母中進(jìn)行遺傳轉(zhuǎn)化, 對(duì)陽(yáng)性菌株進(jìn)行耐熱性鑒定發(fā)現(xiàn), 正常生長(zhǎng)條件下, 轉(zhuǎn)酵母與轉(zhuǎn)空載體對(duì)照酵母菌斑的長(zhǎng)勢(shì)沒有明顯差異(圖4-A)。50℃水浴熱處理后, 轉(zhuǎn)酵母與對(duì)照長(zhǎng)勢(shì)均降低, 但轉(zhuǎn)基因酵母的生長(zhǎng)勢(shì)明顯好于對(duì)照, 菌液濃度稀釋為0.05時(shí), 轉(zhuǎn)空載體酵母菌斑明顯減少(圖4-B)。從酵細(xì)胞生長(zhǎng)曲線也可看出, 正常培養(yǎng)條件下轉(zhuǎn)pYES2和pYES2-TaHsfA2e酵母細(xì)胞生長(zhǎng)較快, 生長(zhǎng)速度沒有明顯差異(圖4-C); 50℃熱激處理后細(xì)胞生長(zhǎng)速度均降低, 但處理18 h后轉(zhuǎn)pYES2-TaHsfA2e酵母細(xì)胞生長(zhǎng)速率明顯高于轉(zhuǎn)空載體對(duì)照細(xì)胞(圖4-D), 表明TaHsfA2e能在酵母細(xì)胞中被誘導(dǎo)表達(dá), 且能顯著提高酵母細(xì)胞的耐熱性。
RT-PCR (附圖2)和半定量陽(yáng)性檢測(cè)證實(shí)3個(gè)擬南芥株系(8_1、12_2和14_19)為轉(zhuǎn)純合系, 進(jìn)一步進(jìn)行耐熱性鑒定。正常條件下, 轉(zhuǎn)基因株系與野生型(WT)的生長(zhǎng)勢(shì)沒有明顯差異(圖5-A)。5 d齡幼苗經(jīng)基礎(chǔ)性熱處理后, WT地上部明顯萎蔫, 而3個(gè)轉(zhuǎn)基因株系則保持較好的持綠性, 尤其是株系12_2 (圖5-B)。經(jīng)獲得耐熱性處理后, 轉(zhuǎn)基因株系表現(xiàn)出類似耐熱表型, 均強(qiáng)于野生型(圖5-C)。不同熱處理后幼苗存活率與上述表型觀察結(jié)果一致(圖5-D)。
正常條件下, 野生型和3個(gè)轉(zhuǎn)基因系的葉綠素含量為0.82~0.89 μg mg-1FW, 差異不大。兩種熱處理均使幼苗葉綠素含量降低, 但3個(gè)轉(zhuǎn)基因系降低幅度小于野生型, 且獲得耐熱性處理植株葉綠素含量總體略高于基礎(chǔ)耐熱性植株(圖6-A)。
圖3 37℃熱脅迫(A), 0.8 mmol L–1 SA (B)和10 mmol L–1 H2O2 (C)分別處理對(duì)小麥葉片TaHsfA2e表達(dá)量的影響
數(shù)據(jù)為3個(gè)生物學(xué)重復(fù)平均值±標(biāo)準(zhǔn)差。0 h作為對(duì)照, 相對(duì)表達(dá)量為“1”。
Each bar value represents ±SD of triplicate experiments. The relative expression level of TaHsfA2e by qRT-PCR of 0 h was set to 1 as controls.
圖4 50℃熱激處理后轉(zhuǎn)基因TaHsfA2e和空載體酵母細(xì)胞耐熱性觀察
A: 30°C下正常生長(zhǎng), B: 50°C熱脅迫 45 min, 于30°C恢復(fù)生長(zhǎng) 3 d; C: 30°C下正常生長(zhǎng)測(cè)定酵母細(xì)胞OD600值; D: 50°C熱脅迫 45 min后于30°C恢復(fù)生長(zhǎng)測(cè)定酵母細(xì)胞 OD600值。數(shù)據(jù)為3個(gè)生物學(xué)重復(fù)平均值±標(biāo)準(zhǔn)差。*表示轉(zhuǎn)基因酵母與對(duì)照(轉(zhuǎn)空載體)差異顯著(<0.05)
A: culture at 30°C; B: HS at 50°C for 45 min, then culture at 30°C for 3 days; C: OD600of transformed yeast cells at 30°C; D:OD600of transformed yeast cells at 50°C for 45 min and then culture at 30°C. The error bar represents ±SD of triplicate experiments. * means significant difference between transgenic yeast cells and the controls (harboring pYES2) (<0.05)
正常條件下, 野生型和3個(gè)轉(zhuǎn)基因系的相對(duì)電導(dǎo)值差異不明顯(11%~13%); 經(jīng)基礎(chǔ)耐熱性和獲得耐熱性處理后, 幼苗電導(dǎo)率均顯著升高, 3個(gè)轉(zhuǎn)基因系的升高幅度明顯低于野生型(圖6-B)。
基礎(chǔ)熱處理后恢復(fù)0 h和獲得熱處理后恢復(fù)2 h分別取樣, 分別檢測(cè)8個(gè)與植物耐熱性關(guān)系密切熱激蛋白基因的定量表達(dá), 以不同處理的野生型為對(duì)照。基礎(chǔ)性熱處理后,的轉(zhuǎn)入能不同程度上調(diào)擬南芥植株熱相關(guān)蛋白基因的表達(dá), 尤其是的表達(dá)量高達(dá)對(duì)照的40多倍。獲得性熱處理后,的轉(zhuǎn)入也能上調(diào)、、和的表達(dá), 但上調(diào)幅度明顯小于基礎(chǔ)熱處理(圖7)。
熱激轉(zhuǎn)錄因子Hsf已被證實(shí)在植物耐熱性響應(yīng)過程中發(fā)揮重要的調(diào)控作用, 其研究結(jié)果主要來自模式作物, 而且集中在A1和A2亞族成員[6,8,20,22,26]。Hsf不僅介導(dǎo)耐熱性, 還參與多種逆境脅迫響應(yīng)過程, 且亞家族基因功能差別較大, 因此對(duì)不同作物熱激轉(zhuǎn)錄因子基因的生物學(xué)功能了解還遠(yuǎn)遠(yuǎn)不夠。隨著多種作物基因組測(cè)序完成, 越來越多物種的熱激轉(zhuǎn)錄因子家族基因被推測(cè)并進(jìn)行了遺傳分析, 對(duì)A1和A2以外其他亞族成員也開始了功能研究[35,41]。大田作物熱激轉(zhuǎn)錄因子基因的研究起步較晚, 2011年Lin等[16]推測(cè)玉米中該類基因至少有25個(gè), 后來數(shù)量增加為30個(gè)[4]。2014年, Xue等[5]推測(cè)小麥中至少有56個(gè)Hsf, 其中A2亞族有9個(gè), 從數(shù)量上遠(yuǎn)超于其他物種。本實(shí)驗(yàn)室近年研究結(jié)果暗示A2亞族成員更多, 目前我們已經(jīng)同源克隆獲得18個(gè)A2亞族成員, 基因之間生物學(xué)特性存在差異, RNA-seq初步分析發(fā)現(xiàn)多數(shù)基因被熱脅迫上調(diào)表達(dá), 但響應(yīng)模式不同(尚未發(fā)表), 進(jìn)一步說明大田作物Hsf家族基因特性與功能具有多樣性和復(fù)雜性。
圖5 3個(gè)轉(zhuǎn)TaHsfA2e擬南芥株系及野生型的基礎(chǔ)耐熱性和獲得耐熱性鑒定
轉(zhuǎn)基因系(8_1, 12_2, 14_19)和野生型種子播種于平皿培養(yǎng)基上, 經(jīng)3 d黑暗孵育、光照5 d后分別進(jìn)行熱激處理。A: 正常生長(zhǎng)的植株; B: 基礎(chǔ)耐熱性處理的植株(45℃ 40 min, 再于22℃恢復(fù)8 d); C: 獲得耐熱性處理植株(37℃ 1 h, 22℃下恢復(fù)2 d, 46℃ 50 min, 最后22℃恢復(fù)8 d); D: 轉(zhuǎn)基因株系和野生型在正常生長(zhǎng)(CK)、基礎(chǔ)耐熱性處理(BT)和獲得耐熱性處理(AT)條件下的存活率, 實(shí)驗(yàn)重復(fù)3次, 每重復(fù)至少15株苗。
The seeds oftransgeniclines (8_1, 12_2, and 14_19) and wild type were planted in plate, incubated for 3 d, and grew for 5 d. Then all seedlings were subjected to heat stress. A: plants under normal growth conditions; B: plants subjected to HS treatment of BT (45°C 40 min, recovered growth for 8 d at 22°C); C: plants subjected to HS treatment of AT (37°C 1 h, recovered growth for 2 d at 22°C, and 46°C 50 min, then recovered growth for 8 d at 22°C); D: survival rates of transgenic and wild type plants at normal conditions and subjected to BT and AT treatments. The represented values are the means of at least 15 individual plants of each line, and the experiment was repeated three times.
本研究在克隆獲得小麥B族基因[41]的基礎(chǔ)上, 進(jìn)一步克隆獲得A2亞族基因, 該基因編碼序列全長(zhǎng)1026 bp, 編碼341個(gè)氨基酸殘基, 蛋白質(zhì)序列含有DBD、NLS、NES及AHA完整的功能結(jié)構(gòu)域, 充分體現(xiàn)A2亞族成員結(jié)構(gòu)特性。只有DBD和NLS, 結(jié)構(gòu)上明顯不同于, 但正常條件下二者均被定位在細(xì)胞核。尚未發(fā)現(xiàn)關(guān)于該基因生物學(xué)特性及功能的研究報(bào)道。
植物Hsf分為A、B、C三族, 不同家族基因特性與功能差異較大, 相同家族不同亞族基因也表現(xiàn)不同。對(duì)模式植物的研究表明, A1亞族一般呈組成型表達(dá), 表達(dá)量不高, 在擬南芥花粉中表達(dá)較高; 而A2亞族屬于熱脅迫誘導(dǎo)因子, 受脅迫植株恢復(fù)階段和根系中表達(dá)較高[8]。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn)在小麥多個(gè)組織器官中組成型表達(dá), 其中在成熟植株根系中表達(dá)量較高, 37℃熱脅迫、外源SA和H2O2處理均不同程度上調(diào)的表達(dá)[41]。本研究結(jié)果顯示,在小麥多個(gè)組織器官中表達(dá)量均很低, 但在成熟種子中高表達(dá), 葉片中的表達(dá)受37℃熱脅迫顯著上調(diào), 符合A2亞族基因特性, 但其表達(dá)受SA和H2O2下調(diào)??梢? 不同亞族基因表達(dá)特性存在明顯差異, 基因生物學(xué)特性不同預(yù)示其功能上的差異性。對(duì)玉米A2亞族基因的定量表達(dá)研究發(fā)現(xiàn)[30],在幼嫩花粉中高表達(dá), 根系和葉片中基因的表達(dá)均可被42℃熱脅迫上調(diào), 且根系中表達(dá)量高于葉片中, 基因表達(dá)同時(shí)受ABA和H2O2上調(diào), 充分說明同一亞族基因在不同作物中表達(dá)特性也不相同, 何況與玉米A2亞族基因的同源性很低。
圖6 不同熱處理后轉(zhuǎn)TaHsfA2e擬南芥及野生型植株葉綠素的含量(A)及相對(duì)電導(dǎo)率(B)
CK: 正常生長(zhǎng); BT: 基礎(chǔ)耐熱性處理; AT: 獲得耐熱性處理。ERC: 相對(duì)電導(dǎo)率。數(shù)值為至少15株幼苗平均值, 重復(fù)3次。
CK: normal condition; BT: heat shock regime for basal thermotolerance; AT: heat shock regime for acquired thermotolerance. REC: electrical relative conductivity. The represented values are the means of at least 15 individual plants of each line, and the experiment was repeated three times.
圖7 基礎(chǔ)耐熱性(BT)和獲得耐熱性(AT)處理后轉(zhuǎn)TaHsfA2e擬南芥植株中8個(gè)熱相關(guān)蛋白基因的表達(dá)
所有BT值為處理后0 h數(shù)值、所有AT值為處理后2 h數(shù)值, 均以相同熱處理的野生型為對(duì)照。數(shù)值為至少15株幼苗平均值, 重復(fù) 3次。
All values represent that at 0 h after heat stress in BT and at 2 h after heat stress in AT. Wild type subjected to same heat stress was used as controls. The represented values are the means of at least fifteen individual plants of each line, and the experiment was repeated three times.
酵母中只有1個(gè)Hsf, 因此酵母轉(zhuǎn)化系統(tǒng)能較快驗(yàn)證Hsf功能[40]。本研究通過將轉(zhuǎn)化酵母細(xì)胞pYES2并進(jìn)行表型觀察和生長(zhǎng)曲線分析發(fā)現(xiàn), 正常生長(zhǎng)條件下, 轉(zhuǎn)酵母和轉(zhuǎn)空載體對(duì)照細(xì)胞的長(zhǎng)勢(shì)沒有明顯差異; 經(jīng)50℃熱激處理45 min 后, 轉(zhuǎn)基因酵母細(xì)胞和空載體對(duì)照細(xì)胞的生長(zhǎng)速度均受到抑制, 但前者受抑制程度明顯小于后者, 表明能在酵母細(xì)胞中被誘導(dǎo)表達(dá), 且能顯著提高酵母細(xì)胞的耐熱性, 初步顯示出TaHsfA2e的耐熱性調(diào)控功能。熱脅迫后, 轉(zhuǎn)基因酵母菌斑與對(duì)照沒有明顯差異, 說明導(dǎo)入不影響酵母細(xì)胞的生長(zhǎng)發(fā)育, 而引入玉米則顯著影響酵母細(xì)胞的生長(zhǎng)發(fā)育進(jìn)程[30]。
將進(jìn)一步轉(zhuǎn)化擬南芥野生型, 并進(jìn)行基礎(chǔ)和獲得耐熱性鑒定, 發(fā)現(xiàn)不僅能提高37℃熱脅迫下轉(zhuǎn)基因株系的基礎(chǔ)耐熱性, 同時(shí)能提高獲得耐熱性, 不同株系熱脅迫后地上部葉綠素含量和相對(duì)電導(dǎo)率為表型提供了生理證據(jù), 進(jìn)一步證實(shí)了酵母中研究基因功能的正確性。擬南芥熱激相關(guān)蛋白基因表達(dá)的定量檢測(cè)發(fā)現(xiàn), 基礎(chǔ)性熱處理下,顯著上調(diào)擬南芥植株熱激蛋白基因的表達(dá), 上調(diào)幅度明顯大于獲得性熱處理。另外, 通過不同熱處理后恢復(fù)階段連續(xù)取樣檢測(cè)發(fā)現(xiàn),大幅上調(diào)熱激蛋白表達(dá)的時(shí)間是基礎(chǔ)熱處理后恢復(fù)0 h和獲得熱處理后恢復(fù)2 h, 之后熱激蛋白表達(dá)量逐漸降低(數(shù)據(jù)未列出)??傮w來看, 基礎(chǔ)性熱處理下上調(diào)下游基因表達(dá)比較快, 這可能與基礎(chǔ)性熱處理強(qiáng)度大且快速, 而獲得性熱處理持續(xù)時(shí)間較長(zhǎng)有關(guān)。的基礎(chǔ)耐熱性強(qiáng)還是獲得耐熱性更強(qiáng), 僅僅依靠上述結(jié)果還無法界定, 需要深入探討。本研究轉(zhuǎn)基因擬南芥中未發(fā)現(xiàn)植株矮化現(xiàn)象, 而擬南芥中過表達(dá)植株矮化明顯, 但基礎(chǔ)耐熱性卻顯著增強(qiáng)[42]。擬南芥只有1個(gè)A2亞族Hsf, 而小麥中有多個(gè), 其功能分化可能更為精細(xì), 本研究只初步證明的耐熱性功能, 其抗逆性調(diào)控功能及其分子機(jī)制正在通過轉(zhuǎn)基因小麥進(jìn)一步研究。
小麥A2亞族熱激轉(zhuǎn)錄因子基因的cDNA序列全長(zhǎng)1026 bp, 編碼341個(gè)氨基酸殘基。蛋白質(zhì)序列含有DNA結(jié)合結(jié)構(gòu)域、核定位信號(hào)序列、核輸出信號(hào)序列和結(jié)合結(jié)構(gòu)域。TaHsfA2e與小麥TaHsfA6f相似性最高, 達(dá)96%。正常條件下, 在小麥成熟種子中表達(dá)量較高, 基因表達(dá)受37℃熱脅迫顯著上調(diào), 受外源水楊酸和H2O2下調(diào)。正常條件下TaHsfA2e蛋白定位于細(xì)胞核。的引入能不同程度提高轉(zhuǎn)基因株系的耐熱性, 同時(shí)上調(diào)熱脅迫條件下熱激蛋白基因的表達(dá)。
[1] Mittler R, Finka A, Goloubinoff P. How do plants feel the heat?, 2012, 37: 118–125
[2] Kotak S, Larkindale J, Lee U, von Koskull-D?ring P, Vierling E, Scharf K D. Complexity of the heat stress response in plants., 2007, 10, 310–316
[3] Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B. The HSF world: classification and properties of plant heat stress transcription factors., 1996, 1: 215–223
[4] Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses., 2016, 7: 114
[5] Xue G P, Sadat S, Drenth J, Mclntyre C L. The heat shock factor family fromin response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes., 2014, 65: 539–557
[6] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K.heat shock transcription factor A2 as a key regulator in response to several types of environmental stress., 2006, 48: 535–547
[7] Heerklotz D, D?ring P, Bonzelius F. The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2., 2001, 21: 1759–1768
[8] Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors () in response to heat and other stresses in., 2011, 34: 738–751
[9] Wunderlich M, Gro?-Hardt R, Sch?ff F. Heat shock factorinvolved in gametophyte development ofand its expression is controlled by a heat-inducible long non-coding antisense RNA., 2014, 85: 541–550
[10] Ikeda M, Mitsuda N, Ohme-Takagi M.HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance., 2011, 157: 1243–1254
[11] Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Sch?ffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in., 2009, 2: 152–165
[12] Zhu X, Thalor S K, Takahashi Y, Berberich T, and Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame oftranscripts in., 2012, 35: 2014–2030
[13] Guo M, Liu H J, Ma X. The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses., 2016, 7: 1–14
[14] Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in., 2009, 50: 970–975
[15] Tang R M, Zhu W J, Song X Y, Lin X Z, Cai J H, Wang M, Yang Q. Genome-wide identification and function analyses of heat shock transcription factor in potato., 2016, 7: 490
[16] Lin Y X, Jiang H Y, Chu Z X, Tang X L, Zhu S W, Cheng B J. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize., 2011, 12: 76–89
[17] Ma H, Wang C T, Yang B, Cheng H Y, Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L. CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (L.)., 2016, 34: 1–14
[18] Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses., 2009, 47: 785–795
[19] Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A. Kolmos HsfB2b-mediated repression ofdirects abiotic stress responses of the circadian clock., 2014, 111: 16173–16177
[20] Scharf K D, Heider H, H?hfeld I, Lyck R, Schmidt E and Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules., 1998, 18: 2240–2251
[21] Heerklotz D, D?ring P, Bonzelius F. The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor., 2001, 21: 1759–1768
[22] Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato., 2002, 16: 1555–1567
[23] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of thegene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth., 2007, 58: 3373–3383
[24] Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-induced transcription factor,, is required for extension of acquired thermotolerance in., 2007, 143: 251–262
[25] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S.heat shock transcription factor A2 as a key regulator in response to several types of environmental stress., 2006, 48: 535–547
[26] Liu H C, Charng Y Y. Common and distinct functions ofclass A1 and A2 heat shock factors in diverse abiotic stress responses and development., 2013, 163: 276–290
[27] Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Kaskull-Doring P. The heat stress transcription factor HSFA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in., 2006, 60: 759–772
[28] Lohmann C, Eggers-Schumacher G, Wunderlich M, Sch?ffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in., 2004, 271: 11–21
[29] Liu H, Charng Y. Common and distinct functions ofClass A1 and A2 heat shock factors in diverse abiotic stress responses and development., 2013, 163: 276–290
[30] 趙立娜, 張華寧, 段碩楠, 郭秀林, 李國(guó)良. 玉米基因的克隆和特性及其對(duì)耐熱性的調(diào)控. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2017, 25: 1411–1422 Zhao L N, Zhang H N, Duan S N, Guo X L, Li G L. Cloning and characterization of maize ()gene and its regulating role in thermotolerance., 2017, 25: 1411–1422 (in Chinese with English abstract)
[31] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (L.) by using Wheat Genome Array., 2008, 9: 432–450
[32] Shim D, Hwang J U, Lee J, Lee S, Choi Y. Orthologs of the class A4 heat shock transcription factorconfer cadmium tolerance in wheat and rice., 2009, 21: 4031–4043
[33] Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z. Overexpression ofin transgenicenhances tolerance to extreme temperatures., 2013, 31: 688–697
[34] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenicunder heat stress environment., 2013, 8: e79577
[35] Hu X J, Chen D D, McIntyre C L, Fernanda D M, Zhang Z B, Drenth J, Sundaravelpandan K, Chang H P, Xue G P. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway., 2018, 41: 79–98
[36] 李慧聰, 李國(guó)良, 郭秀林. 玉米熱激轉(zhuǎn)錄因子基因?qū)δ婢趁{迫響應(yīng)的信號(hào)途徑. 作物學(xué)報(bào), 2014, 40: 622–628 Li H C, Li G L, Guo X L. Signal transduction pathway ofgene responding to different abiotic stresses., 2014, 40: 622–628 (in Chinese with English abstract)
[37] 李慧聰, 李國(guó)良, 郭秀林. 玉米熱激轉(zhuǎn)錄因子基因()的克隆、表達(dá)和定位分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2015, 23: 41–51 Li H C, Li G L, Guo X L. Cloning, expression characteristics and subcellular-location of heat shock transcription factorin., 2015, 23: 41–51 (in Chinese with English abstract)
[38] Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M. Expression of maize heat shock transcription factor geneenhances the thermotolerance and drought-stress tolerance of transgenic., 2015, 42: 1080–1090
[39] Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q. Identification and characterization of a novel copper transporter gene familyin common wheat., 2014, 37: 1561–1573
[40] Gietz D, Jean A S, Woods R A, Schiestl R H. Improved method for high transformation of intact yeast cells., 1992, 20: 1425
[41] 趙立娜, 劉子會(huì), 段碩楠, 張園園, 李國(guó)良. 郭秀林. 小麥熱激轉(zhuǎn)錄因子基因的克隆和特性及其對(duì)耐熱性調(diào)控. 作物學(xué)報(bào), 2018, 44: 53–62 Zhao L N, Liu Z H, Duan S N, Zhang Y Y, Li G L, Guo X L. Cloning and Characterization of heat shock transcription factor geneand its regulating role in thermotolerance., 2018, 44: 53–62 (in Chinese with English abstract)
[42] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of theHsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth., 2007, 58: 3373–3383
附表1 擬南芥耐熱性相關(guān)基因及其定量分析引物對(duì)
Supplementary table 1 Genes related to thermotolerance and their primers for qRT-PCR in Arabidopsis
附圖1 正常生長(zhǎng)條件下幼苗期和開花期不同組織器官中TaHsfA2e的相對(duì)表達(dá)水平
每個(gè)樣本設(shè)3次重復(fù), 數(shù)據(jù)為3個(gè)生物學(xué)重復(fù)平均值±標(biāo)準(zhǔn)誤, 幼根中基因的表達(dá)量為對(duì)照, 設(shè)為1。
There are three replicates for each sample and the data are mean ± standard error. The relative expression level ofby qRT-PCR in young roots was set to 1 as controls.
附圖2 RT-PCR檢測(cè)擬南芥不同轉(zhuǎn)基因株系的相對(duì)表達(dá)
Supplementary fig. 2relative expression in differenttransgenic lines by semi-RT-PCR
The wild type (WT) was used as negative control.
Characterization and Regulatory Roles in Thermotolerance of Wheat Heat Shock Transcription Factor Gene
ZHANG Yu-Jie1,2,**, ZHANG Yuan-Yuan1,3,**, ZHANG Hua-Ning1, QIN Ning1,2, LI Guo-Liang1,*, and GUO Xiu-Lin1,*
1Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, Hebei, China;2Hebei North University, Zhangjiakou 075000, Hebei, China;3College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
As key regulatory genes in the signal pathway responsive to heat stress, plant heat shock transcription factors (Hsfs) can enhance plant thermotolerances by triggeringor other relative genes to express. Plants belong to multi-genes family, the members are different among varieties. Based on the phylogenetic tree of Hsf proteins from wheat (), rice () and, we isolated the(GenBank accession number MG700614) from wheat young leaves treated with 37°C for 1.5 h using homologous cloning methods. Sequence analysis showed that the coding sequence (CDS) ofis 1026 bp in length and encodes 341 amino acid residues. The TaHsfA2e protein was predicted to contain a DNA-binding domain (DBD), a nuclear localization signal (NLS) of KRRRP peptide, a nuclear export signal (NES) of LENLAMNI peptide and an aromatic, large hydrophobic and acidic amino residues (AHA) of CCFWEELLSE peptide, and localized in the nuclei under normal growth conditions. TaHsfA2e shared 96%, 94%, and 94% identities with HsfA6f and HsfA2d from wheat and HsfA2d from, respectively.was lowly expressed in majority of tissues and organs but highly expressed in mature seeds of wheat, and the gene expression in leaf was up-regulated by heat shock at 37°C, with the peak value at 60 min after treatment, but down-regulated by salicylic acid or H2O2. TaHsfA2e could be induced by Gal in yeast (), and yeast overexpressing pYES2-TaHsfA2e showed stronger growth potential than the controls expressing pYES2 after heat shock at 50°C for 45 min, though all of the yeast growth potential were also decreased after treatment. Both of basal and acquired thermotolerances of transgenicplants that overexpressedwere improved, and the expressions ofgenes were up-regulated to different degrees. These results are essential for deep understanding biological functions and regulatory mechanism of subclass A2 Hsf members in plants.
; expression characterization; subcellular-localization; genetic transformation; thermotolerance
2018-07-20;
2018-08-02.
10.3724/SP.J.1006.2018.01818
通信作者(Corresponding authors): 郭秀林, E-mail: myhf2002@163.com; 李國(guó)良,E-mail: Guolianglili@163.com
**同等貢獻(xiàn)(Contributed equally to this work)
2018-04-19;
本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0300408),河北省自然科學(xué)基金重點(diǎn)項(xiàng)目(C2016301085),河北省現(xiàn)代農(nóng)業(yè)科技創(chuàng)新工程項(xiàng)目(494-0402-YBN-RDC4, 494-0402-YBN-SVE2)和河北省高層次人才項(xiàng)目(A201500130)資助。
This study was supported by the National Key Research and Development Program of China (2017YFD0300408), the Key Project of Natural Science Foundation of Hebei Province (C2016301085), the Science and Technology Innovation Program for Modern Agriculture in Hebei Province (494-0402-YBN-RDC4, 494-0402-YBN-SVE2), and the High-level Talent Project of Hebei Province (A201500130).
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20180801.1702.006.html